1
|
Mohammed HE, El-Nekeety AA, Rashwan HM, Abdel-Aziem SH, Hassan NS, Hassan EE, Abdel-Wahhab MA. Screening of bioactive components in Ferula assafo dried oleo-gum resin and assessment of its protective function against cadmium-induced oxidative damage, genotoxicity, and cytotoxicity in rats. Toxicol Rep 2025; 14:101853. [PMID: 39758803 PMCID: PMC11699744 DOI: 10.1016/j.toxrep.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cadmium (Cd) is among the most ecologically harmful heavy metals. The purpose of this work was to identify the biologically active components in dried oleo-resin-gum of Ferula assafo extract (FAE) and assess their preventive efficacy against oxidative damage caused by Cd in rats. The biologically active components were identified using HPLC and GC-MS. Six groups of female Sprague-Dawley rats were randomly assigned and received oral treatment for two weeks. They consisted of the control group, the groups that got FAE at low or high doses (150 and 250 mg/kg b.w.), the group that received CdCl2 (2 mg/kg b.w.), and the groups that received CdCl2 + FAE at the low or high dose. Tissues and blood samples were collected for different assays and pathological examinations. The HPLC detected 11 polyphenol compounds, whereas the GC-MS identified 24 bioactive compounds. The in vivo study revealed that CdCl2 alone disrupted all biochemical indices, oxidative indicators, cytokines, antioxidant enzymes, pro and anti-apoptotic mRNA gene expression, increased DNA fragmentation percentage, and caused pathological alterations in hepatic and renal sections. FAE plus CdCl2 therapy considerably improved all indicators and the histological architecture of the kidney and liver, with the higher dose being more effective in improving all of the measured parameters. Therefore, FAE is a promising option for food and pharmaceutical applications to protect against oxidative damage caused by Cd exposure.
Collapse
Affiliation(s)
- Hagar E. Mohammed
- Zoology Dept., Faculty of Science, Al-Arish University, North Sinai, Egypt
| | - Aziza A. El-Nekeety
- Food Toxicology & Contaminants Dept., National Research Centre, Dokki, Cairo, Egypt
| | - Hanan M. Rashwan
- Zoology Dept., Faculty of Science, Al-Arish University, North Sinai, Egypt
| | | | | | - Entesar E. Hassan
- Genetics and Cytology Dept., National Research Centre, Dokki, Cairo, Egypt
| | | |
Collapse
|
2
|
Zhang K, Tai Y, Gong Y, Zhou Y, Wang C, Shang J. The association between urinary cadmium exposure levels and overactive bladder syndrome in the U.S. adults from NHANES database. Sci Rep 2025; 15:12870. [PMID: 40234603 PMCID: PMC12000519 DOI: 10.1038/s41598-025-97012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/01/2025] [Indexed: 04/17/2025] Open
Abstract
The relationship between urinary cadmium exposure levels and overactive bladder (OAB) has not been fully elucidated. The purpose of this study was to further investigate the correlation between urinary cadmium exposure levels and OAB risk in adults. Laboratory data on urinary cadmium exposure levels were obtained from the National Health and Nutrition Examination Survey (NHANES) database for the period 2007-2016. OAB was defined as the Overactive Bladder Syndrome Symptom Score (OABSS, score ≥ 3) according to the International Continence Society. We used weighted logistic regression modelling to assess the association between urinary cadmium exposure levels and OAB. The reliability of the findings was assessed using restricted cubic spline, subgroup analysis. A total of 7225 individuals were included in the study, with a prevalence of OAB of 18.6%. Higher U-Cd was associated with an increased risk of overactive bladder syndrome. In models 1 with unadjusted variables (OR = 1.904; 95% CI = 1.902-1.905, p < 0.001), model 2 with partially adjusted variables OR = 1.264; 95% CI = 1.263-1.265, p < 0.001) and model 3 with fully adjusted variables (OR = 1.232; 95% CI = 1.230-1.230, p < 0.001) in which the association was significant. This association remained stable across subgroups of sex, age, PIR, and BMI. Restricted cubic spline showed a linear association between U-Cd and OAB (p for nonlinear > 0.05). Urinary cadmium exposure levels are positively associated with the risk of developing OAB in the US adult population, but further studies are needed to elucidate the causal relationship between U-Cd and OAB.
Collapse
Affiliation(s)
- Kaixuan Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yanghao Tai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yu Gong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Yifan Zhou
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Chao Wang
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Jiwen Shang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences,Tongji Shanxi Hospital, Taiyuan, 030032, China.
- Department of Urology, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Department of Ambulatory Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| |
Collapse
|
3
|
Manna S, Firdous SM. Unravelling the developmental toxicity of heavy metals using zebrafish as a model: a narrative review. Biometals 2025; 38:419-463. [PMID: 39987289 DOI: 10.1007/s10534-025-00671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Developmental toxicity is the disruption of an organism's normal development which may occur in either the parent before conception or in the growing creature itself. Zebrafish (Danio rerio) are being employed as effective vertebrate models to evaluate the safety and toxicity of chemicals because they can breed multiple times in a year so we can observe the toxic effects in the next generation and their development mental stages can be observed and define clearly because their 1 cell stage to prime stage is transparent so we can observe the development of every organ also they have nearly about 80% genetic similarity with humans and shares the similar neuromodulatory structure along with multiple neurotransmitter. The recent research endeavours to examine the harmful outcome of various heavy metals such as cadmium, chromium, nickel, arsenic, lead, mercury, bismuth, iron, manganese, and thallium along with microplastics on zebrafish embryos when subjected to environmentally acceptable levels of every single metal in addition to co-exposure at various points in time. These heavy metals can alter the mRNA expression levels, increase the reactive oxygen species (ROS) generation, decrease antioxidant expression, damage neuronal function, alter neurotransmitter release, alter the expression of several apoptotic proteins, interfere with the different signalling pathways, decrease heat rates, increase malformations like - pericardial oedema, heart oedema, reduce in length tail bending abnormal formation in fins. Thereafter we concluded that due to its involvement in the food chain, it also causes severe effects on human beings.
Collapse
Affiliation(s)
- Sanjib Manna
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India
| | - Sayed Mohammed Firdous
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology & AHS, Uluberia, Howrah, West Bengal, 711316, India.
| |
Collapse
|
4
|
Tang X, Cao J, Cai J, Mo X, Wei Y, He K, Ye Z, Liang YJ, Zhao L, Qin L, Li Y, Qin J, Zhang Z. Effect of Interaction of ATG7 and Plasma Metal Concentrations on Cognitive Impairment in Rural China. J Mol Neurosci 2025; 75:27. [PMID: 39988622 DOI: 10.1007/s12031-025-02322-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/11/2025] [Indexed: 02/25/2025]
Abstract
The objective of this study is to explore the association of plasma metal concentrations with impaired cognitive function in different genotypes of ATG7 using multiple models. A cross-sectional survey was conducted in rural China among 994 individuals aged 30 years or older. Cognitive function was assessed using the Mini-Mental State Examination (MMSE). Genetic analysis focused on two single-nucleotide polymorphisms (SNPs) in the autophagy-related gene ATG7 (rs2606757 and rs8154). Plasma concentrations of metals were quantified using inductively coupled plasma mass spectrometry. Restricted cubic splines were used to explore the association between serum metal concentration and the occurrence of mild cognitive impairment in individuals with various genotypes. Bayesian Kernel Machine Regression (BKMR) models were used to explore the interactions between individual metals. In a restricted cubic spline model, there is a nonlinear relationship between plasma concentration of Cd and the occurrence of cognitive impairment in individuals carrying the AA (P of Nonlinear = 0.008) and AT (P of Nonlinear = 0.007) genotypes at the rs2606757. However, in people carrying the TT genotype at the rs2606757 locus, the concentration of metals in plasma was not significantly associated with cognitive impairment (P of Nonlinear = 0.534). The results of the BKMR model are consistent with those of the restricted cubic spline model. The TT genotype at rs2606757 in ATG7 appears to confer greater cognitive resilience against Cd-induced cognitive damage. These findings highlight the importance of considering gene-environment interactions in the context of cognitive impairment and suggest potential avenues for preventing cognitive decline in individuals exposed to Cd. Further research is needed to elucidate the precise mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Xu Tang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
- Affiliated Hospital of Guilin Medical University, 15 Lequn Road, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jiejing Cao
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
- Liuzhou People's Hospital, Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Jiansheng Cai
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - Xiaoting Mo
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - Yanfei Wei
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - Kailian He
- School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Zeyan Ye
- School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Yu Jian Liang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - Linhai Zhao
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - Lidong Qin
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - You Li
- School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guangxi Zhuang Autonomous Region, Guilin, China
| | - Jian Qin
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China
| | - Zhiyong Zhang
- Department of Environmental and Occupational Health, Guangxi Medical University, Nanning, 530021, China.
- School of Public Health, Guilin Medical University, 1 Zhiyuan Road, Guangxi Zhuang Autonomous Region, Guilin, China.
- Guangxi Health Commission Key Laboratory of Entire Lifecycle Health and Care, Guangxi Zhuang Autonomous Region, Guilin, China.
| |
Collapse
|
5
|
Gil J, Kim D, Choi S, Bae ON. Cadmium-induced iron dysregulation contributes to functional impairment in brain endothelial cells via the ferroptosis pathway. Toxicol Appl Pharmacol 2025; 495:117233. [PMID: 39842614 DOI: 10.1016/j.taap.2025.117233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/24/2025]
Abstract
Cadmium (Cd2+) is a heavy metal that is a major hazardous environmental contaminant, ubiquitously present in the environment. Cd2+ exposure has been closely associated with an increased prevalence and severity of neurological and cardiovascular diseases (CVD). The blood-brain barrier (BBB) plays a crucial role in protecting the brain from external environmental factors. Mitochondria play an important role in maintaining the barrier function of brain endothelial cells by regulating energy metabolism and redox homeostasis. In this study, we aimed to assess the cytotoxic effects of Cd2+ on the integrity and function of brain endothelial cells. After 24 h of exposure, Cd2+ reduced cell survival, tight junction protein expression, and trans-endothelial electrical resistance (TEER) in bEnd.3 cells suggest a potential BBB integrity disruption by Cd2+ exposure. To clarify the underlying mechanism, we further investigated the role of mitochondria in iron overload-mediated cell death following Cd2+ exposure. Cd2+ induced a substantial reduction in mitochondrial basal respiration and ATP production in brain endothelial cells, suggesting mitochondrial dysfunction. In addition, Cd2+ exposure led to impaired autophagy, elevated iron levels, and increased lipid peroxidation, indicating the initiation of ferroptosis, a form of cell death triggered by iron. In summary, our research suggests that Cd2+ exposure can disrupt BBB function by causing mitochondrial dysfunction and disrupting iron homeostasis.
Collapse
Affiliation(s)
- Junkyung Gil
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea.
| | - Donghyun Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea.
| | - Sungbin Choi
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea.
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, South Korea.
| |
Collapse
|
6
|
Guevara-Ramírez P, Tamayo-Trujillo R, Cadena-Ullauri S, Ruiz-Pozo V, Paz-Cruz E, Annunziata G, Verde L, Frias-Toral E, Simancas-Racines D, Zambrano AK. Heavy metals in the diet: unraveling the molecular pathways linked to neurodegenerative disease risk. FOOD AGR IMMUNOL 2024; 35. [DOI: 10.1080/09540105.2024.2434457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Giuseppe Annunziata
- Facoltà di Scienze Umane, della Formazione e dello Sport, Università Telematica Pegaso, Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
7
|
Urbano T, Vinceti M, Carbone C, Wise LA, Malavolti M, Tondelli M, Bedin R, Vinceti G, Marti A, Chiari A, Zamboni G, Michalke B, Filippini T. Exposure to Cadmium and Other Trace Elements Among Individuals with Mild Cognitive Impairment. TOXICS 2024; 12:933. [PMID: 39771148 PMCID: PMC11679412 DOI: 10.3390/toxics12120933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND A limited number of studies have investigated the role of environmental chemicals in the etiology of mild cognitive impairment (MCI). We performed a cross-sectional study of the association between exposure to selected trace elements and the biomarkers of cognitive decline. METHODS During 2019-2021, we recruited 128 newly diagnosed patients with MCI from two Neurology Clinics in Northern Italy, i.e., Modena and Reggio Emilia. At baseline, we measured serum and cerebrospinal fluid (CSF) concentrations of cadmium, copper, iron, manganese, and zinc using inductively coupled plasma mass spectrometry. With immuno-enzymatic assays, we estimated concentrations of β-amyloid 1-40, β-amyloid 1-42, Total Tau and phosphorylated Tau181 proteins, neurofilament light chain (NfL), and the mini-mental state examination (MMSE) to assess cognitive status. We used spline regression to explore the shape of the association between exposure and each endpoint, adjusted for age at diagnosis, educational attainment, MMSE, and sex. RESULTS In analyses between the serum and CSF concentrations of trace metals, we found monotonic positive correlations between copper and zinc, while an inverse association was observed for cadmium. Serum cadmium concentrations were inversely associated with amyloid ratio and positively associated with Tau proteins. Serum iron concentrations showed the opposite trend, while copper, manganese, and zinc displayed heterogeneous non-linear associations with amyloid ratio and Tau biomarkers. Regarding CSF exposure biomarkers, only cadmium consistently showed an inverse association with amyloid ratio, while iron was positively associated with Tau. Cadmium concentrations in CSF were not appreciably associated with serum NfL levels, while we observed an inverted U-shaped association with CSF NfL, similar to that observed for copper. In CSF, zinc was the only trace element positively associated with NfL at high concentrations. CONCLUSIONS In this cross-sectional study, high serum cadmium concentrations were associated with selected biomarkers of cognitive impairment. Findings for the other trace elements were difficult to interpret, showing complex and inconsistent associations with the neurodegenerative endpoints examined.
Collapse
Affiliation(s)
- Teresa Urbano
- Environmental, Genetics, and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (M.M.); (T.F.)
| | - Marco Vinceti
- Environmental, Genetics, and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (M.M.); (T.F.)
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA;
| | - Chiara Carbone
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.C.); (M.T.); (R.B.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Lauren A. Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA;
| | - Marcella Malavolti
- Environmental, Genetics, and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (M.M.); (T.F.)
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.C.); (M.T.); (R.B.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Roberta Bedin
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.C.); (M.T.); (R.B.); (G.Z.)
| | - Giulia Vinceti
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Alessandro Marti
- Clinical Neuropsychology, Cognitive Disorders and Dyslexia Unit, Neuromotor and Rehabilitation Department, AUSL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Annalisa Chiari
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Giovanna Zamboni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (C.C.); (M.T.); (R.B.); (G.Z.)
- Neurology Unit, Baggiovara Hospital, 41126 Modena, Italy; (G.V.); (A.C.)
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, German Research Center for Environmental Health, Helmholtz Center Munich, 85764 Neuherberg, Germany;
| | - Tommaso Filippini
- Environmental, Genetics, and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (T.U.); (M.M.); (T.F.)
- School of Public Health, University of California Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
8
|
Sighencea MG, Popescu RȘ, Trifu SC. From Fundamentals to Innovation in Alzheimer's Disease: Molecular Findings and Revolutionary Therapies. Int J Mol Sci 2024; 25:12311. [PMID: 39596378 PMCID: PMC11594972 DOI: 10.3390/ijms252212311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a global health concern and the leading cause of dementia in the elderly. The prevalence of this neurodegenerative condition is projected to increase concomitantly with increased life expectancy, resulting in a significant economic burden. With very few FDA-approved disease-modifying drugs available for AD, there is an urgent need to develop new compounds capable of impeding the progression of the disease. Given the unclear etiopathogenesis of AD, this review emphasizes the underlying mechanisms of this condition. It explores not only well-studied aspects, such as the accumulation of Aβ plaques and neurofibrillary tangles, but also novel areas, including glymphatic and lymphatic pathways, microbiota and the gut-brain axis, serotoninergic and autophagy alterations, vascular dysfunction, the metal hypothesis, the olfactory pathway, and oral health. Furthermore, the potential molecular targets arising from all these mechanisms have been reviewed, along with novel promising approaches such as nanoparticle-based therapy, neural stem cell transplantation, vaccines, and CRISPR-Cas9-mediated genome editing techniques. Taking into account the overlap of these various mechanisms, individual and combination therapies emerge as the future direction in the AD strategy.
Collapse
Affiliation(s)
| | - Ramona Ștefania Popescu
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| | - Simona Corina Trifu
- Department of Psychiatry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| |
Collapse
|
9
|
Zhang Y, Wang C, Jia R, Long H, Zhou J, Sun G, Wang Y, Zhang Z, Rong X, Jiang Y. Transfer from ciliate to zebrafish: Unveiling mechanisms and combined effects of microplastics and heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135645. [PMID: 39191009 DOI: 10.1016/j.jhazmat.2024.135645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
The impacts and toxicological mechanisms of microplastics (MPs) or heavy metals on aquatic ecosystems have been the subject of extensive research and initial understanding. However, the combined toxicity of co-pollutants on organisms and cumulative toxic effects along the food chain are still underexplored. In this study, the ciliate protozoan Paramecium caudatum and zebrafish Danio rerio were used to represent the microbial loop and the higher trophic level, respectively, to illustrate the progressive exposure of MPs and cadmium (Cd2+). The findings indicate that MPs (ca. 1 ×105 items/L) containing with Cd2+ (below 0.1 µg/L) could permeate the bodies of zebrafish through trophic levels after primary ingestion by ciliates. This could cause adverse effects on zebrafish, including alterations in bioindicators (total sugar, triglycerides, lactate, and glycogen) associated with metabolism, delayed hepatic development, disruption of intestinal microbiota, DNA damage, inflammatory responses, and abnormal cellular apoptosis. In addition, the potential risks associated with the transfer of composite pollutants through the microbial loop into traditional food chain were examined, offering novel insights on the evaluation of the ecological risks associated with MPs. As observed, understanding the bioaccumulation and toxic effects of combined pollutants in zebrafish holds crucial implications for food safety and human health.
Collapse
Affiliation(s)
- Yan Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Caixia Wang
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Ruiqi Jia
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongan Long
- MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Jianfeng Zhou
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Gaojingwen Sun
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - YunLong Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Zhaoji Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaozhi Rong
- Key Laboratory of Marine Drugs (Ocean University of China), Chinese Ministry of Education, and School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China.
| | - Yong Jiang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China; MoE Key Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
10
|
Nyvltova P, Capek J, Handl J, Petira F, Rousarova E, Ticha L, Jelinkova S, Rousar T. Mitochondrial damage precedes the changes of glutathione metabolism in CdCl 2 treated neuronal SH-SY5Y cells. Food Chem Toxicol 2024; 193:114953. [PMID: 39209146 DOI: 10.1016/j.fct.2024.114953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Cadmium crosses the blood-brain barrier inducing damage to neurons. Cell impairment is predominantly linked to oxidative stress and glutathione (GSH) depletion. On the other hand, several reports have described an increase of GSH levels in neuronal cells after CdCl2 exposure. Therefore, the aim of the present report was to investigate the relation between changes in GSH levels and mitochondrial damage in neuronal cells after CdCl2 treatment. To characterize neuronal impairment after CdCl2 treatment (0-200 μM) for 1-48 h, we used the SH-SY5Y cell line. We analyzed GSH metabolism and determined mitochondrial activity using high-resolution respirometry. CdCl2 treatment induced both the decreases and increases of GSH levels in SH-SY5Y cells. GSH concentration was significantly increased in cells incubated with up to 50 μM CdCl2 but only 100 μM CdCl2 induced GSH depletion linked to increased ROS production. The overexpression of proteins involved in GSH synthesis increased in response to 50 and 100 μM CdCl2 after 6 h. Finally, strong mitochondrial impairment was detected even in 50 μM CdCl2 treated cells after 24 h. We conclude that a significant decrease in mitochondrial activity can be observed in 50 μM CdCl2 even without the occurrence of GSH depletion in SH-SY5Y cells.
Collapse
Affiliation(s)
- Pavlina Nyvltova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Jan Capek
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Jiri Handl
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Filip Petira
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Erika Rousarova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Lenka Ticha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Stepanka Jelinkova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| | - Tomas Rousar
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10, Pardubice, Czech Republic.
| |
Collapse
|
11
|
Ruczaj A, Rogalska J, Gałażyn-Sidorczuk M, Brzóska MM. The Protective Effect of the Supplementation with an Extract from Aronia melanocarpa L. Berries against Cadmium-Induced Changes of Chosen Biomarkers of Neurotoxicity in the Brain-A Study in a Rat Model of Current Lifetime Human Exposure to This Toxic Heavy Metal. Int J Mol Sci 2024; 25:10887. [PMID: 39456671 PMCID: PMC11507053 DOI: 10.3390/ijms252010887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Since even low-level environmental exposure to cadmium (Cd) can lead to numerous unfavourable health outcomes, including damage to the nervous system, it is important to recognize the risk of health damage by this xenobiotic, the mechanisms of its toxic influence, and to find an effective protective strategy. This study aimed to evaluate, in a female Wistar rat model of current human environmental exposure to Cd (1 and 5 mg/kg of diet for 3-24 months), if the low-to-moderate treatment with this element can harm the brain and whether the supplementation with a 0.1% Aronia melanocarpa L. (Michx.) Elliott berries (chokeberries) extract (AE) can protect against this effect. The exposure to Cd modified the values of various biomarkers of neurotoxicity, including enzymes (acetylcholinesterase (AChE), sodium-potassium adenosine triphosphatase (Na+/K+-ATPase), phospholipase A2 (PLA2), and nitric oxide synthase 1 (NOS1)) and non-enzymatic proteins (calmodulin (CAM), nuclear factor erythroid 2-related factor 2 (Nrf2), and Kelch-like ECH-associated protein 1 (KEAP1)) crucial for the functioning of the nervous system, as well as the concentrations of calcium (Ca) and magnesium (Mg) and some metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in the brain tissue. The co-administration of AE, partially or entirely, protected from most of the Cd-induced changes alleviating its neurotoxic influence. In conclusion, even low-level chronic exposure to Cd may adversely affect the nervous system, whereas the supplementation with A. melanocarpa berries products during the treatment seems a protective strategy.
Collapse
Affiliation(s)
| | | | | | - Małgorzata M. Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland; (A.R.); (J.R.); (M.G.-S.)
| |
Collapse
|
12
|
Rezaei K, Mastali G, Abbasgholinejad E, Bafrani MA, Shahmohammadi A, Sadri Z, Zahed MA. Cadmium neurotoxicity: Insights into behavioral effect and neurodegenerative diseases. CHEMOSPHERE 2024; 364:143180. [PMID: 39187026 DOI: 10.1016/j.chemosphere.2024.143180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Cadmium (Cd) induced neurotoxicity has become a growing concern due to its potential adverse effects on the Central Nervous System. Cd is a Heavy Metal (HM) that is released into the environment, through several industrial processes. It poses a risk to the health of the community by polluting air, water, and soil. Cd builds up in the brain and other neural tissues, raising concerns about its effect on the nervous system due to its prolonged biological half-life. Cd can enter into the neurons, hence increasing the production of Reactive Oxygen Species (ROS) in them and impairing their antioxidant defenses. Cd disrupts the Calcium (Ca2+) balance in neurons, affects the function of the mitochondria, and triggers cell death pathways. As a result of these pathways, the path to the development of many neurological diseases affected by environmental factors, especially Cd, such as Alzheimer's Disease (AD) and Amyotrophic Lateral Sclerosis (ALS) is facilitated. There are cognitive deficits associated with long exposure to Cd. Memory disorders are present in both animals and humans. Cd alters the brain's function and performance in critical periods. There are lifelong consequences of Cd exposure during critical brain development stages. The susceptibility to neurotoxic effects is increased by interactions with a variety of risk factors. Cd poses risks to neuronal function and behavior, potentially contributing to neurodegenerative diseases like Parkinson's disease (PD) and AD as well as cognitive issues. This article offers a comprehensive overview of Cd-induced neurotoxicity, encompassing risk assessment, adverse effect levels, and illuminating intricate pathways.
Collapse
Affiliation(s)
- Kimia Rezaei
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Ghazaleh Mastali
- Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Elham Abbasgholinejad
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
| | - Melika Arab Bafrani
- Multiple Sclerosis Research Center (MSRC), Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Zahra Sadri
- The Department of Biological Science, Molecular and Cell Biology, Dedman College of Humanities and Sciences Southern Methodist University (SMU), Dallas, TX, USA.
| | | |
Collapse
|
13
|
Vasile Scaeteanu G, Maxim C, Badea M, Olar R. An Overview of Various Applications of Cadmium Carboxylate Coordination Polymers. Molecules 2024; 29:3874. [PMID: 39202953 PMCID: PMC11357313 DOI: 10.3390/molecules29163874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
This review highlights the most recent applications of Cd(II)-carboxylate-based coordination polymers (Cd(II)-CBCPs), such as sensors, catalysts, and storage materials, in comparison with those of Zn(II) counterparts. A wide range of species with luminescence properties were designed by using proper organic fluorophores, especially a carboxylate bridging ligand combined with an ancillary N-donor species, both with a rigid structure. These characteristics, combined with the arrangement in Cd(II)-CBCPs' structure and the intermolecular interaction, enable the sensing behavior of a plethora of various inorganic and organic pollutants. In addition, the Lewis acid behavior of Cd(II) was investigated either in developing valuable heterogeneous catalysts in acetalization, cyanosilylation, Henry or Strecker reactions, Knoevenagel condensation, or dyes or drug elimination from wastewater through photocatalysis. Furthermore, the pores structure of such derivatives induced the ability of some species to store gases or toxic dyes. Applications such as in herbicides, antibacterials, and electronic devices are also described together with their ability to generate nano-CdO species.
Collapse
Affiliation(s)
- Gina Vasile Scaeteanu
- Department of Soil Sciences, Faculty of Agriculture, University of Agronomic Sciences and Veterinary Medicine, 59 Mărăști Str., 011464 Bucharest, Romania;
| | - Catalin Maxim
- Department of Inorganic, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., S5, 050663 Bucharest, Romania; (C.M.); (M.B.)
| | - Mihaela Badea
- Department of Inorganic, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., S5, 050663 Bucharest, Romania; (C.M.); (M.B.)
| | - Rodica Olar
- Department of Inorganic, Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90–92 Panduri Str., S5, 050663 Bucharest, Romania; (C.M.); (M.B.)
| |
Collapse
|
14
|
Chen N, Wan X, Wang M, Li Y, Wang X, Zeng L, Zhou J, Zhang Y, Cheng S, Shen Y. Cross-talk between Vimentin and autophagy regulates blood-testis barrier disruption induced by cadmium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123625. [PMID: 38401636 DOI: 10.1016/j.envpol.2024.123625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
The blood-testis barrier (BTB) plays a vital role in mammalian spermatogenesis by separating the seminiferous epithelium into an adluminal and a basal compartment. Cadmium (Cd) is a toxic heavy metal that is widely present in the environment. We observed that Cd can induce BTB disruption, leading to apoptosis of testicular cells. However, the molecular mechanisms contributing to BTB injury induced by Cd have not yet been fully clarified. Vimentin (Vim) is an important desmosome-like junction protein that mediates robust adhesion in the BTB. In this study, we investigated how Vim responds to Cd. We found that Cd treatment led to a significant decrease in Vim expression, accompanied by a marked increase in LC3-II expression and a higer number of autophagosomes. Interestingly, we also observed that Cd-induced autophagy was associated with decreased Vim activity and enhanced apoptosis of testicular cells. To further investigate the role of autophagy in Vim regulation under Cd exposure, we treated cells with an autophagy inhibitor called 3-MA. We found that 3-MA treatment enhanced Vim expression and improved the disruption of the BTB under Cd exposure. Additionally, the inhibition of Vim confirmed the role of autophagy in modulating Vim expression. These results reveal a previously unknown regulatory mechanism of Cd involving the interplay between a heavy metal and a protein.
Collapse
Affiliation(s)
- Na Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Xiaoyan Wan
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, PR China
| | - Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, PR China
| | - Yamin Li
- Department of Woman's Health Care, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430071, Hubei, PR China
| | - Xiaofei Wang
- Center for Reproductive Medicine, Yichang Central People's Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443000, Hubei, PR China
| | - Ling Zeng
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, PR China
| | - Jinzhao Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Yanwei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Shun Cheng
- College of Zhixing, Hubei University, Wuhan, 430011, PR China
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China.
| |
Collapse
|
15
|
Kusak R, Nasiadek M, Stragierowicz J, Hanke W, Kilanowicz A. Changes in Endogenous Essential Metal Homeostasis in the Liver and Kidneys during a Six-Month Follow-Up Period after Subchronic Cadmium Exposure. Int J Mol Sci 2024; 25:3829. [PMID: 38612636 PMCID: PMC11011286 DOI: 10.3390/ijms25073829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Cadmium (Cd) is one of the most dangerous environmental pollutants. Its mechanism of action is multidirectional; among other things, it disrupts the balance of key essential elements. The aim of this study was to assess how cumulative exposure to Cd influences its interaction with selected essential elements (Cu, Zn, Ca, and Mg) in the kidney and liver during long-term observation (90 and 180 days) after subchronic exposure of rats (90 days) to Cd at common environmental (0.09 and 0.9 mg Cd/kg b.w.) and higher (1.8 and 4.5 mg Cd/kg b.w.) doses. Cd and essential elements were analyzed using the F-AAS and GF-AAS techniques. It was shown that the highest bioaccumulation of Cd in the kidney occurred six months after the end of exposure, and importantly, the highest accumulation was found after the lowest Cd dose (i.e., environmental exposure). Organ bioaccumulation of Cd (>21 μgCd/g w.w. in the kidney and >6 μgCd/g w.w. in the liver) was accompanied by changes in the other studied essential elements, particularly Cu in both the kidney and liver and Zn in the liver; these persisted for as long as six months after the end of the exposure. The results suggest that the critical concentration in human kidneys (40 μgCd/g w.w.), currently considered safe, may be too high and should be reviewed, as the observed long-term imbalance of Cu/Zn in the kidneys may lead to renal dysfunction.
Collapse
Affiliation(s)
- Rafał Kusak
- Medical Centers the Medici, 91-053 Lodz, Poland
| | - Marzenna Nasiadek
- Department of Toxicology, Medical University of Lodz, 90-151 Lodz, Poland; (J.S.); (A.K.)
| | - Joanna Stragierowicz
- Department of Toxicology, Medical University of Lodz, 90-151 Lodz, Poland; (J.S.); (A.K.)
| | - Wojciech Hanke
- Medical Informatics and Statistics Department, Medical University of Lodz, 90-419 Lodz, Poland;
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, 90-151 Lodz, Poland; (J.S.); (A.K.)
| |
Collapse
|
16
|
Wen S, Wang L. Cadmium neurotoxicity and therapeutic strategies. J Biochem Mol Toxicol 2024; 38:e23670. [PMID: 38432689 DOI: 10.1002/jbt.23670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/26/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) is a multitarget, carcinogenic, nonessential environmental pollutant. Due to its toxic effects at very low concentrations, lengthy biological half-life, and low excretion rate, exposure to Cd carries a concern. Prolonged exposure to Cd causes severe injury to the nervous system of both humans and animals. Nevertheless, the precise mechanisms responsible for the neurotoxic effects of Cd have yet to be fully elucidated. The accurate chemical mechanism potentially entails the destruction of metal-ion homeostasis, inducing oxidative stress, apoptosis, and autophagy. Here we review the evidence of the neurotoxic effects of Cd and corresponding strategies to protect against Cd-induced central nervous system injury.
Collapse
Affiliation(s)
- Shuangquan Wen
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
- Veterinarian Clinical Diagnosis Study Group, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Liang Wang
- Suzhou Chien-Shiung Institute of Technology, Taicang, China
| |
Collapse
|
17
|
Pozdnyakova N, Krisanova N, Pastukhov A, Dudarenko M, Tarasenko A, Borysov A, Kalynovska L, Paliienko K, Borisova T. Multipollutant reciprocal neurological hazard from smoke particulate matter and heavy metals cadmium and lead in brain nerve terminals. Food Chem Toxicol 2024; 185:114449. [PMID: 38215962 DOI: 10.1016/j.fct.2024.114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/14/2024]
Abstract
Heavy metals, Cd2+ and Pb2+, and carbonaceous air pollution particulate matter are hazardous neurotoxicants. Here, a capability of water-suspended smoke particulate matter preparations obtained from poplar wood (WPs) and polypropylene fibers (medical facemasks) (MPs) to influence Cd2+/Pb2+-induced neurotoxicity, and vice versa, was monitored using biological system, i.e. isolated presynaptic rat cortex nerve terminals. Combined application of Pb2+ and WPs/MPs to nerve terminals in an acute manner revealed that smoke preparations did not change a Pb2+-induced increase in the extracellular levels of excitatory neurotransmitter L-[14C]glutamate and inhibitory one [3H]GABA, thereby demonstrating additive result and no interference of neurotoxic effects of Pb2+ and particulate matter. Whereas, both smoke preparations decreased a Cd2+-induced increase in the extracellular level of L-[14C]glutamate and [3H]GABA in nerve terminals. In fluorimetric measurements, the metals and smoke preparations demonstrated additive effects on the membrane potential of nerve terminals causing membrane depolarisation. WPs/MPs-induced reduction of spontaneous ROS generation was mitigated by Cd2+ and Pb2+. Therefore, a potential variety of multipollutant heavy metal-/airborne particulate-induced effects on key presynaptic processes was revealed. Multipollutant reciprocal neurological hazard through disturbance of the excitation-inhibition balance, membrane potential and ROS generation was evidenced. This multipollutant approach and data contribute to up-to-date environmental quality/health risk estimation.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Nataliya Krisanova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine.
| | - Marina Dudarenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Alla Tarasenko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Arsenii Borysov
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Liliia Kalynovska
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Konstantin Paliienko
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| | - Tatiana Borisova
- The Department of Neurochemistry, The Palladin Institute of Biochemistry, The National Academy of Sciences of Ukraine, 9 Leontovicha st, Kyiv, 01054, Ukraine
| |
Collapse
|
18
|
Huang Y, Guo X, Lu S, Chen Q, Wang Z, Lai L, Liu Q, Zhu X, Luo L, Li J, Huang Y, Gao H, Zhang Z, Bu Q, Cen X. Long-term exposure to cadmium disrupts neurodevelopment in mature cerebral organoids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168923. [PMID: 38065485 DOI: 10.1016/j.scitotenv.2023.168923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
Cadmium (Cd) is a pervasive environmental pollutant. Increasing evidence suggests that Cd exposure during pregnancy can induce adverse neurodevelopmental outcomes. However, due to the limitations of neural cell and animal models, it is challenging to study the developmental neurotoxicity and underlying toxicity mechanism of long-term exposure to environmental pollutants during human brain development. In this study, chronic Cd exposure was performed in human mature cerebral organoids for 49 or 77 days. Our study found that prolonged exposure to Cd resulted in the inhibition of cerebral organoid growth and the disruption of neural differentiation and cortical layer organization. These potential consequences of chronic Cd exposure may include impaired GFAP expression, a reduction in SOX2+ neuronal progenitor cells, an increase in TUJ1+ immature neurons, as well as an initial increase and a subsequent decrease in both TBR2+ intermediate progenitors and CTIP2+ deep layer cortical neurons. Transcriptomic analyses revealed that long-term exposure to Cd disrupted zinc and copper ion homeostasis through excessive synthesis of metallothionein and disturbed synaptogenesis, as evidenced by inhibited postsynaptic protein. Our study employed mature cerebral organoids to evaluate the developmental neurotoxicity induced by long-term Cd exposure.
Collapse
Affiliation(s)
- Yan Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Xinhua Guo
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Shiya Lu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qiqi Chen
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiu Wang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Li Lai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qian Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Xizhi Zhu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Li Luo
- Department of Gynaecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Yina Huang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Gao
- Department of Food Science and Technology, College of Biomass and Engineering, Sichuan University, Chengdu 610065, China
| | - Zunzhen Zhang
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Qian Bu
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
19
|
Ruczaj A, Brzóska MM, Rogalska J. The Protective Impact of Aronia melanocarpa L. Berries Extract against Prooxidative Cadmium Action in the Brain-A Study in an In Vivo Model of Current Environmental Human Exposure to This Harmful Element. Nutrients 2024; 16:502. [PMID: 38398826 PMCID: PMC10891719 DOI: 10.3390/nu16040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Cadmium (Cd) is a prooxidant that adversely affects human health, including the nervous system. As exposure of the general population to this heavy metal is inevitable, it is crucial to look for agents that can prevent the effects of its toxic action. An experimental model on female rats of current lifetime human exposure to cadmium (3-24-months' treatment with 1 or 5 mg Cd/kg diet) was used to test whether low-level and moderate intoxication can exert a prooxidative impact in the brain and whether supplementation with a 0.1% extract from the berries of Aronia melanocarpa L. (Michx.) Elliott (AE; chokeberry extract) can protect against this action. Numerous parameters of the non-enzymatic and enzymatic antioxidative barrier, as well as total antioxidative and oxidative status (TAS and TOS, respectively), were determined and the index of oxidative stress (OSI) was calculated. Moreover, chosen prooxidants (myeloperoxidase, xanthine oxidase, and hydrogen peroxide) and biomarkers of oxidative modifications of lipids, proteins, and deoxyribonucleic acid were assayed. Cadmium dysregulated the balance between oxidants and antioxidants in the brain and led to oxidative stress and oxidative injury of the cellular macromolecules, whereas the co-administration of AE alleviated these effects. To summarize, long-term, even low-level, cadmium exposure can pose a risk of failure of the nervous system by the induction of oxidative stress in the brain, whereas supplementation with products based on aronia berries seems to be an effective protective strategy.
Collapse
Affiliation(s)
- Agnieszka Ruczaj
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Joanna Rogalska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| |
Collapse
|
20
|
de la Bastide C, Soares L, Lui LY, Harrington J, Cawthon P, Orwoll E, Kado D, Meliker J. A protocol for the prospective study of urinary cadmium with risk of fracture, bone loss, and muscle loss. JBMR Plus 2024; 8:ziad006. [PMID: 38505523 PMCID: PMC10945722 DOI: 10.1093/jbmrpl/ziad006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 03/21/2024] Open
Abstract
Cadmium (Cd) is a heavy metal and natural element found in soil and crops with increasing concentrations linked to phosphate fertilizers and sewage sludge applied to crop lands. A large fraction of older US men and woman have documented Cd exposure. Cd exposure has proven health concerns such as risk of lung cancer from inhalation and impaired renal function; however, growing evidence suggests it also influences bone and muscle health. Given that low levels of Cd could affect bone and muscle, we have designed prospective studies using the two largest and most detailed US studies of bone health in older men and women: the Osteoporotic Fractures in Men Study and the Study of Osteoporotic Fractures. We are investigating the association of urinary cadmium (U-Cd), as a surrogate for long-term Cd exposure, with bone and muscle health. Building off suggestive evidence from mechanistic and cross-sectional studies, this will be the first well-powered prospective study of incident fracture outcomes, bone loss, and muscle loss in relation to U-Cd, an established biomarker of long-term Cd exposure. The following is a proposed protocol for the intended study; if successful, the proposed studies could be influential in directing future US policy to decrease Cd exposure in the US population similar to recent policies adopted by the European Union to limit Cd in fertilizers.
Collapse
Affiliation(s)
| | - Lissa Soares
- Program in Public Health, Stony Brook University, Stony Brook, NY 11790, United States
| | - Li-Yung Lui
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, United States
| | - James Harrington
- Analytical Science Division, RTI International, Research Triangle Park, NC 27709-2194, United States
| | - Peggy Cawthon
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, United States
| | - Eric Orwoll
- Department of Medicine, School of Medicine, Oregon Health Sciences University, Portland, OR 97239, United States
| | - Deborah Kado
- Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA 94305, United States
- Geriatric Research, Education, and Clinical Center (GRECC), VA Health Care System, Palo Alto, CA 94303, United States
| | - Jaymie Meliker
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, United States
- Program in Public Health, Stony Brook University, Stony Brook, NY 11790, United States
- Department of Family, Population, & Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11790, United States
| |
Collapse
|
21
|
Alanazi ST, Harisa GI, Salama SA. Modulating SIRT1, Nrf2, and NF-κB signaling pathways by bergenin ameliorates the cadmium-induced nephrotoxicity in rats. Chem Biol Interact 2024; 387:110797. [PMID: 37949422 DOI: 10.1016/j.cbi.2023.110797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
In light of the current industrial evolution, exposure to cadmium has become a significant public health concern. Cadmium accumulates in the renal tubular cells and causes nephrotoxicity largely through disruption of the redox homeostasis, induction of inflammation, and suppression of the histone deacetylase SIRT1 expression. The current work aimed at exploring the protective capability of bergenin, a naturally-occurring methyl gallic acid derivative, against the cadmium-evoked nephrotoxicity. Male Wistar rats were treated either with cadmium alone or with cadmium and bergenin for a 7-day experimental period followed by collection of kidney and blood specimens that were subjected to biochemical, molecular, and histological investigations. The results revealed the ability of bergenin to improve the renal functions in the cadmium-intoxicated rats as evidenced by increased glomerular filtration rate, and decreased serum creatinine and blood urea nitrogen. Equally important, bergenin reduced the renal tissue injury and enhanced its redox homeostasis as indicated by decreased protein expression of the kidney injury marker KIM-1, reduced lipid peroxidation, and improved antioxidant potential and histopathological picture of the renal tissues. Mechanistically, bergenin reduced the renal tissue cadmium content, markedly up-regulated protein expression of SIRT1 that regulates inflammation and the redox status of the renal tissues. Additionally, it improved the expression of the major antioxidant transcription factor Nrf2 and its responsive gene products heoxygenase-1 and NAD(P)H quinone dehydrogenase 1 in the cadmium-intoxicated rats. In the same context, bergenin down-regulated the acetylation and the nuclear translocation of the inflammatory transcription factor NF-κB and reduced levels of its responsive gene products TNF-α and IL-1β, as well as the activity of the inflammatory cell infiltration biomarker myeloperoxidase. Collectively, the current study underscores the ameliorating activity of bergenin against the cadmium-evoked nephrotoxicity and highlights modulation of SIRT1, Nrf2, and NF-κB signaling as potential underlining molecular mechanisms.
Collapse
Affiliation(s)
- Samyah T Alanazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Gamaleldin I Harisa
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt.
| | - Samir A Salama
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Cairo, 11751, Egypt; Division of Biochemistry, Department of Pharmacology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
22
|
Romashin D, Arzumanian V, Poverennaya E, Varshaver A, Luzgina N, Rusanov A. Evaluation of Cd-induced cytotoxicity in primary human keratinocytes. Hum Exp Toxicol 2024; 43:9603271231224458. [PMID: 38174414 DOI: 10.1177/09603271231224458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An increasing number of studies have investigated the effects of Cd on human health. Cd-induced dermatotoxicity is an important field of research, but numerous studies have focused on the effects of Cd on the human skin. Moreover, most studies have been performed using HaCaT cells but not primary keratinocytes. In this study, we provide the results describing the cytotoxic effects of Cd exposure on primary human epidermal keratinocytes obtained from different donors. The subtoxic concentration of cadmium chloride was determined via MTT assay, and transcriptomic analysis of the cells exposed to this concentration (25 µM) was performed. As in HaCaT cells, Cd exposure resulted in increased ROS levels, cell cycle arrest, and induction of apoptosis. In addition, we report that exposure to Cd affects zinc and copper homeostasis, induces metallothionein expression, and activates various signaling pathways, including Nrf2, NF-kB, TRAIL, and PI3K. Cd induces the secretion of various cytokines (IL-1, IL-6, IL-10, and PGE2) and upregulates the expression of several cytokeratins, such as KRT6B, KRT6C, KRT16, and KRT17. The results provide a better understanding of the mechanisms of cadmium-induced cytotoxicity and its effect on human epidermal skin cells.
Collapse
|
23
|
Bovio F, Perciballi E, Melchioretto P, Ferrari D, Forcella M, Fusi P, Urani C. Morphological and metabolic changes in microglia exposed to cadmium: Cues on neurotoxic mechanisms. ENVIRONMENTAL RESEARCH 2024; 240:117470. [PMID: 37871786 DOI: 10.1016/j.envres.2023.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Microglial cells play a key role in protecting the central nervous system from pathogens and toxic compounds and are involved in the pathogenesis of different neurodegenerative diseases. Cadmium is a widespread toxic heavy metal, released into the environment at a rate of 30,000 tons/year by anthropogenic activities; it is easily uptaken by the human body through diet and cigarette smoke, as well as by occupational exposure. Once inside the body, cadmium enters the cells and substitutes to zinc and other divalent cations altering many biological functions. Its extremely long half-life makes it a serious health threat. Recent data suggest a role for heavy metals in many neurodegenerative diseases; however, the role of cadmium is still to be elucidated. In this work we report the investigation of cadmium toxicity towards murine BV2 microglial cells, a widely used model for the study of neurodegeneration. Results show that increasing cadmium concentrations increase oxidative stress, a proposed mechanism of neurodegeneration, but also that BV2 cells can keep oxidative stress under control by increasing glutathione reduction. Moreover, cadmium induces alterations of cell morphology and metabolism leading to mitochondrial impairment, without switching the cells to Warburg effect. Finally cadmium induces the release of proinflammatory cytokines, but does not markedly switch BV2 cells to M1 phenotype.
Collapse
Affiliation(s)
- Federica Bovio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Elisa Perciballi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Pasquale Melchioretto
- Department of Earth and Environmental Sciences, University of Milano- Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, Interuniversity Research Center, (MISTRAL), Italy.
| | - Chiara Urani
- Department of Earth and Environmental Sciences, University of Milano- Bicocca, Piazza della Scienza 1, 20126, Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, Interuniversity Research Center, (MISTRAL), Italy
| |
Collapse
|
24
|
Chen Z, Qiao Z, Wirth CR, Park HR, Lu Q. Arrestin domain-containing protein 1-mediated microvesicles (ARMMs) protect against cadmium-induced neurotoxicity. EXTRACELLULAR VESICLE 2023; 2:100027. [PMID: 37614814 PMCID: PMC10443948 DOI: 10.1016/j.vesic.2023.100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Exposure to environmental heavy metals such as cadmium (Cd) is often linked to neurotoxicity but the underlying mechanisms remain poorly understood. Here we show that Arrestin domain-containing protein 1 (ARRDC1)-mediated microvesicles (ARMMs)--an important class of extracellular vesicles (EVs) whose biogenesis occurs at the plasma membrane--protect against Cd-induced neurotoxicity. Cd increased the production of EVs, including ARMMs, in a human neural progenitor cell line, ReNcell CX (ReN) cells. ReN cells that lack ARMMs production as a result of CRISPR-mediated ARRDC1 knockout were more susceptible to Cd toxicity as evidenced by increased LDH production as well as elevated level of oxidative stress markers. Importantly, adding ARMMs back to the ARRDC1-knockout ReN cells significantly reduced Cd-induced toxicity. Consistent with this finding, proteomics data showed that anti-oxidative stress proteins are enriched in ARMMs secreted from ReN cells. Together our study reveals a novel protective role of ARMMs in Cd neurotoxicity and suggests that ARMMs may be used therapeutically to reduce neurotoxicity caused by exposure to Cd and potentially other metal toxicants.
Collapse
Affiliation(s)
- Zunwei Chen
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Zhi Qiao
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Charlotte R. Wirth
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Hae-Ryung Park
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY
| | - Quan Lu
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA
| |
Collapse
|
25
|
Charkiewicz AE, Omeljaniuk WJ, Nowak K, Garley M, Nikliński J. Cadmium Toxicity and Health Effects-A Brief Summary. Molecules 2023; 28:6620. [PMID: 37764397 PMCID: PMC10537762 DOI: 10.3390/molecules28186620] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cadmium (Cd) is a ductile metal in the form of a blueish or silvery-white powder. It is naturally found in soil (about 0.2 mg/kg), minerals, and water. Cd belongs to the group of toxic, carcinogenic, and stimulating elements. Its biological half-life in the human body ranges from 16 to even 30 years on average. Some lung diseases (such as emphysema, asthma, and bronchitis) and high blood pressure are thought to be related to slow poisoning. The symptoms of cadmium poisoning may vary depending on the time of exposure, the type of diet, and the age and health status of the exposed people. For non-smokers and non-occupational exposures, the only source of exposure is diet. The FAO/WHO recommends that the tolerable cadmium intake for an adult is approximately 0.4-0.5 mg/week (60-70 µg per day). Cadmium is primarily absorbed through the respiratory system (about 13-19% of Cd from the air), but it can also enter through the digestive system (about 10-44%), when dust is mixed and swallowed with saliva. The amount of accumulated Cd ranges from 0.14 to 3.2 ppm in muscles, 1.8 ppm in bones, and 0.0052 ppm in the blood. People who are most frequently exposed to heavy metals should be continuously monitored in order to maintain a healthy lifestyle, as well as to implement effective preventive measures and improve public health.
Collapse
Affiliation(s)
- Angelika Edyta Charkiewicz
- Department of Clinical Molecular Biology, Faculty of Medicine with the Division of Dentistry and Division of Medical Education in English, Medical University of Białystok, 15-269 Białystok, Poland
| | - Wioleta Justyna Omeljaniuk
- Department of Analysis and Bioanalysis of Medicines, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Białystok, 15-222 Białystok, Poland
| | - Karolina Nowak
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - Marzena Garley
- Department of Immunology, Faculty of Pharmacy with the Division of Laboratory Medicine, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jacek Nikliński
- Department of Clinical Molecular Biology, Faculty of Medicine with the Division of Dentistry and Division of Medical Education in English, Medical University of Białystok, 15-269 Białystok, Poland
| |
Collapse
|
26
|
Khan K, Rafiq MT, Bacha AUR, Nabi I, Irshad M, Faridullah F, Younas M, Khan MD, Aziz R, Amin M, Arifeen A, Aslam S, Ahmad S, Iqbal A. Assessment of heavy metals and associated oxidative stress in occupationally exposed workers from Bannu and Karak Districts in Pakistan. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5915-5925. [PMID: 37184720 DOI: 10.1007/s10653-023-01603-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/24/2023] [Indexed: 05/16/2023]
Abstract
Heavy metals (HMs) are extensively found in occupationally exposed miners and industrial workers, which may cause serious health-related problems to the large workforce. In order to evaluate the impact of these toxic pollutants, we have investigated the effect of cadmium (Cd), chromium (Cr), copper (Cu), and lead (Pb) concentration on exposed workers of mining, and woolen textile mill and compared the findings with unexposed individuals. From each category like exposed workers (mining, and woolen mill textile site) and unexposed individuals, 50 blood samples were taken. The occurrence of HMs in a sample was investigated through atomic absorption spectrometry while the oxidative stress marker malondialdehyde (MDA) and antioxidant enzyme statuses such as superoxide dismutase (SOD) and catalase (CAT) were analyzed in exposed and control samples. The results showed significant (p < 0.05) variation in Cd, Cr, Cu, and Pb levels in exposed and control samples. The concentration of Cd in the blood of WMWs, KMWs, and control group was 5.75, 3.89, and 0.42 μg/dL, respectively. On the other hand, the concentration of Pb in the blood of WMWs, MWs, and control was 32.34, 24.39, and 0.39 µg/dL while the concentrations of Cr and Cu in the blood of WMWs, MWs, and control group were 11.61 and 104.14 μg/dL, 4.21 and 113.21 μg/dL, 0.32 and 65.53 μg/dL, respectively. An increase in MDA was recorded in the exposed workers' group as compared to control subjects, whereas SOD and CAT activities decreased. Meanwhile, MDA was significantly and positively (p < 0.01) correlated with HMs, while negative significant correlations were found among HMs with SOD and CAT.
Collapse
Affiliation(s)
- Kaleem Khan
- Department of Environmental Science, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Muhammad Tariq Rafiq
- Center for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan.
| | - Aziz-Ur-Rahim Bacha
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan.
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Iqra Nabi
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, People's Republic of China
| | - Muhammad Irshad
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Faridullah Faridullah
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Younas
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Daud Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, 26000, Pakistan
| | - Rukhsanda Aziz
- Department of Environmental Science, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Muhammad Amin
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal, Dir, 18000, Pakistan
| | - Awais Arifeen
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Sohaib Aslam
- Department of Environmental Sciences, Forman Christian College (A Chartered University), Ferozepur Road, Lahore, 54600, Pakistan
| | - Shabir Ahmad
- Department of Environmental Science, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Akhtar Iqbal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| |
Collapse
|
27
|
Smereczański NM, Brzóska MM, Rogalska J, Hutsch T. The Protective Potential of Aronia melanocarpa L. Berry Extract against Cadmium-Induced Kidney Damage: A Study in an Animal Model of Human Environmental Exposure to This Toxic Element. Int J Mol Sci 2023; 24:11647. [PMID: 37511414 PMCID: PMC10381010 DOI: 10.3390/ijms241411647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The impact of cadmium (Cd) on the function and structure of the kidney and the potential protective effect of an extract from Aronia melanocarpa L. berries were investigated in a rat model of low- and moderate-level environmental exposure to this heavy metal (1 and 5 mg Cd/kg feed for up to 24 months). The sensitive biomarkers of Cd-induced damage to the kidney tubules (N-acetyl-β-D-glucosaminidase (NAG), alkaline phosphatase (ALP), β2-microglobulin (β2-MG), and kidney injury molecule-1 (KIM-1) in the urine), clinically relevant early markers of glomerular damage (albumin in the urine and creatinine clearance), and other markers of the general functional status of this organ (urea, uric acid, and total protein in the serum and/or urine) and Cd concentration in the urine, were evaluated. The morphological structure of the kidney and inflammatory markers (chemerin, macrophage inflammatory protein 1 alpha (MIP1a), and Bcl2-associated X protein (Bax)) were also estimated. Low-level and moderate exposure to Cd led to damage to the function and structure of the kidney tubules and glomeruli. The co-administration of A. melanocarpa berry extract significantly protected against the injurious impact of this toxic element. In conclusion, even low-level, long-term exposure to Cd poses a risk of kidney damage, whereas an intake of Aronia berry products may effectively protect from this outcome.
Collapse
Affiliation(s)
- Nazar M Smereczański
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Joanna Rogalska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Tomasz Hutsch
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159C Street, 02-776 Warsaw, Poland
- Veterinary Diagnostic Laboratory ALAB Bioscience, Stępińska 22/30 Street, 00-739 Warsaw, Poland
| |
Collapse
|
28
|
Smereczański NM, Brzóska MM. Current Levels of Environmental Exposure to Cadmium in Industrialized Countries as a Risk Factor for Kidney Damage in the General Population: A Comprehensive Review of Available Data. Int J Mol Sci 2023; 24:ijms24098413. [PMID: 37176121 PMCID: PMC10179615 DOI: 10.3390/ijms24098413] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The growing number of reports indicating unfavorable outcomes for human health upon environmental exposure to cadmium (Cd) have focused attention on the threat to the general population posed by this heavy metal. The kidney is a target organ during chronic Cd intoxication. The aim of this article was to critically review the available literature on the impact of the current levels of environmental exposure to this xenobiotic in industrialized countries on the kidney, and to evaluate the associated risk of organ damage, including chronic kidney disease (CKD). Based on a comprehensive review of the available data, we recognized that the observed adverse effect levels (NOAELs) of Cd concentration in the blood and urine for clinically relevant kidney damage (glomerular dysfunction) are 0.18 μg/L and 0.27 μg/g creatinine, respectively, whereas the lowest observed adverse effect levels (LOAELs) are >0.18 μg/L and >0.27 μg/g creatinine, respectively, which are within the lower range of concentrations noted in inhabitants of industrialized countries. In conclusion, the current levels of environmental exposure to Cd may increase the risk of clinically relevant kidney damage, resulting in, or at least contributing to, the development of CKD.
Collapse
Affiliation(s)
- Nazar M Smereczański
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| | - Małgorzata M Brzóska
- Department of Toxicology, Medical University of Bialystok, Adama Mickiewicza 2C Street, 15-222 Bialystok, Poland
| |
Collapse
|
29
|
Babić Leko M, Langer Horvat L, Španić Popovački E, Zubčić K, Hof PR, Šimić G. Metals in Alzheimer's Disease. Biomedicines 2023; 11:1161. [PMID: 37189779 PMCID: PMC10136077 DOI: 10.3390/biomedicines11041161] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
The role of metals in the pathogenesis of Alzheimer's disease (AD) is still debated. Although previous research has linked changes in essential metal homeostasis and exposure to environmental heavy metals to the pathogenesis of AD, more research is needed to determine the relationship between metals and AD. In this review, we included human studies that (1) compared the metal concentrations between AD patients and healthy controls, (2) correlated concentrations of AD cerebrospinal fluid (CSF) biomarkers with metal concentrations, and (3) used Mendelian randomization (MR) to assess the potential metal contributions to AD risk. Although many studies have examined various metals in dementia patients, understanding the dynamics of metals in these patients remains difficult due to considerable inconsistencies among the results of individual studies. The most consistent findings were for Zn and Cu, with most studies observing a decrease in Zn levels and an increase in Cu levels in AD patients. However, several studies found no such relation. Because few studies have compared metal levels with biomarker levels in the CSF of AD patients, more research of this type is required. Given that MR is revolutionizing epidemiologic research, additional MR studies that include participants from diverse ethnic backgrounds to assess the causal relationship between metals and AD risk are critical.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ena Španić Popovački
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
30
|
Miyazaki I, Asanuma M. Multifunctional Metallothioneins as a Target for Neuroprotection in Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12040894. [PMID: 37107269 PMCID: PMC10135286 DOI: 10.3390/antiox12040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by motor symptoms based on a loss of nigrostriatal dopaminergic neurons and by non-motor symptoms which precede motor symptoms. Neurodegeneration accompanied by an accumulation of α-synuclein is thought to propagate from the enteric nervous system to the central nervous system. The pathogenesis in sporadic PD remains unknown. However, many reports indicate various etiological factors, such as oxidative stress, inflammation, α-synuclein toxicity and mitochondrial impairment, drive neurodegeneration. Exposure to heavy metals contributes to these etiopathogenesis and increases the risk of developing PD. Metallothioneins (MTs) are cysteine-rich metal-binding proteins; MTs chelate metals and inhibit metal-induced oxidative stress, inflammation and mitochondrial dysfunction. In addition, MTs possess antioxidative properties by scavenging free radicals and exert anti-inflammatory effects by suppression of microglial activation. Furthermore, MTs recently received attention as a potential target for attenuating metal-induced α-synuclein aggregation. In this article, we summarize MTs expression in the central and enteric nervous system, and review protective functions of MTs against etiopathogenesis in PD. We also discuss neuroprotective strategies for the prevention of central dopaminergic and enteric neurodegeneration by targeting MTs. This review highlights multifunctional MTs as a target for the development of disease-modifying drugs for PD.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
31
|
Disturbed Ratios between Essential and Toxic Trace Elements as Potential Biomarkers of Acute Ischemic Stroke. Nutrients 2023; 15:nu15061434. [PMID: 36986164 PMCID: PMC10058587 DOI: 10.3390/nu15061434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Background: Cadmium (Cd) and lead (Pb) are known to be two of the metal contaminants that pose the greatest potential threat to human health. The purpose of this research study was to compare the levels of toxic metals (Cd, Pb) in patients with acute ischemic stroke (AIS), with a control group in Podlaskie Voivodeship, Poland. The study also aimed to assess the correlations between toxic metals and clinical data in AIS patients, and to assess the potential effect of smoking. Materials and methods: The levels of mineral components in the collected blood samples were assessed by means of atomic absorption spectrometry (AAS). Results: The Cd blood concentration was significantly higher in AIS patients as compared to the control group. We found that the molar ratios of Cd/Zn and Cd/Pb were significantly higher (p < 0.001; p < 0.001, respectively), when the molar ratios of Se/Pb, Se/Cd, and Cu/Cd were significantly lower (p = 0.01; p < 0.001; p < 0.001, respectively), in AIS patients as compared to control subjects. However, there were no considerable fluctuations in relation to the blood Pb concentration or molar ratios of Zn/Pb and Cu/Pb between our AIS patients and the control group. We also found that patients with internal carotid artery (ICA) atherosclerosis, particularly those with 20–50% ICA stenosis, had higher concentrations of Cd and Cd/Zn, but lower Cu/Cd and Se/Cd molar ratios. In the course of our analysis, we observed that current smokers among AIS patients had significantly higher blood-Cd concentrations, Cd/Zn and Cd/Pb molar ratios, and hemoglobin levels, but significantly lower HDL-C concentrations, Se/Cd, and Cu/Cd molar ratios. Conclusions: Our research has shown that the disruption of the metal balance plays a crucial role in the pathogenesis of AIS. Furthermore, our results broaden those of previous studies on the exposure to Cd and Pb as risk factors for AIS. Further investigations are necessary to examine the probable mechanisms of Cd and Pb in the onset of ischemic stroke. The Cd/Zn molar ratio may be a useful biomarker of atherosclerosis in AIS patients. An accurate assessment of changes in the molar ratios of essential and toxic trace elements could serve as a valuable indicator of the nutritional status and levels of oxidative stress in AIS patients. It is critical to investigate the potential role of exposure to metal mixtures in AIS, due to its public health implications.
Collapse
|
32
|
Satarug S, Vesey DA, Gobe GC, Phelps KR. Estimation of health risks associated with dietary cadmium exposure. Arch Toxicol 2023; 97:329-358. [PMID: 36592197 DOI: 10.1007/s00204-022-03432-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023]
Abstract
In much of the world, currently employed upper limits of tolerable intake and acceptable excretion of cadmium (Cd) (ECd/Ecr) are 0.83 µg/kg body weight/day and 5.24 µg/g creatinine, respectively. These figures were derived from a risk assessment model that interpreted β2-microglobulin (β2MG) excretion > 300 μg/g creatinine as a "critical" endpoint. However, current evidence suggests that Cd accumulation reduces glomerular filtration rate at values of ECd/Ecr much lower than 5.24 µg/g creatinine. Low ECd/Ecr has also been associated with increased risks of kidney disease, type 2 diabetes, osteoporosis, cancer, and other disorders. These associations have cast considerable doubt on conventional guidelines. The goals of this paper are to evaluate whether these guidelines are low enough to minimize associated health risks reliably, and indeed whether permissible intake of a cumulative toxin like Cd is a valid concept. We highlight sources and levels of Cd in the human diet and review absorption, distribution, kidney accumulation, and excretion of the metal. We present evidence for the following propositions: excreted Cd emanates from injured tubular epithelial cells of the kidney; Cd excretion is a manifestation of current tissue injury; reduction of present and future exposure to environmental Cd cannot mitigate injury in progress; and Cd excretion is optimally expressed as a function of creatinine clearance rather than creatinine excretion. We comprehensively review the adverse health effects of Cd and urine and blood Cd levels at which adverse effects have been observed. The cumulative nature of Cd toxicity and the susceptibility of multiple organs to toxicity at low body burdens raise serious doubt that guidelines concerning permissible intake of Cd can be meaningful.
Collapse
Affiliation(s)
- Soisungwan Satarug
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia.
| | - David A Vesey
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Glenda C Gobe
- Kidney Disease Research Collaborative, Level 5, Translational Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- NHMRC Centre of Research Excellence for CKD QLD, UQ Health Sciences, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - Kenneth R Phelps
- Stratton Veterans Affairs Medical Center and Albany Medical College, Albany, NY, USA
| |
Collapse
|
33
|
Lazarus M, Sekovanić A, Reljić S, Kusak J, Ferenčaković M, Sindičić M, Gomerčić T, Huber Đ. Lead and Other Trace Element Levels in Brains of Croatian Large Terrestrial Carnivores: Influence of Biological and Ecological Factors. TOXICS 2022; 11:4. [PMID: 36668730 PMCID: PMC9865836 DOI: 10.3390/toxics11010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Trace element pollution can adversely affect the brains of individuals and thus impact the entire population of apex predators, such as large European carnivores. We assessed exposure to prominent neurotoxicants As, Cd, Hg and Pb by measuring their brain stem levels in brown bears (n = 114), grey wolves (n = 8), Eurasian lynx (n = 3), and golden jackals (n = 2) sampled in 2015-2022 in Croatia. The highest of the non-essential elements was the Pb level in the bears' brains (median, Q1-Q3; 11.1, 7.13-24.1 μg/kg wet mass), with 4% of animals, all subadults, exceeding the established normal bovine levels (100 μg/kg wet mass). Species-specific differences were noted for Ca, Cd, Cu, Fe, Pb and Se brain levels. Female brown bears had higher As brain levels than males. Cubs and yearlings had lower brain Cd, but higher Zn, while subadults had higher Cu than adult bears. Hepatic As, Cd, Cu and Hg levels were shown to be a moderate proxy for estimating brain levels in bears (rS = 0.30-0.69). Multiple associations of As, Cd, Hg and Pb with essential elements pointed to a possible interaction and disturbance of brain Ca, Cu, Fe, Se and Zn homeostasis. Non-essential element levels in the brains of four studied species were lower than reported earlier for terrestrial meso-carnivores and humans. The age and sex of animals were highlighted as essential factors in interpreting brain element levels in ecotoxicological studies of large carnivores.
Collapse
Affiliation(s)
- Maja Lazarus
- Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia
| | - Ankica Sekovanić
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Slaven Reljić
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Josip Kusak
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Magda Sindičić
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Tomislav Gomerčić
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Đuro Huber
- Faculty of Veterinary Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Nature Conservation, Polish Academy of Sciences, 31-343 Krakow, Poland
| |
Collapse
|
34
|
Brzóska MM, Gałażyn-Sidorczuk M, Kozłowska M, Smereczański NM. The Body Status of Manganese and Activity of This Element-Dependent Mitochondrial Superoxide Dismutase in a Rat Model of Human Exposure to Cadmium and Co-Administration of Aronia melanocarpa L. Extract. Nutrients 2022; 14:nu14224773. [PMID: 36432459 PMCID: PMC9699381 DOI: 10.3390/nu14224773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The impact of a polyphenol-rich 0.1% aqueous extract from Aronia melanocarpa L. berries (AE) on the body status of manganese (Mn) and the activity of this essential element-dependent mitochondrial superoxide dismutase (MnSOD) during treatment with cadmium (Cd) was investigated in a rat model of low-level and moderate environmental human exposure to this xenobiotic (1 and 5 mg Cd/kg diet, respectively, for 3-24 months). The exposure to Cd, dose- and duration-dependently, affected the body status of Mn (apparent absorption, body retention, serum and tissue concentrations, content in some organs and total Mn body burden, and urinary and faecal excretion) and the activity of MnSOD in the mitochondria of the liver, kidney, and brain. The administration of AE during the exposure to Cd prevented or at least partially protected the animals from the perturbation of the metabolism of Mn, as well as ameliorated changes in the activity of MnSOD and the concentration of Mn and protected from Cd accumulation in the mitochondria. In conclusion, AE may protect from disorders in the body status of Mn and influence the antioxidative capacity of cells under chronic exposure to Cd. The findings confirm the protective impact of aronia berries products against Cd toxicity.
Collapse
|
35
|
The Beneficial Impact of Zinc Supplementation on the Vascular Tissue of the Abdominal Aorta under Repeated Intoxication with Cadmium: A Study in an In Vivo Experimental Model. Nutrients 2022; 14:nu14194080. [PMID: 36235732 PMCID: PMC9570965 DOI: 10.3390/nu14194080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
In an in vivo rat model of human exposure to cadmium (Cd; 5 and 50 mg/L, 6 months), whether the supplementation with zinc (Zn; 30 and 60 mg/L, increasing its daily intake by 79% and 151%, respectively) protects against the unfavourable impact of this xenobiotic on the vascular tissue of the abdominal aorta was investigated. The treatment with Cd led to oxidative stress and increased the concentrations of pro-inflammatory interleukin 1β (IL-1β), total cholesterol (TC), triglycerides (TG), and endothelial nitric oxide synthase (eNOS) and decreased the concentration of anti-inflammatory interleukin 10 (IL-10) in the vascular tissue. Cd decreased the expression of intercellular adhesion molecule-1 (ICAM-1), platelet endothelial cell adhesion molecule-1 (PECAM-1), and L-selectin on the endothelial cells. The administration of Zn prevented most of the Cd-induced alterations or at least weakened them (except for the expression of adhesive molecules). In conclusion, Zn supplementation may protect from the toxic impact of Cd on the blood vessels and thus exert a beneficial influence on the cardiovascular system. The increase in the intake of Zn by 79% may be sufficient to provide this protection and the effect is related to the antioxidative, anti-inflammatory, and antiatherogenic properties of this essential element.
Collapse
|