1
|
Valentino S, Ortega-Sandoval K, Houston KD, Houston JP. Correlating NAD(P)H lifetime shifts to tamoxifen resistance in breast cancer cells: A metabolic screening study with time-resolved flow cytometry. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2025; 18:2450020. [PMID: 39980603 PMCID: PMC11841857 DOI: 10.1142/s1793545824500202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Time-resolved flow cytometry (TRFC) was used to measure metabolic differences in estrogen receptor-positive breast cancer cells. This specialty cytometry technique measures fluorescence lifetimes as a single-cell parameter thereby providing a unique approach for high-throughput cell counting and screening. Differences in fluorescence lifetime were detected and this was associated with sensitivity to the commonly prescribed therapeutic tamoxifen. Differences in fluorescence lifetime are attributed to the binding states of the autofluorescent metabolite NAD(P)H. The function of NAD(P)H is well described and in general involves cycling from a reduced to oxidized state to facilitate electron transport for the conversion of pyruvate to lactate. NAD(P)H fluorescence lifetimes depend on the bound or unbound state of the metabolite, which also relates to metabolic transitions between oxidative phosphorylation and glycolysis. To determine if fundamental metabolic profiles differ for cells that are sensitive to tamoxifen compared to those that are resistant, large populations of MCF-7 breast cancer cells were screened and fluorescence lifetimes were quantified. Additionally, metabolic differences associated with tamoxifen sensitivity were measured with a Seahorse HS mini metabolic analyzer (Agilent Technologies Inc. Santa Clara, CA) and confocal imaging. Results show that tamoxifen-resistant breast cancer cells have increased utilization of glycolysis for energy production compared to tamoxifen-sensitive breast cancer cells. This work is impacting because it establishes an early step toward developing a reliable screening technology in which large cell censuses can be differentiated for drug sensitivity in a label-free fashion.
Collapse
Affiliation(s)
- Samantha Valentino
- Chemical and Materials Engineering, New Mexico State University 1040 S Horseshoe Dr., Las Cruces, NM 88003, USA
| | - Karla Ortega-Sandoval
- Chemical and Materials Engineering, New Mexico State University 1040 S Horseshoe Dr., Las Cruces, NM 88003, USA
| | - Kevin D. Houston
- Chemistry and Biochemistry, New Mexico State University 1175 N Horseshoe Dr., Las Cruces, NM 88003, USA
| | - Jessica P. Houston
- Chemical and Materials Engineering, New Mexico State University 1040 S Horseshoe Dr., Las Cruces, NM 88003, USA
| |
Collapse
|
2
|
Houston JP, Valentino S, Bitton A. Fluorescence Lifetime Measurements and Analyses: Protocols Using Flow Cytometry and High-Throughput Microscopy. Methods Mol Biol 2024; 2779:323-351. [PMID: 38526793 DOI: 10.1007/978-1-0716-3738-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This chapter focuses on applications and protocols that involve the measurement of the fluorescence lifetime as an informative cytometric parameter. The timing of fluorescence decay has been well-studied for cell counting, sorting, and imaging. Therefore, provided herein is an overview of the techniques used, how they enhance cytometry protocols, and the modern techniques used for lifetime analysis. The background and theory behind fluorescence decay kinetic measurements in cells is first discussed followed by the history of the development of time-resolved flow cytometry. These sections are followed by a review of applications that benefit from the quantitative nature of fluorescence lifetimes as a photophysical trait. Lastly, perspectives on the modern ways in which the fluorescence lifetime is scanned at high throughputs which include high-speed microscopy and machine learning are provided.
Collapse
Affiliation(s)
- Jessica P Houston
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA.
| | - Samantha Valentino
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | | |
Collapse
|
3
|
Xiao D, Zang Z, Sapermsap N, Wang Q, Xie W, Chen Y, Uei Li DD. Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors. BIOMEDICAL OPTICS EXPRESS 2021; 12:3450-3462. [PMID: 34221671 PMCID: PMC8221960 DOI: 10.1364/boe.425663] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
Measuring fluorescence lifetimes of fast-moving cells or particles have broad applications in biomedical sciences. This paper presents a dynamic fluorescence lifetime sensing (DFLS) system based on the time-correlated single-photon counting (TCSPC) principle. It integrates a CMOS 192 × 128 single-photon avalanche diode (SPAD) array, offering an enormous photon-counting throughput without pile-up effects. We also proposed a quantized convolutional neural network (QCNN) algorithm and designed a field-programmable gate array embedded processor for fluorescence lifetime determinations. The processor uses a simple architecture, showing unparallel advantages in accuracy, analysis speed, and power consumption. It can resolve fluorescence lifetimes against disturbing noise. We evaluated the DFLS system using fluorescence dyes and fluorophore-tagged microspheres. The system can effectively measure fluorescence lifetimes within a single exposure period of the SPAD sensor, paving the way for portable time-resolved devices and shows potential in various applications.
Collapse
Affiliation(s)
- Dong Xiao
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, Scotland, UK
| | - Zhenya Zang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, Scotland, UK
| | - Natakorn Sapermsap
- Department of Physics, University of Strathclyde, Glasgow, G4 0RE, Scotland, UK
| | - Quan Wang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, Scotland, UK
| | - Wujun Xie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, Scotland, UK
| | - Yu Chen
- Department of Physics, University of Strathclyde, Glasgow, G4 0RE, Scotland, UK
| | - David Day Uei Li
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK
- Department of Biomedical Engineering, University of Strathclyde, Glasgow G1 1XQ, Scotland, UK
| |
Collapse
|
4
|
Sambrano J, Rodriguez F, Martin J, Houston JP. Toward the Development of an On-Chip Acoustic Focusing Fluorescence Lifetime Flow Cytometer. FRONTIERS IN PHYSICS 2021; 9:647985. [PMID: 34386487 PMCID: PMC8357029 DOI: 10.3389/fphy.2021.647985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional flow cytometry is a valuable quantitative tool. Flow cytometers reveal physical and biochemical information from cells at a high throughput, which is quite valuable for many biomedical, biological, and diagnostic research fields. Flow cytometers range in complexity and typically provide multiparametric data for the user at rates of up to 50,000 cells measured per second. Cytometry systems are configured such that fluorescence or scattered light signals are collected per-cell, and the integrated optical signal at a given wavelength range indicates a particular cellular feature such as phenotype or morphology. When the timing of the optical signal is measured, the cytometry system becomes "time-resolved." Time-resolved flow cytometry (TRFC) instruments can detect fluorescence decay kinetics, and such measurements are consequential for Förster Resonance Energy Transfer (FRET) studies, multiplexing, and metabolic mapping, to name a few. TRFC systems capture fluorescence lifetimes at rates of thousands of cells per-second, however the approach is challenged at this throughput by terminal cellular velocities. High flow rates limit the total number of photons integrated per-cell, reducing the reliability of the average lifetime as a cytometric parameter. In this contribution, we examine an innovative approach to address this signal-to-noise issue. The technology merges time-resolved hardware with microfluidics and acoustics. We present an "acoustofluidic" time-resolved flow cytometer so that cellular velocities can be adjusted on the fly with a standing acoustic wave (SAW). Our work shows that acoustic control can be combined with time-resolved features to appropriately balance the throughput with the optical signals necessary for lifetime data.
Collapse
Affiliation(s)
- Jesus Sambrano
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Felicia Rodriguez
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - John Martin
- Tiber Plasma Diagnostics, Las Cruces, NM, United States
| | - Jessica P. Houston
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
5
|
Bitton A, Sambrano J, Valentino S, Houston JP. A Review of New High-Throughput Methods Designed for Fluorescence Lifetime Sensing From Cells and Tissues. FRONTIERS IN PHYSICS 2021; 9:648553. [PMID: 34007839 PMCID: PMC8127321 DOI: 10.3389/fphy.2021.648553] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Though much of the interest in fluorescence in the past has been on measuring spectral qualities such as wavelength and intensity, there are two other highly useful intrinsic properties of fluorescence: lifetime (or decay) and anisotropy (or polarization). Each has its own set of unique advantages, limitations, and challenges in detection when it comes to use in biological studies. This review will focus on the property of fluorescence lifetime, providing a brief background on instrumentation and theory, and examine the recent advancements and applications of measuring lifetime in the fields of high-throughput fluorescence lifetime imaging microscopy (HT-FLIM) and time-resolved flow cytometry (TRFC). In addition, the crossover of these two methods and their outlooks will be discussed.
Collapse
Affiliation(s)
- Aric Bitton
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Jesus Sambrano
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Samantha Valentino
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| | - Jessica P. Houston
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
6
|
Li J, Xue H, Ma Q, He X, Ma L, Shi B, Sun S, Yao X. Heterogeneity of CD4 +CD25 +Foxp3 +Treg TCR β CDR3 Repertoire Based on the Differences of Symbiotic Microorganisms in the Gut of Mice. Front Cell Dev Biol 2020; 8:576445. [PMID: 32984355 PMCID: PMC7490519 DOI: 10.3389/fcell.2020.576445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Gut microbes play a crucial role in the occurrence and development of autoimmune diseases. The diversity of intestinal microorganisms affected by the living environment, regulate the immune function of peripheral immune organs and local tissues. In the study, the diversity of intestinal microorganisms of Germ-free (GF), Specific Pathogen-free (SPF), and Clean (CL) BALB/c mice were conducted by 16S rDNA sequencing. High-throughput sequencing technology was used to analysis the composition and characterization of TCR β chain CDR3 repertoires in Regulatory T cells (Treg) in intestine and spleen of GF, SPF, and CL mice, so as to investigate the effects of differential composition of intestinal microorganisms on the CD4+CD25+Foxp3+Treg TCR β CDR3 repertoire of intestine and spleen. We observed that GF, SPF, and CL mice have different gut microorganism composition, and the abundance and quantity of microorganisms are positively correlated with the level of feeding environment. Interestingly, incomplete structure of spleen and small intestine in GF mice was found. Moreover, a significant difference in the usage of high frequency unique CDR3 amino acid sequences was detected in the intestinal Treg TCRβ CDR3 repertoire among GF, SPF and CL mice, and there were a greater heterogeneity in the usage frequency of TRBV, TRBJ, and TRBV-TRBJ combinations gene segments. However, the effect of different feeding environment on the mice Treg TCRβ CDR3 repertoire of spleen was weak, implying that the different composition of intestinal microbiota may primarily affect the diversity of the local Treg TCRβ CDR3 repertoire and does not alter the overall properties of the circulating immune system. These results provide basic data to further analyze the mechanism of gut microbes regulating the intestinal mucosal immune system.
Collapse
Affiliation(s)
- Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Huaijuan Xue
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qingqing Ma
- Department of Laboratory Medicine, Guizhou Aerospace Hospital, Zunyi, China
| | - Xiaoyan He
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Long Ma
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Bin Shi
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Suhong Sun
- Department of Breast Surgery, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
7
|
Nichani K, Li J, Suzuki M, Houston JP. Evaluation of Caspase-3 Activity During Apoptosis with Fluorescence Lifetime-Based Cytometry Measurements and Phasor Analyses. Cytometry A 2020; 97:1265-1275. [PMID: 32790129 PMCID: PMC7738394 DOI: 10.1002/cyto.a.24207] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
Abstract
Caspase-3 is a well-described protease with many roles that impact the fate of a cell. During apoptosis, caspase-3 acts as an executioner caspase with important proteolytic functions that lead to the final stages of programmed cell death. Owing to this key role, caspase-3 is exploited intracellularly as a target of control of apoptosis for therapeutic outcomes. Yet the activation of caspase-3 during apoptosis is challenged by other roles and functions (e.g., paracrine signaling). This brief report presents a way to track caspase-3 levels using a flow cytometer that measures excited state fluorescence lifetimes and a signal processing approach that leads to a graphical phasor-based interpretation. An established Förster resonance energy transfer (FRET) bioprobe was used for this test; the connected donor and acceptor fluorophore is cleavable by caspase-3 during apoptosis induction. With the cell-by-cell decay kinetic data and phasor analyses we generate a caspase activation trajectory, which is used to interpret activation throughout apoptosis. When lifetime-based cytometry is combined with a FRET bioprobe and phasor analyses, enzyme activation can be simplified and quantified with phase and modulation data. We envision extrapolating this approach to high content screening, and reinforce the power of phasor approaches with cytometric data. Analyses such as these can be used to cluster cells by their phase and modulation "lifetime fingerprint" when the intracellular fluorescent probe is utilized as a sensor of enzyme activity. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Kapil Nichani
- Department of Chemical & Materials EngineeringNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Jianzhi Li
- Department of Chemical & Materials EngineeringNew Mexico State UniversityLas CrucesNew MexicoUSA
| | - Miho Suzuki
- Department of Functional Materials and ScienceGraduate School of Science and Engineering, Saitama UniversitySaitama338‐8570Japan
| | - Jessica P. Houston
- Department of Chemical & Materials EngineeringNew Mexico State UniversityLas CrucesNew MexicoUSA
- Department of Functional Materials and ScienceGraduate School of Science and Engineering, Saitama UniversitySaitama338‐8570Japan
| |
Collapse
|
8
|
Alturkistany F, Nichani K, Houston KD, Houston JP. Fluorescence lifetime shifts of NAD(P)H during apoptosis measured by time-resolved flow cytometry. Cytometry A 2018; 95:70-79. [PMID: 30369063 PMCID: PMC6587805 DOI: 10.1002/cyto.a.23606] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/01/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022]
Abstract
Autofluorescence from the intracellular metabolite, NAD(P)H, is a biomarker that is widely used and known to reliably screen and report metabolic activity as well as metabolic fluctuations within cells. As a ubiquitous endogenous fluorophore, NAD(P)H has a unique rate of fluorescence decay that is altered when bound to coenzymes. In this work we measure the shift in the fluorescence decay, or average fluorescence lifetime (1–3 ns), of NAD(P)H and correlate this shift to changes in metabolism that cells undergo during apoptosis. Our measurements are made with a flow cytometer designed specifically for fluorescence lifetime acquisition within the ultraviolet to violet spectrum. Our methods involved culture, treatment, and preparation of cells for cytometry and microscopy measurements. The evaluation we performed included observations and quantification of the changes in endogenous emission owing to the induction of apoptosis as well as changes in the decay kinetics of the emission measured by flow cytometry. Shifts in NAD(P)H fluorescence lifetime were observed as early as 15 min post‐treatment with an apoptosis inducing agent. Results also include a phasor analysis to evaluate free to bound ratios of NAD(P)H at different time points. We defined the free to bound ratios as the ratio of ‘short‐to‐long’ (S/L) fluorescence lifetime, where S/L was found to consistently decrease with an increase in apoptosis. With a quantitative framework such as phasor analysis, the short and long lifetime components of NAD(P)H can be used to map the cycling of free and bound NAD(P)H during the early‐to‐late stages of apoptosis. The combination of lifetime screening and phasor analyses provides the first step in high throughput metabolic profiling of single cells and can be leveraged for screening and sorting for a range of applications in biomedicine. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
| | - Kapil Nichani
- Chemical & Materials Engineering, New Mexico State University, Las Cruces, New Mexico
| | - Kevin D Houston
- Chemistry & Biochemistry, New Mexico State University, Las Cruces, New Mexico.,Molecular Biology, New Mexico State University, Las Cruces, New Mexico
| | - Jessica P Houston
- Chemical & Materials Engineering, New Mexico State University, Las Cruces, New Mexico.,Molecular Biology, New Mexico State University, Las Cruces, New Mexico
| |
Collapse
|
9
|
Sambrano J, Chigaev A, Nichani KS, Smagley Y, Sklar LA, Houston JP. Evaluating integrin activation with time-resolved flow cytometry. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-10. [PMID: 29992797 PMCID: PMC6232766 DOI: 10.1117/1.jbo.23.7.075004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 06/13/2018] [Indexed: 05/12/2023]
Abstract
Förster resonance energy transfer (FRET) continues to be a useful tool to study movement and interaction between proteins within living cells. When FRET as an optical technique is measured with flow cytometry, conformational changes of proteins can be rapidly measured cell-by-cell for the benefit of screening and profiling. We exploit FRET to study the extent of activation of α4β1 integrin dimers expressed on the surface of leukocytes. The stalk-like transmembrane heterodimers when not active lay bent and upon activation extend outward. Integrin extension is determined by changes in the distance of closest approach between an FRET donor and acceptor, bound at the integrin head and cell membrane, respectively. Time-resolved flow cytometry analysis revealed donor emission increases up to 17%, fluorescence lifetime shifts over 1.0 ns during activation, and FRET efficiencies of 37% and 26% corresponding to the inactive and active integrin state, respectively. Last, a graphical phasor analysis, including population clustering, gating, and formation of an FRET trajectory, added precision to a comparative analysis of populations undergoing FRET, partial donor recovery, and complete donor recovery. This work establishes a quantitative cytometric approach for profiling fluorescence donor decay kinetics during integrin conformational changes on a single-cell level.
Collapse
Affiliation(s)
- Jesus Sambrano
- New Mexico State University, Department of Chemical and Materials Engineering, Las Cruces, New Mexico, United States
| | - Alexandre Chigaev
- University of New Mexico, School of Medicine and Center for Molecular Discovery, Albuquerque, New Mexico, United States
| | - Kapil S. Nichani
- New Mexico State University, Department of Chemical and Materials Engineering, Las Cruces, New Mexico, United States
| | - Yelena Smagley
- University of New Mexico, School of Medicine and Center for Molecular Discovery, Albuquerque, New Mexico, United States
| | - Larry A. Sklar
- University of New Mexico, School of Medicine and Center for Molecular Discovery, Albuquerque, New Mexico, United States
| | - Jessica P. Houston
- New Mexico State University, Department of Chemical and Materials Engineering, Las Cruces, New Mexico, United States
- Address all correspondence to: Jessica P. Houston, E-mail:
| |
Collapse
|
10
|
Shrirao AB, Fritz Z, Novik EM, Yarmush GM, Schloss RS, Zahn JD, Yarmush ML. Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification. TECHNOLOGY 2018; 6:1-23. [PMID: 29682599 PMCID: PMC5907470 DOI: 10.1142/s2339547818300019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Flow cytometry is an invaluable tool utilized in modern biomedical research and clinical applications requiring high throughput, high resolution particle analysis for cytometric characterization and/or sorting of cells and particles as well as for analyzing results from immunocytometric assays. In recent years, research has focused on developing microfluidic flow cytometers with the motivation of creating smaller, less expensive, simpler, and more autonomous alternatives to conventional flow cytometers. These devices could ideally be highly portable, easy to operate without extensive user training, and utilized for research purposes and/or point-of-care diagnostics especially in limited resource facilities or locations requiring on-site analyses. However, designing a device that fulfills the criteria of high throughput analysis, automation and portability, while not sacrificing performance is not a trivial matter. This review intends to present the current state of the field and provide considerations for further improvement by focusing on the key design components of microfluidic flow cytometers. The recent innovations in particle focusing and detection strategies are detailed and compared. This review outlines performance matrix parameters of flow cytometers that are interdependent with each other, suggesting trade offs in selection based on the requirements of the applications. The ongoing contribution of microfluidics demonstrates that it is a viable technology to advance the current state of flow cytometry and develop automated, easy to operate and cost-effective flow cytometers.
Collapse
Affiliation(s)
- Anil B Shrirao
- Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854
| | - Zachary Fritz
- Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854
| | - Eric M Novik
- Hurel Corporation, 671, Suite B, U.S. Highway 1, North Brunswick, NJ 08902
| | - Gabriel M Yarmush
- Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854
| | - Rene S Schloss
- Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854
| | - Jeffrey D Zahn
- Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, 599, Taylor Road, Piscataway, NJ 08854
| |
Collapse
|
11
|
Houston JP, Yang Z, Sambrano J, Li W, Nichani K, Vacca G. Overview of Fluorescence Lifetime Measurements in Flow Cytometry. Methods Mol Biol 2018; 1678:421-446. [PMID: 29071689 DOI: 10.1007/978-1-4939-7346-0_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The focus of this chapter is time-resolved flow cytometry, which is broadly defined as the ability to measure the timing of fluorescence decay from excited fluorophores that pass through cytometers or high-throughput cell counting and cell sorting instruments. We focus on this subject for two main reasons: first, to discuss the nuances of hardware and software modifications needed for these measurements because currently, there are no widespread time-resolved cytometers nor a one-size-fits-all approach; and second, to summarize the application space for fluorescence lifetime-based cell counting/sorting owing to the recent increase in the number of investigators interested in this approach. Overall, this chapter is structured into three sections: (1) theory of fluorescence decay kinetics, (2) modern time-resolved flow cytometry systems, and (3) cell counting and sorting applications. These commentaries are followed by conclusions and discussion about new directions and opportunities for fluorescence lifetime measurements in flow cytometry.
Collapse
Affiliation(s)
- Jessica P Houston
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA.
| | - Zhihua Yang
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA
| | - Jesse Sambrano
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA
| | - Wenyan Li
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA
| | - Kapil Nichani
- Department of Chemical & Materials Engineering, New Mexico State University, MSC, PO Box 30001, Las Cruces, NM, 88003, USA
| | - Giacomo Vacca
- Kinetic River Corp., 897, Independence Avenue, Suite 4A, Mountain View, CA, 94043-2357, USA
| |
Collapse
|
12
|
Shifts in the fluorescence lifetime of EGFP during bacterial phagocytosis measured by phase-sensitive flow cytometry. Sci Rep 2017; 7:40341. [PMID: 28091553 PMCID: PMC5238435 DOI: 10.1038/srep40341] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/05/2016] [Indexed: 12/21/2022] Open
Abstract
Phase-sensitive flow cytometry (PSFC) is a technique in which fluorescence excited state decay times are measured as fluorescently labeled cells rapidly transit a finely focused, frequency-modulated laser beam. With PSFC the fluorescence lifetime is taken as a cytometric parameter to differentiate intracellular events that are challenging to distinguish with standard flow cytometry. For example PSFC can report changes in protein conformation, expression, interactions, and movement, as well as differences in intracellular microenvironments. This contribution focuses on the latter case by taking PSFC measurements of macrophage cells when inoculated with enhanced green fluorescent protein (EGFP)-expressing E. coli. During progressive internalization of EGFP-E. coli, fluorescence lifetimes were acquired and compared to control groups. It was hypothesized that fluorescence lifetimes would correlate well with phagocytosis because phagosomes become acidified and the average fluorescence lifetime of EGFP is known to be affected by pH. We confirmed that average EGFP lifetimes consistently decreased (3 to 2 ns) with inoculation time. The broad significance of this work is the demonstration of how high-throughput fluorescence lifetime measurements correlate well to changes that are not easily tracked by intensity-only cytometry, which is affected by heterogeneous protein expression, cell-to-cell differences in phagosome formation, and number of bacterium engulfed.
Collapse
|
13
|
Krafft C. Modern trends in biophotonics for clinical diagnosis and therapy to solve unmet clinical needs. JOURNAL OF BIOPHOTONICS 2016; 9:1362-1375. [PMID: 27943650 DOI: 10.1002/jbio.201600290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This contribution covers recent original research papers in the biophotonics field. The content is organized into main techniques such as multiphoton microscopy, Raman spectroscopy, infrared spectroscopy, optical coherence tomography and photoacoustic tomography, and their applications in the context of fluid, cell, tissue and skin diagnostics. Special attention is paid to vascular and blood flow diagnostics, photothermal and photodynamic therapy, tissue therapy, cell characterization, and biosensors for biomarker detection.
Collapse
Affiliation(s)
- Christoph Krafft
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745, Jena, Germany
| |
Collapse
|
14
|
Cao R, Jenkins P, Peria W, Sands B, Naivar M, Brent R, Houston JP. Phasor plotting with frequency-domain flow cytometry. OPTICS EXPRESS 2016; 24:14596-607. [PMID: 27410612 PMCID: PMC5025209 DOI: 10.1364/oe.24.014596] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/14/2016] [Accepted: 06/04/2016] [Indexed: 05/23/2023]
Abstract
Interest in time resolved flow cytometry is growing. In this paper, we collect time-resolved flow cytometry data and use it to create polar plots showing distributions that are a function of measured fluorescence decay rates from individual fluorescently-labeled cells and fluorescent microspheres. Phasor, or polar, graphics are commonly used in fluorescence lifetime imaging microscopy (FLIM). In FLIM measurements, the plotted points on a phasor graph represent the phase-shift and demodulation of the frequency-domain fluorescence signal collected by the imaging system for each image pixel. Here, we take a flow cytometry cell counting system, introduce into it frequency-domain optoelectronics, and process the data so that each point on a phasor plot represents the phase shift and demodulation of an individual cell or particle. In order to demonstrate the value of this technique, we show that phasor graphs can be used to discriminate among populations of (i) fluorescent microspheres, which are labeled with one fluorophore type; (ii) Chinese hamster ovary (CHO) cells labeled with one and two different fluorophore types; and (iii) Saccharomyces cerevisiae cells that express combinations of fluorescent proteins with different fluorescence lifetimes. The resulting phasor plots reveal differences in the fluorescence lifetimes within each sample and provide a distribution from which we can infer the number of cells expressing unique single or dual fluorescence lifetimes. These methods should facilitate analysis time resolved flow cytometry data to reveal complex fluorescence decay kinetics.
Collapse
Affiliation(s)
- Ruofan Cao
- Department of Chemical and Materials Engineering, New Mexico State University, MSC 3805, PO BOX 30001, 1040 South Horseshoe Drive, Las Cruces, NM 88003,
USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi,
China
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, Shanxi,
China
| | - Patrick Jenkins
- Department of Chemical and Materials Engineering, New Mexico State University, MSC 3805, PO BOX 30001, 1040 South Horseshoe Drive, Las Cruces, NM 88003,
USA
| | - William Peria
- Fred Hutchinson Cancer Research Center, Seattle, WA,
USA
| | - Bryan Sands
- Fred Hutchinson Cancer Research Center, Seattle, WA,
USA
| | | | - Roger Brent
- Fred Hutchinson Cancer Research Center, Seattle, WA,
USA
| | - Jessica P. Houston
- Department of Chemical and Materials Engineering, New Mexico State University, MSC 3805, PO BOX 30001, 1040 South Horseshoe Drive, Las Cruces, NM 88003,
USA
| |
Collapse
|