1
|
Ortega IV, Şener Raman T, Schulze A, Flors C. In Situ Single-Cell Bacterial Imaging Provides Mechanistic Insight into the Photodynamic Action of Photosensitizer-Loaded Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5677-5682. [PMID: 38284232 DOI: 10.1021/acsami.3c17916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Hydrogels, three-dimensional hydrophilic polymeric networks with high water retaining capacity, have gained prominence in wound management and drug delivery due to their tunability, softness, permeability, and biocompatibility. Electron-beam polymerized poly(ethylene glycol) diacrylate (PEGDA) hydrogels are particularly useful for phototherapies such as antimicrobial photodynamic therapy (aPDT) due to their excellent optical properties. This work takes advantage of the transparency of PEGDA hydrogels to investigate bacterial responses to aPDT at the single-cell level, in real-time and in situ. The photosensitizer methylene blue (MB) was loaded in PEGDA hydrogels by using two methods: reversible loading and irreversible immobilization within the 3D polymer network. MB release kinetics and singlet oxygen generation were studied, revealing the distinct behaviors of both hydrogels. Real-time imaging of Escherichia coli was conducted during aPDT in both hydrogel types, using the Min protein system to report changes in bacterial physiology. Min oscillation patterns provided mechanistic insights into bacterial photoinactivation, revealing a dependence on the hydrogel preparation method. This difference was attributed to the mobility of MB within the hydrogel, affecting its direct interaction with bacterial membranes. These findings shed light on the complex interplay between hydrogel properties and the bacterial response during aPDT, offering valuable insights for the development of antibacterial wound dressing materials. The study demonstrates the capability of real-time, single-cell fluorescence microscopy to unravel dynamic bacterial behaviors in the intricate environment of hydrogel surfaces during aPDT.
Collapse
Affiliation(s)
- Ingrid V Ortega
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Tuğçe Şener Raman
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, Leipzig 04318, Germany
| | - Agnes Schulze
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, Leipzig 04318, Germany
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
- Nanobiotechnology Unit Associated to the National Center for Biotechnology (CNB-CSIC-IMDEA), C/Faraday 9, Madrid 28049, Spain
| |
Collapse
|
2
|
Meerovich GA, Akhlyustina EV, Romanishkin ID, Makarova EA, Tiganova IG, Zhukhovitsky VG, Kholina EG, Kovalenko IB, Romanova YM, Loschenov VB, Strakhovskaya MG. Photodynamic inactivation of bacteria: Why it is not enough to excite a photosensitizer. Photodiagnosis Photodyn Ther 2023; 44:103853. [PMID: 37863377 DOI: 10.1016/j.pdpdt.2023.103853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND The development of multidrug resistance (MDR) in infectious agents is one of the most serious global problems facing humanity. Antimicrobial photodynamic therapy (APDT) shows encouraging results in the fight against MDR pathogens, including those in biofilms. METHODS Photosensitizers (PS), monocationic methylene blue, polycationic and polyanionic derivatives of phthalocyanines, electroneutral and polycationic derivatives of bacteriochlorin were used to study photodynamic inactivation of Gram-positive and Gram-negative planktonic bacteria and biofilms under LED irradiation. Zeta potential measurements, confocal fluorescence imaging, and coarse-grained modeling were used to evaluate the interactions of PS with bacteria. PS aggregation and photobleaching were studied using absorption and fluorescence spectroscopy. RESULTS The main approaches to ensure high efficiency of bacteria photosensitization are analyzed. CONCLUSIONS PS must maintain a delicate balance between binding to exocellular and external structures of bacterial cells and penetration through the cell wall so as not to get stuck on the way to photooxidation-sensitive structures of the bacterial cell.
Collapse
Affiliation(s)
- Gennady A Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | | - Igor D Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia.
| | | | - Irina G Tiganova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Vladimir G Zhukhovitsky
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia; Ministry of Public Health of the Russian Federation, Russian Medical Academy of Continuing Professional Education (RMANPO), Moscow 125993, Russia
| | | | - Ilya B Kovalenko
- Lomonosov Moscow State University, Moscow 119234, Russia; Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow 115682, Russia
| | - Yulia M Romanova
- Gamaleya National Research Centre for Epidemiology and Microbiology, Moscow 123098, Russia
| | - Victor B Loschenov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | | |
Collapse
|
3
|
Wang Y, Ren M, Li Y, Liu F, Wang Y, Wang Z, Feng L. Bioactive AIEgens Tailored for Specific and Sensitive Theranostics of Gram-Positive Bacterial Infection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46340-46350. [PMID: 36194189 DOI: 10.1021/acsami.2c14550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Diseases caused by bacterial infections are increasingly threatening human health. As a major part of the microbial family, Gram-positive bacteria induce severe infections in hospitals and communities. Therefore, developing antibacterial materials that can recognize bacteria and specifically kill them is significant to cope with fatal bacterial infection. To this end, we designed and prepared a series of positively charged photosensitizers with an aggregation-induced emission feature and a type I reactive oxygen species (ROS) generation ability. Based on a molecular engineering strategy, the PS abbreviated to MTTTPy that owns a superior ROS generation ability and red emission in aggregation is obtained by adjusting bridging groups. Due to the unique molecular structure, MTTTPy can sensitively and specifically recognize and light up Gram-positive bacteria through electrostatic adsorption and void permeability. In addition, it can kill 95% of the recognized bacteria at a low concentration of 0.5 μM by generating oxygen-independent ROS under white light irradiation. Both in vitro and in vivo studies verify the sensitive and specific recognition and killing effect of MTTTPy toward Gram-positive bacteria. This work provides superior material-integrated diagnosis and treatment for Gram-positive bacteria-caused infectious diseases and shows potential for addressing bacterial resistance.
Collapse
Affiliation(s)
- Yunxia Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Min Ren
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Ying Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Feng Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University, Changzhi 046011, P.R. China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| |
Collapse
|
4
|
Membrane damage as mechanism of photodynamic inactivation using Methylene blue and TMPyP in Escherichia coli and Staphylococcus aureus. Photochem Photobiol Sci 2022; 21:209-220. [PMID: 35061201 DOI: 10.1007/s43630-021-00158-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022]
Abstract
The worldwide threat of antibiotic resistance requires alternative strategies to fight bacterial infections. A promising approach to support conventional antibiotic therapy is the antimicrobial photodynamic inactivation (aPDI). The aim of this work was to show further insights into the antimicrobial photodynamic principle using two photosensitizers (PS) of different chemical classes, Methylene Blue (MB) and TMPyP, and the organisms Escherichia coli and Staphylococcus aureus as Gram-negative and Gram-positive representatives. Planktonic cultures of both species were cultured under aerobic conditions for 24 h followed by treatment with MB or TMPyP at various concentrations for an incubation period of 10 min and subsequent irradiation for 10 min. Ability to replicate was evaluated by CFU assay. Accumulation of PS was measured using a spectrophotometer. The cytoplasmic membrane integrity was investigated by flow cytometry using SYBR Green and propidium iodide. In experiments on the replication ability of bacteria after photodynamic treatment with TMPyP or MB, a killing rate of 5 log10 steps of the bacteria was achieved. Concentration-dependent accumulation of both PS was shown by spectrophotometric measurements whereby a higher accumulation of TMPyP and less accumulation of MB was found for S. aureus as compared to E. coli. For the first time, a membrane-damaging effect of TMPyP and MB in both bacterial strains could be shown using flow cytometry analyses. Furthermore, we found that reduction of the replication ability occurs with lower concentrations than needed for membrane damage upon MB suggesting that membrane damage is not the only mechanism of aPDI using MB.
Collapse
|
5
|
Ortega IV, Torra J, Flors C. Min Oscillations as Real-time Reporter of Sublethal Effects in Photodynamic Treatment of Bacteria. ACS Infect Dis 2022; 8:86-90. [PMID: 35026951 DOI: 10.1021/acsinfecdis.1c00583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Min protein system is a cell division regulator in Escherichia coli. Under normal growth conditions, MinD is associated with the membrane and undergoes pole-to-pole oscillations. The period of these oscillations has been previously proposed as a reporter for the bacterial physiological state at the single-cell level and has been used to monitor the response to sublethal challenges from antibiotics, temperature, or mechanical fatigue. Using real-time single-cell fluorescence imaging, we explore here the effect of photodynamic treatment on MinD oscillations. Irradiation of bacteria in the presence of the photosensitizer methylene blue disrupts the MinD oscillation pattern depending on its concentration. In contrast to antibiotics, which slow down the oscillation, photodynamic treatment results in an abrupt interruption, reflecting divergent physiological mechanisms leading to bacterial death. We show that MinD oscillations are sensitive to mild photodynamic effects that are overlooked by traditional methods, expanding the toolbox for mechanistic studies in antimicrobial photodynamic therapy.
Collapse
Affiliation(s)
- Ingrid V. Ortega
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Joaquim Torra
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanociencia), C/Faraday 9, Madrid 28049, Spain
- Nanobiotechnology Associated Unit CNB-CSIC-IMDEA, C/Faraday 9, Madrid 28049, Spain
| |
Collapse
|
6
|
Delcanale P, Abbruzzetti S, Viappiani C. Photodynamic treatment of pathogens. LA RIVISTA DEL NUOVO CIMENTO 2022; 45:407-459. [PMCID: PMC8921710 DOI: 10.1007/s40766-022-00031-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/10/2022] [Indexed: 06/01/2023]
Abstract
The current viral pandemic has highlighted the compelling need for effective and versatile treatments, that can be quickly tuned to tackle new threats, and are robust against mutations. Development of such treatments is made even more urgent in view of the decreasing effectiveness of current antibiotics, that makes microbial infections the next emerging global threat. Photodynamic effect is one such method. It relies on physical processes proceeding from excited states of particular organic molecules, called photosensitizers, generated upon absorption of visible or near infrared light. The excited states of these molecules, tailored to undergo efficient intersystem crossing, interact with molecular oxygen and generate short lived reactive oxygen species (ROS), mostly singlet oxygen. These species are highly cytotoxic through non-specific oxidation reactions and constitute the basis of the treatment. In spite of the apparent simplicity of the principle, the method still has to face important challenges. For instance, the short lifetime of ROS means that the photosensitizer must reach the target within a few tens nanometers, which requires proper molecular engineering at the nanoscale level. Photoactive nanostructures thus engineered should ideally comprise a functionality that turns the system into a theranostic means, for instance, through introduction of fluorophores suitable for nanoscopy. We discuss the principles of the method and the current molecular strategies that have been and still are being explored in antimicrobial and antiviral photodynamic treatment.
Collapse
Affiliation(s)
- Pietro Delcanale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, 43124 Parma, Italy
| |
Collapse
|
7
|
Rapacka-Zdończyk A, Woźniak A, Michalska K, Pierański M, Ogonowska P, Grinholc M, Nakonieczna J. Factors Determining the Susceptibility of Bacteria to Antibacterial Photodynamic Inactivation. Front Med (Lausanne) 2021; 8:642609. [PMID: 34055830 PMCID: PMC8149737 DOI: 10.3389/fmed.2021.642609] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Photodynamic inactivation of microorganisms (aPDI) is an excellent method to destroy antibiotic-resistant microbial isolates. The use of an exogenous photosensitizer or irradiation of microbial cells already equipped with endogenous photosensitizers makes aPDI a convenient tool for treating the infections whenever technical light delivery is possible. Currently, aPDI research carried out on a vast repertoire of depending on the photosensitizer used, the target microorganism, and the light delivery system shows efficacy mostly on in vitro models. The search for mechanisms underlying different responses to photodynamic inactivation of microorganisms is an essential issue in aPDI because one niche (e.g., infection site in a human body) may have bacterial subpopulations that will exhibit different susceptibility. Rapidly growing bacteria are probably more susceptible to aPDI than persister cells. Some subpopulations can produce more antioxidant enzymes or have better performance due to efficient efflux pumps. The ultimate goal was and still is to identify and characterize molecular features that drive the efficacy of antimicrobial photodynamic inactivation. To this end, we examined several genetic and biochemical characteristics, including the presence of individual genetic elements, protein activity, cell membrane content and its physical properties, the localization of the photosensitizer, with the result that some of them are important and others do not appear to play a crucial role in the process of aPDI. In the review, we would like to provide an overview of the factors studied so far in our group and others that contributed to the aPDI process at the cellular level. We want to challenge the question, is there a general pattern of molecular characterization of aPDI effectiveness? Or is it more likely that a photosensitizer-specific pattern of molecular characteristics of aPDI efficacy will occur?
Collapse
Affiliation(s)
| | - Agata Woźniak
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Klaudia Michalska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Pierański
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Patrycja Ogonowska
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
8
|
Kossakowska-Zwierucho M, Szewczyk G, Sarna T, Nakonieczna J. Farnesol potentiates photodynamic inactivation of Staphylococcus aureus with the use of red light-activated porphyrin TMPyP. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 206:111863. [PMID: 32224392 DOI: 10.1016/j.jphotobiol.2020.111863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/11/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023]
Abstract
Photodynamic inactivation (PDI) or antibacterial photodynamic therapy (aPDT) is a method based on the use of a photosensitizer, light of a proper wavelength and oxygen, which combined together leads to an oxidative stress and killing of target cells. PDI can be applied towards various pathogenic bacteria independently on their antibiotic resistance profile. Optimization of photodynamic treatment to eradicate the widest range of human pathogens remains challenging despite the availability of numerous photosensitizing compounds. Therefore, a search for molecules that could act as adjuvants potentiating antibacterial photoinactivation is of high scientific and clinical importance. Here we propose farnesol (FRN), a well described sesquiterpene, as a potent adjuvant of PDI, which specifically sensitizes Staphylococcus aureus to 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin tetratosylate (TMPyP) upon red light irradiation. Interestingly, the observed potentiation strongly depends on the presence of light. Analysis of this combined action of FRN and TMPyP, however, showed no influence of farnesol on TMPyP photochemical properties, i.e. the amount of reactive oxygen species that were produced by TMPyP in the presence of FRN. The accumulation rate of TMPyP in Staphylococcus aureus cells did not change, as well as the influence of staphyloxanthin inhibition. The precise mechanism of observed sensitization is unclear and probably involves specific molecular targets.
Collapse
Affiliation(s)
- Monika Kossakowska-Zwierucho
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Grzegorz Szewczyk
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Nakonieczna
- Laboratory of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| |
Collapse
|
9
|
Aebisher D, Bartusik-Aebisher D, Belh SJ, Ghosh G, Durantini AM, Liu Y, Xu Q, Lyons AM, Greer A. Superhydrophobic Surfaces as a Source of Airborne Singlet Oxygen through Free Space for Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:2370-2377. [DOI: 10.1021/acsabm.0c00114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David Aebisher
- Faculty of Medicine, University of Rzeszów, 35-310 Rzeszów, Poland
| | | | - Sarah J. Belh
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
| | - Goutam Ghosh
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
| | - Andrés M. Durantini
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Yang Liu
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - QianFeng Xu
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - Alan M. Lyons
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
| |
Collapse
|
10
|
Ravikumar M, Raghav D, Rathinasamy K, Kathiravan A, Mothi EM. DNA Targeting Long-Chain Alkoxy Appended Tin(IV) Porphyrin Scaffolds: Photophysical and Antimicrobial PDT Investigations. ACS APPLIED BIO MATERIALS 2018; 1:1705-1716. [DOI: 10.1021/acsabm.8b00507] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Murugan Ravikumar
- Centre for Scientific and Applied Research, PSN College of Engineering and Technology, Tirunelveli, Tamil Nadu 627152, India
| | - Darpan Raghav
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| | - Krishnan Rathinasamy
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala 673601, India
| | - Arunkumar Kathiravan
- Department of Chemistry, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu 600 062, India
| | - Ebrahim M. Mothi
- Centre for Scientific and Applied Research, PSN College of Engineering and Technology, Tirunelveli, Tamil Nadu 627152, India
| |
Collapse
|
11
|
Faraj Tabrizi P, Wennige S, Berneburg M, Maisch T. Susceptibility of sodA- and sodB-deficient Escherichia coli mutant towards antimicrobial photodynamic inactivation via the type I-mechanism of action. Photochem Photobiol Sci 2018; 17:352-362. [PMID: 29489001 DOI: 10.1039/c7pp00370f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Photodynamic antimicrobial chemotherapy (PACT) is a multi-target method to inactivate pathogenic microorganisms by exciting a photosensitizer (PS) with visible light of appropriate wavelength in the presence of molecular oxygen (3O2). There are two major pathways by which reactive oxygen species (ROS) are produced. In type I (TI)-reactions, radicals such as superoxide (O2˙-) and hydroxyl radicals (˙OH) are generated by electron transfer. In type II (TII)-reactions, highly reactive singlet oxygen (1O2) is produced by direct energy transfer. This study investigated the efficiency of PACT in Gram-negative Escherichia coli wild type (EC WT) and the mutant Escherichia coli PN134 (EC PN134) which is not able to produce SOD A and SOD B, by means of two different photosensitizers (PS) from different chemical classes with different 1O2 quantum yields: methylene blue (MB) and 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) (TMPyP). Mutants, which lack antioxidant enzymes, were particularly susceptible towards TI-PACT. In the case of PACT with MB, quenching agents such as superoxide dismutase (SOD) and catalase (CAT) were sufficient for protecting both the wild type and the mutant, whereas they were not in PACT with TMPyP. The genetic levels of sodA and sodB were examined after photodynamic treatment regarding their potential resistance. This study showed that - under the photodynamic conditions presented in this study - expression of sodA and sodB was not directly influenced by PACT-generated oxidative stress, although SOD enzymes are part of the major defense machinery against oxidative stress and were thus expected to be upregulated. Overall the susceptibility of EC PN134 and EC WT differed towards photodynamic inactivation via TI-mechanism of action. Thus, already existing defense mechanisms against ROS in bacteria might influence the susceptibility against TI-PACT, while this was not the case using TII-photosensitizers.
Collapse
Affiliation(s)
- Pouriya Faraj Tabrizi
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany.
| | | | | | | |
Collapse
|
12
|
Cieplik F, Deng D, Crielaard W, Buchalla W, Hellwig E, Al-Ahmad A, Maisch T. Antimicrobial photodynamic therapy - what we know and what we don't. Crit Rev Microbiol 2018; 44:571-589. [PMID: 29749263 DOI: 10.1080/1040841x.2018.1467876] [Citation(s) in RCA: 514] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Considering increasing number of pathogens resistant towards commonly used antibiotics as well as antiseptics, there is a pressing need for antimicrobial approaches that are capable of inactivating pathogens efficiently without the risk of inducing resistances. In this regard, an alternative approach is the antimicrobial photodynamic therapy (aPDT). The antimicrobial effect of aPDT is based on the principle that visible light activates a per se non-toxic molecule, the so-called photosensitizer (PS), resulting in generation of reactive oxygen species that kill bacteria unselectively via an oxidative burst. During the last 10-20 years, there has been extensive in vitro research on novel PS as well as light sources, which is now to be translated into clinics. In this review, we aim to provide an overview about the history of aPDT, its fundamental photochemical and photophysical mechanisms as well as photosensitizers and light sources that are currently applied for aPDT in vitro. Furthermore, the potential of resistances towards aPDT is extensively discussed and implications for proper comparison of in vitro studies regarding aPDT as well as for potential application fields in clinical practice are given. Overall, this review shall provide an outlook on future research directions needed for successful translation of promising in vitro results in aPDT towards clinical practice.
Collapse
Affiliation(s)
- Fabian Cieplik
- a Department of Conservative Dentistry and Periodontology , University Medical Center Regensburg , Regensburg , Germany.,b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Dongmei Deng
- b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Wim Crielaard
- b Department of Preventive Dentistry , Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam , Amsterdam , The Netherlands
| | - Wolfgang Buchalla
- a Department of Conservative Dentistry and Periodontology , University Medical Center Regensburg , Regensburg , Germany
| | - Elmar Hellwig
- c Department of Operative Dentistry and Periodontology, Faculty of Medicine , Center for Dental Medicine, University of Freiburg , Freiburg , Germany
| | - Ali Al-Ahmad
- c Department of Operative Dentistry and Periodontology, Faculty of Medicine , Center for Dental Medicine, University of Freiburg , Freiburg , Germany
| | - Tim Maisch
- d Department of Dermatology , University Medical Center Regensburg , Regensburg , Germany
| |
Collapse
|