1
|
Murati K, Higgins AJ, Clisham CM, Litts AW, Wilson MR, Hwang Y, Polichetti P, Dunlap CE, Ku TJ, Simpson GJ. Theoretical Foundation for Interface-Specific Hyper-Rayleigh Scattering in Uniaxial Chiral Assemblies. J Phys Chem B 2025; 129:4651-4669. [PMID: 40314191 DOI: 10.1021/acs.jpcb.4c08140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The role of incoherence is considered in polarization-dependent second harmonic generation (SHG) measurements of uniaxially oriented assemblies. SHG microscopy continues to find growing utility for tissue, powders, and materials analysis, all of which exhibit structural heterogeneity over length scales comparable to the optical wavelength. In these cases, the detected SHG signal will generally exhibit partial decoherence, invalidating polarization analyses that implicitly assume purely polarized signal detection. The primary goal of the present study is to develop a mathematical framework for interpreting the incoherent component of the SHG signals produced in such instances. While formulas for describing hyper-Rayleigh scattering (HRS) from isotropic systems are reasonably well established, practical systems encountered experimentally in SHG microscopy measurements are often of lower symmetry. The next lowest symmetry below isotropic, and therefore the next most common samples likely to be encountered experimentally, are uniaxial assemblies, in which one spatial axis is unique from the other two. Such systems include surface assemblies, poled films, stretched polymers, lipid bilayers, most collagenous tendons, and numerous other naturally occurring biological structures. In this work, the general theory for HRS of uniaxially oriented assemblies is developed, including both achiral and chiral uniaxial assemblies. Intriguingly, this analysis predicts the possible observation of large electric dipole-allowed chiral-specific observables within just the incoherent component of the SHG response of chiral assemblies exhibiting with polar, uniaxial ensemble symmetry. The incoherent chiral contributions exhibit distinctly different symmetry than the established chiral sensitivity of coherent SHG in uniaxial assemblies, which is independent of polar order. These predictions provide context for the prior reports of chiral-specific SHG microscopy of tissues and suggest new experimental strategies for performing surface-specific and chiral-specific nonlinear optical analysis of chiral assemblies.
Collapse
Affiliation(s)
- Kevin Murati
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander J Higgins
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Clisham
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander W Litts
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthew R Wilson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yechan Hwang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Patrizia Polichetti
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Caitlin E Dunlap
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ting-Ju Ku
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Garth J Simpson
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
2
|
Mazeika V, Mirsanaye K, Castaño LU, Krouglov S, Alizadeh M, Maciulis M, Kontenis L, Karabanovas V, Barzda V. Double Stokes polarimetric microscopy for chiral fibrillar aggregates. Sci Rep 2025; 15:4464. [PMID: 39915558 PMCID: PMC11803116 DOI: 10.1038/s41598-025-86893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
Second harmonic generation (SHG) microscopy is a powerful tool for imaging collagen and other noncentrosymmetric fibrillar structures in biological tissue. Polarimetric SHG measurements provide ultrastructural information about the fibrillar organization in a focal volume (voxel). We present a reduced nonlinear polarimetry method named double Stokes polarimetry (DSP) for quick characterization of chiral C 6 symmetry fibers without data fitting that simplifies and speeds up the polarimetric analysis. The method is based on double Stokes-Mueller polarimetry and uses linear and circular incident and outgoing polarization states. The analytical expressions of DSP polarimetric parameters are defined in terms of conventional SHG Stokes vector components. A complex chiral susceptibility (CCS) model is assumed to derive expressions of ultrastructural parameters consisting of the magnitude and phase of molecular complex-valued chiral susceptibility ratio, real-valued achiral ratio, and fiber orientation in a voxel. The ultrastructural parameters are expressed in terms of directly measurable DSP polarimetric parameters. DSP is validated with rat tail tendons sectioned at different orientations. DSP can be applied to investigate the origin of chiral complex-valued susceptibility of collagen, to study modifications of collagen in cancerous tissue, and to map ultrastructural parameters of large areas for whole-slide histopathology.
Collapse
Affiliation(s)
- Viktoras Mazeika
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | - Kamdin Mirsanaye
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Wellman Center for Photomedicine and Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Leonardo Uribe Castaño
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Serguei Krouglov
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Mehdi Alizadeh
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
- Department of Physics, University of Toronto, Toronto, ON, Canada
| | - Mykolas Maciulis
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| | - Lukas Kontenis
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Light Conversion, Vilnius, Lithuania
| | - Vitalijus Karabanovas
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Biomedical Physics Laboratory, National Cancer Institute, Vilnius, Lithuania
| | - Virginijus Barzda
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania.
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
- Department of Physics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Eftimie LG, Padrez Y, Golubewa L, Rutkauskas D, Hristu R. Widefield polarization-resolved second harmonic generation imaging of entire thyroid nodule sections for the detection of capsular invasion. BIOMEDICAL OPTICS EXPRESS 2024; 15:4705-4718. [PMID: 39346988 PMCID: PMC11427203 DOI: 10.1364/boe.523052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 10/01/2024]
Abstract
The identification of tumor capsular invasion as a sign of malignancy is currently employed in traditional histopathology routines for thyroid nodules. However, its limitations are associated with the assessment criteria for invasion, which often lead to disagreements among observers. The aim of this paper is to introduce a widefield imaging technique combined with quantitative collagen analysis to identify areas of capsular invasion in thyroid neoplasms. In this study, we introduce the application of widefield polarization-resolved second harmonic generation microscopy for imaging entire thyroid nodule sections on histological slides. We employ a cylindrical collagen model to extract parameters associated with the ultrastructure and orientation of collagen within the entire capsule of the thyroid nodule. We showcase the effectiveness of these parameters in distinguishing between areas of nodule capsule invasion and unaffected regions of the capsule through statistical analysis of individual parameters and employing a machine learning technique that involves generating maps via cluster analysis. Our results suggest that quantitative analysis facilitated by polarization-resolved widefield second harmonic generation microscopy could prove beneficial for the automated evaluation of capsular invasion sites in thyroid pathology.
Collapse
Affiliation(s)
- Lucian G Eftimie
- Central University Emergency Military Hospital, Pathology Department, 134 Calea Plevnei, 010825 Bucharest, Romania
- Department of Special Motricity and Medical Recovery, The National University of Physical Education and Sports, Bucharest, Romania
| | - Yaraslau Padrez
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Lena Golubewa
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Danielis Rutkauskas
- Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Radu Hristu
- Center for Microscopy-Microanalysis and Information Processing, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania
| |
Collapse
|
4
|
Harvey M, Lane B, Cisek R, Veres SP, Kreplak L, Tokarz D. Histological staining alters circular dichroism SHG measurements of collagen. OPTICS LETTERS 2024; 49:3705-3708. [PMID: 38950247 DOI: 10.1364/ol.523689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024]
Abstract
Circular dichroism second harmonic generation microscopy (CDSHG) is a powerful imaging technique, which allows three-dimensional visualization of collagen fibril orientation in tissues. However, recent publications have obtained contradictory results on whether CDSHG can be used to reveal the relative out-of-plane polarity of collagen fibrils. Here we compare CDSHG images of unstained tendon and tendon which has been stained with hematoxylin and eosin. We find significant differences in the CDSHG between these two conditions, which explain the recent contradictory results within the literature.
Collapse
|
5
|
Makkithaya KN, Mazumder N, Wang WH, Chen WL, Chen MC, Lee MX, Lin CY, Yeh YJ, Tsay GJ, Chopperla S, Mahato KK, Kao FJ, Zhuo GY. Investigating cartilage-related diseases by polarization-resolved second harmonic generation (P-SHG) imaging. APL Bioeng 2024; 8:026107. [PMID: 38694891 PMCID: PMC11062753 DOI: 10.1063/5.0196676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/19/2024] [Indexed: 05/04/2024] Open
Abstract
Establishing quantitative parameters for differentiating between healthy and diseased cartilage tissues by examining collagen fibril degradation patterns facilitates the understanding of tissue characteristics during disease progression. These findings could also complement existing clinical methods used to diagnose cartilage-related diseases. In this study, cartilage samples from normal, osteoarthritis (OA), and rheumatoid arthritis (RA) tissues were prepared and analyzed using polarization-resolved second harmonic generation (P-SHG) imaging and quantitative image texture analysis. The enhanced molecular contrast obtained from this approach is expected to aid in distinguishing between healthy and diseased cartilage tissues. P-SHG image analysis revealed distinct parameters in the cartilage samples, reflecting variations in collagen fibril arrangement and organization across different pathological states. Normal tissues exhibited distinct χ33/χ31 values compared with those of OA and RA, indicating collagen type transition and cartilage erosion with chondrocyte swelling, respectively. Compared with those of normal tissues, OA samples demonstrated a higher degree of linear polarization, suggesting increased tissue birefringence due to the deposition of type-I collagen in the extracellular matrix. The distribution of the planar orientation of collagen fibrils revealed a more directional orientation in the OA samples, associated with increased type-I collagen, while the RA samples exhibited a heterogeneous molecular orientation. This study revealed that the imaging technique, the quantitative analysis of the images, and the derived parameters presented in this study could be used as a reference for disease diagnostics, providing a clear understanding of collagen fibril degradation in cartilage.
Collapse
Affiliation(s)
- Kausalya Neelavara Makkithaya
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Wei-Hsun Wang
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404328, Taiwan
| | - Wei-Liang Chen
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Chi Chen
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404328, Taiwan
| | - Ming-Xin Lee
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404328, Taiwan
| | - Chin-Yu Lin
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien 97004, Taiwan
| | - Yung-Ju Yeh
- Autoimmune Disease Laboratory, China Medical University Hospital, Taichung 404327, Taiwan
| | | | - Sitaram Chopperla
- Department of Orthopedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Fu-Jen Kao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Guan-Yu Zhuo
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
6
|
Harvey M, Cisek R, Tokarz D, Kreplak L. Effect of out of plane orientation on polarization second harmonic generation of single collagen fibrils. BIOMEDICAL OPTICS EXPRESS 2023; 14:6271-6282. [PMID: 38420315 PMCID: PMC10898559 DOI: 10.1364/boe.504304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 03/02/2024]
Abstract
Second harmonic generation (SHG) microscopy has emerged as a powerful technique for visualizing collagen organization within tissues. Amongst the many advantages of SHG is its sensitivity to collagen nanoscale organization, and its presumed sensitivity to the relative out of plane polarity of fibrils. Recent results have shown that circular dichroism SHG (CD-SHG), a technique that has been commonly assumed to reveal the relative out of plane polarity of collagen fibrils, is actually insensitive to changes in fibril polarity. However, results from another research group seem to contradict this conclusion. Both previous results have been based on SHG imaging of collagen fibrils within tissues, therefore, to gain a definitive understanding of the sensitivity of SHG to relative out of plane polarity, the results from individual fibrils are desirable. Here we present polarization resolved SHG microscopy (PSHG) data from individual collagen fibrils oriented out of the image plane by buckling on an elastic substrate. We show through correlation with atomic force microscopy measurements that SHG intensity can be used to estimate the out of plane angle of individual fibrils. We then compare the sensitivity of two PSHG techniques, CD-SHG and polarization-in, polarization-out SHG (PIPO-SHG), to the relative out of plane polarity of individual fibrils. We find that for single fibrils CD-SHG is insensitive to relative out of polarity and we also demonstrate the first direct experimental confirmation that PIPO-SHG reveals the relative out of plane polarity of individual collagen fibrils.
Collapse
Affiliation(s)
- MacAulay Harvey
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Richard Cisek
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Danielle Tokarz
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3, Canada
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science and School of Biomedical Engineering, Dalhousie University, Halifax, NS, B3H 4J5, Canada
| |
Collapse
|
7
|
Navarrete Á, Utrera A, Rivera E, Latorre M, Celentano DJ, García-Herrera CM. An inverse fitting strategy to determine the constrained mixture model parameters: application in patient-specific aorta. Front Bioeng Biotechnol 2023; 11:1301988. [PMID: 38053847 PMCID: PMC10694237 DOI: 10.3389/fbioe.2023.1301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The Constrained Mixture Model (CMM) is a novel approach to describe arterial wall mechanics, whose formulation is based on a referential physiological state. The CMM considers the arterial wall as a mixture of load-bearing constituents, each of them with characteristic mass fraction, material properties, and deposition stretch levels from its stress-free state to the in-vivo configuration. Although some reports of this model successfully assess its capabilities, they barely explore experimental approaches to model patient-specific scenarios. In this sense, we propose an iterative fitting procedure of numerical-experimental nature to determine material parameters and deposition stretch values. To this end, the model has been implemented in a finite element framework, and it is calibrated using reported experimental data of descending thoracic aorta. The main results obtained from the proposed procedure consist of a set of material parameters for each constituent. Moreover, a relationship between deposition stretches and residual strain measurements (opening angle and axial stretch) has been numerically proved, establishing a strong consistency between the model and experimental data.
Collapse
Affiliation(s)
- Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Eugenio Rivera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| | - Marcos Latorre
- Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain
| | - Diego J. Celentano
- Departamento de Ingeniería Mecánica y Metalúrgica, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Claudio M. García-Herrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, USACH, Santiago de Chile, Chile
| |
Collapse
|
8
|
Jeon H, Harvey M, Cisek R, Bennett E, Tokarz D. Characterization of pathological stomach tissue using polarization-sensitive second harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:5376-5391. [PMID: 37854565 PMCID: PMC10581783 DOI: 10.1364/boe.500335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 09/09/2023] [Indexed: 10/20/2023]
Abstract
Alterations in collagen ultrastructure between human gastric adenocarcinoma and normal gastric tissue were investigated using polarization-resolved second harmonic generation (PSHG) microscopy. Cylindrical and trigonal symmetries were assumed to extract quantitative PSHG parameters, ρ, κ and S, from each image pixel. Statistically significant variations in these values were observed for gastric adenocarcinoma, indicating a higher disorder of collagen. Numerical focal volume simulations of crossing fibrils indicate increased S parameter is due to more intersecting collagen fibrils of varying diameters. These parameters were also able to distinguish between different grades of gastric adenocarcinoma indicating that PSHG may be useful for automated cancer diagnosis.
Collapse
Affiliation(s)
- Hwanhee Jeon
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - MacAulay Harvey
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Richard Cisek
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Elisha Bennett
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Danielle Tokarz
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
9
|
Harvey M, Cisek R, Alizadeh M, Barzda V, Kreplak L, Tokarz D. High numerical aperture imaging allows chirality measurement in individual collagen fibrils using polarization second harmonic generation microscopy. NANOPHOTONICS 2023; 12:2061-2071. [PMID: 37215945 PMCID: PMC10193268 DOI: 10.1515/nanoph-2023-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023]
Abstract
Second harmonic generation (SHG) microscopy is a commonly used technique to study the organization of collagen within tissues. However, individual collagen fibrils, which have diameters much smaller than the resolution of most optical systems, have not been extensively investigated. Here we probe the structure of individual collagen fibrils using polarization-resolved SHG (PSHG) microscopy and atomic force microscopy. We find that longitudinally polarized light occurring at the edge of a focal volume of a high numerical aperture microscope objective illuminated with linearly polarized light creates a measurable variation in PSHG signal along the axis orthogonal to an individual collagen fibril. By comparing numerical simulations to experimental data, we are able to estimate parameters related to the structure and chirality of the collagen fibril without tilting the sample out of the image plane, or cutting tissue at different angles, enabling chirality measurements on individual nanostructures to be performed in standard PSHG microscopes. The results presented here are expected to lead to a better understanding of PSHG results from both collagen fibrils and collagenous tissues. Further, the technique presented can be applied to other chiral nanoscale structures such as microtubules, nanowires, and nanoribbons.
Collapse
Affiliation(s)
- MacAulay Harvey
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3Canada
| | - Richard Cisek
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3Canada
| | - Mehdi Alizadeh
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George St, Toronto, ON, M5S 1A7, Canada
- Laser Research Center, Faculty of Physics, Vilnius University, Sauletekio Av. 9, LT-10222Vilnius, Lithuania
| | - Virginijus Barzda
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, 60 St. George St, Toronto, ON, M5S 1A7, Canada
- Laser Research Center, Faculty of Physics, Vilnius University, Sauletekio Av. 9, LT-10222Vilnius, Lithuania
| | - Laurent Kreplak
- Department of Physics and Atmospheric Science and School of Biomedical Engineering, Dalhousie University, Halifax, NS, B3H 4J5, Canada
| | - Danielle Tokarz
- Department of Chemistry, Saint Mary’s University, 923 Robie Street, Halifax, NS, B3H 3C3Canada
| |
Collapse
|
10
|
Uribe Castaño L, Mirsanaye K, Kontenis L, Krouglov S, Žurauskas E, Navab R, Yasufuku K, Tsao MS, Akens MK, Wilson BC, Barzda V. Wide-field Stokes polarimetric microscopy for second harmonic generation imaging. JOURNAL OF BIOPHOTONICS 2023; 16:e202200284. [PMID: 36651498 DOI: 10.1002/jbio.202200284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 05/17/2023]
Abstract
We employ wide-field second harmonic generation (SHG) microscopy together with nonlinear Stokes polarimetry for quick ultrastructural investigation of large sample areas (700 μm × 700 μm) in thin histology sections. The Stokes vector components for SHG are obtained from the polarimetric measurements with incident and outgoing linear and circular polarization states. The Stokes components are used to construct the images of polarimetric parameters and deduce the maps of ultrastructural parameters of achiral and chiral nonlinear susceptibility tensor components ratios and cylindrical axis orientation in fibrillar materials. The large area imaging was employed for lung tumor margin investigations. The imaging shows reduced SHG intensity, increased achiral susceptibility ratio values, and preferential orientation of collagen strands along the boarder of tumor margin. The wide-field Stokes polarimetric SHG microscopy opens a possibility of quick large area imaging of ultrastructural parameters of tissue collagen, which can be used for nonlinear histopathology investigations.
Collapse
Affiliation(s)
- Leonardo Uribe Castaño
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Kamdin Mirsanaye
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Lukas Kontenis
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
- Light Conversion, Vilnius, Lithuania
| | - Serguei Krouglov
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Edvardas Žurauskas
- Department of Pathology, Forensic Medicine and Pharmacology, Vilnius University, Vilnius, Lithuania
| | - Roya Navab
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kazuhiro Yasufuku
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Margarete K Akens
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Techna Institute, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Virginijus Barzda
- Department of Physics, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
11
|
Wang A, Qi W, Gao T, Tang X. Molecular Contrast Optical Coherence Tomography and Its Applications in Medicine. Int J Mol Sci 2022; 23:ijms23063038. [PMID: 35328454 PMCID: PMC8949853 DOI: 10.3390/ijms23063038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 12/28/2022] Open
Abstract
The growing need to understand the molecular mechanisms of diseases has prompted the revolution in molecular imaging techniques along with nanomedicine development. Conventional optical coherence tomography (OCT) is a low-cost in vivo imaging modality that provides unique high spatial and temporal resolution anatomic images but little molecular information. However, given the widespread adoption of OCT in research and clinical practice, its robust molecular imaging extensions are strongly desired to combine with anatomical images. A range of relevant approaches has been reported already. In this article, we review the recent advances of molecular contrast OCT imaging techniques, the corresponding contrast agents, especially the nanoparticle-based ones, and their applications. We also summarize the properties, design criteria, merit, and demerit of those contrast agents. In the end, the prospects and challenges for further research and development in this field are outlined.
Collapse
|
12
|
Govindaraju I, Zhuo GY, Chakraborty I, Melanthota SK, Mal SS, Sarmah B, Baruah VJ, Mahato KK, Mazumder N. Investigation of structural and physico-chemical properties of rice starch with varied amylose content: A combined microscopy, spectroscopy, and thermal study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107093] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Abramavicius D, Krouglov S, Barzda V. Second harmonic generation theory for a helical macromolecule with high sensitivity to structural disorder. Phys Chem Chem Phys 2021; 23:20201-20217. [PMID: 34473146 DOI: 10.1039/d1cp00694k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microscopic theory for the second harmonic generation in a helical molecular system is developed in the minimal coupling representation including non-local interaction effects. At the second order to the field we find a compact expression which combines dipolar, quadrupolar and magnetic contributions. A detailed derivation of the response is performed to specifically isolate the quadratic coupling terms, which we denote as the K coupling. Applying the theory to a helical macromolecule we find that the dipolar and quadrupolar contributions reflect the symmetry properties of the system and its homogeneity, while the K coupling contribution reveals inhomogeneities of the system.
Collapse
Affiliation(s)
- Darius Abramavicius
- Institute of Chemical Physics, Vilnius University, Sauletekio al. 9-III, 10222 Vilnius, Lithuania.
| | - Serguei Krouglov
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, Ontario L5L1C6, Canada.,Department of Physics, University of Toronto, 60 St. George St., Toronto, Ontario M5S 1A7, Canada
| | - Virginijus Barzda
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, Ontario L5L1C6, Canada.,Department of Physics, University of Toronto, 60 St. George St., Toronto, Ontario M5S 1A7, Canada.,Laser Research Center, Faculty of Physics, Vilnius University, Sauletekio al. 9-III, 10222, Vilnius, Lithuania
| |
Collapse
|
14
|
Buhse T, Cruz JM, Noble-Terán ME, Hochberg D, Ribó JM, Crusats J, Micheau JC. Spontaneous Deracemizations. Chem Rev 2021; 121:2147-2229. [DOI: 10.1021/acs.chemrev.0c00819] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Buhse
- Centro de Investigaciones Químicas−IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos Mexico
| | - José-Manuel Cruz
- Facultad de Ciencias en Física y Matemáticas, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez, Chiapas 29050, Mexico
| | - María E. Noble-Terán
- Centro de Investigaciones Químicas−IICBA, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, 62209 Cuernavaca, Morelos Mexico
| | - David Hochberg
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Carretera Ajalvir, Km. 4, 28850 Torrejón de Ardoz, Madrid Spain
| | - Josep M. Ribó
- Institut de Ciències del Cosmos (IEEC-ICC) and Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalunya Spain
| | - Joaquim Crusats
- Institut de Ciències del Cosmos (IEEC-ICC) and Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalunya Spain
| | - Jean-Claude Micheau
- Laboratoire des IMRCP, UMR au CNRS No. 5623, Université Paul Sabatier, F-31062 Toulouse Cedex, France
| |
Collapse
|
15
|
Kochetkova T, Peruzzi C, Braun O, Overbeck J, Maurya AK, Neels A, Calame M, Michler J, Zysset P, Schwiedrzik J. Combining polarized Raman spectroscopy and micropillar compression to study microscale structure-property relationships in mineralized tissues. Acta Biomater 2021; 119:390-404. [PMID: 33122147 DOI: 10.1016/j.actbio.2020.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Bone is a natural composite possessing outstanding mechanical properties combined with a lightweight design. The key feature contributing to this unusual combination of properties is the bone hierarchical organization ranging from the nano- to the macro-scale. Bone anisotropic mechanical properties from two orthogonal planes (along and perpendicular to the main bone axis) have already been widely studied. In this work, we demonstrate the dependence of the microscale compressive mechanical properties on the angle between loading direction and the mineralized collagen fibril orientation in the range between 0° and 82°. For this, we calibrated polarized Raman spectroscopy for quantitative collagen fibril orientation determination and validated the method using widely used techniques (small angle X-ray scattering, micro-computed tomography). We then performed compression tests on bovine cortical bone micropillars with known mineralized collagen fibril angles. A strong dependence of the compressive micromechanical properties of bone on the fibril orientation was found with a high degree of anisotropy for both the elastic modulus (Ea/Et=3.80) and the yield stress (σay/σty=2.54). Moreover, the post-yield behavior was found to depend on the MCF orientation with a transition between softening to hardening behavior at approximately 50°. The combination of methods described in this work allows to reliably determine structure-property relationships of bone at the microscale, which may be used as a measure of bone quality.
Collapse
|
16
|
Characterization of thymine microcrystals by CARS and SHG microscopy. Sci Rep 2020; 10:17097. [PMID: 33051591 PMCID: PMC7553945 DOI: 10.1038/s41598-020-74305-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/23/2020] [Indexed: 01/14/2023] Open
Abstract
Identification of chemically homologous microcrystals in a polycrystal sample is a big challenge and requires developing specific highly sensitive tools. Second harmonic (SHG) and coherent anti-Stokes Raman scattering (CARS) spectroscopy can be used to reveal arrangement of thymine molecules, one of the DNA bases, in microcrystalline sample. Strong dependence of CARS and SHG intensity on the orientation of the linear polarization of the excitation light allows to obtain high resolution images of thymine microcrystals by additionally utilizing the scanning microscopy technique. Experimental findings and theoretical interpretation of the results are compared. Presented experimental data together with quantum chemistry-based theoretical interpretation allowed us to determine the most probable organization of the thymine molecules.
Collapse
|
17
|
Tokarz D, Cisek R, Joseph A, Asa SL, Wilson BC, Barzda V. Characterization of pathological thyroid tissue using polarization-sensitive second harmonic generation microscopy. J Transl Med 2020; 100:1280-1287. [PMID: 32737408 DOI: 10.1038/s41374-020-0475-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
Polarization-sensitive second harmonic generation (SHG) microscopy is an established imaging technique able to provide information related to specific molecular structures including collagen. In this investigation, polarization-sensitive SHG microscopy was used to investigate changes in the collagen ultrastructure between histopathology slides of normal and diseased human thyroid tissues including follicular nodular disease, Grave's disease, follicular variant of papillary thyroid carcinoma, classical papillary thyroid carcinoma, insular or poorly differentiated carcinoma, and anaplastic or undifferentiated carcinoma ex vivo. The second-order nonlinear optical susceptibility tensor component ratios, χ(2)zzz'/χ(2)zxx' and χ(2)xyz'/χ(2)zxx', were obtained, where χ(2)zzz'/χ(2)zxx' is a structural parameter and χ(2)xyz'/χ(2)zxx' is a measure of the chirality of the collagen fibers. Furthermore, the degree of linear polarization (DOLP) of the SHG signal was measured. A statistically significant increase in χ(2)zzz'/χ(2)zxx' values for all the diseased tissues except insular carcinoma and a statistically significant decrease in DOLP for all the diseased tissues were observed compared to normal thyroid. This finding indicates a higher ultrastructural disorder in diseased collagen and provides an innovative approach to discriminate between normal and diseased thyroid tissues that is complementary to standard histopathology.
Collapse
Affiliation(s)
- Danielle Tokarz
- Department of Chemistry, Saint Mary's University, Halifax, NS, Canada.
| | - Richard Cisek
- Department of Chemistry, Saint Mary's University, Halifax, NS, Canada
| | - Ariana Joseph
- Department of Chemistry, Saint Mary's University, Halifax, NS, Canada
| | - Sylvia L Asa
- University Health Network, University of Toronto, Toronto, ON, Canada.,University Hospitals Cleveland Medical Center, Cleveland, OH, USA.,Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Brian C Wilson
- Princess Margaret Cancer Centre/University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Virginijus Barzda
- Department of Physics, University of Toronto, Toronto, ON, Canada. .,Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada.
| |
Collapse
|
18
|
Rosen S, Brisson BK, Durham AC, Munroe CM, McNeill CJ, Stefanovski D, Sørenmo KU, Volk SW. Intratumoral collagen signatures predict clinical outcomes in feline mammary carcinoma. PLoS One 2020; 15:e0236516. [PMID: 32776970 PMCID: PMC7416937 DOI: 10.1371/journal.pone.0236516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cause of cancer-related deaths in women worldwide. Identification of reliable prognostic indicators and therapeutic targets is critical for improving patient outcome. Cancer in companion animals often strongly resembles human cancers and a comparative approach to identify prognostic markers can improve clinical care across species. Feline mammary tumors (FMT) serve as models for extremely aggressive triple negative breast cancer (TNBC) in humans, with high rates of local and distant recurrence after resection. Despite the aggressive clinical behavior of most FMT, current prognostic indicators are insufficient for accurately predicting outcome, similar to human patients. Given significant heterogeneity of mammary tumors, there has been a recent focus on identification of universal tumor-permissive stromal features that can predict biologic behavior and provide therapeutic targets to improve outcome. As in human and canine patients, collagen signatures appear to play a key role in directing mammary tumor behavior in feline patients. We find that patients bearing FMTs with denser collagen, as well as longer, thicker and straighter fibers and less identifiable tumor-stromal boundaries had poorer outcomes, independent of the clinical variables grade and surgical margins. Most importantly, including the collagen parameters increased the predictive power of the clinical model. Thus, our data suggest that similarities with respect to the stromal microenvironment between species may allow this model to predict outcome and develop novel therapeutic targets within the tumor stroma that would benefit both veterinary and human patients with aggressive mammary tumors.
Collapse
Affiliation(s)
- Suzanne Rosen
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Becky K. Brisson
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Amy C. Durham
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Clare M. Munroe
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Conor J. McNeill
- Hope Advanced Veterinary Center, Vienna, VA, United States of America
| | - Darko Stefanovski
- Department of Clinical Studies-New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States of America
| | - Karin U. Sørenmo
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Susan W. Volk
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Fricke D, Becker A, Heratizadeh A, Knigge S, Jütte L, Wollweber M, Werfel T, Roth BW, Glasmacher B. Mueller Matrix Analysis of Collagen and Gelatin Containing Samples Towards More Objective Skin Tissue Diagnostics. Polymers (Basel) 2020; 12:polym12061400. [PMID: 32580462 PMCID: PMC7361993 DOI: 10.3390/polym12061400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/19/2022] Open
Abstract
Electrospun polycaprolactone:gelatin (PCL:GT) fibre scaffolds are widely employed in the field of tissue implants. Here, the orientation of fibres plays an important role in regard to implantation due to the impact on the mechanical properties. Likewise, the orientation of collagen fibres in skin tissue is relevant for dermatology. State-of-the-art fibre orientation measurement methods like electron microscopy are time consuming and destructive. In this work, we demonstrate polarimetry as a non-invasive approach and evaluate its potential by measuring the Mueller matrix (MM) of gelatin and collagen containing samples as simple skin tissue phantoms. We demonstrate that it is possible to determine the orientation of PCL:GT fibre scaffolds within one MM measurement. Furthermore, we determine the structural orientation in collagen film samples. Currently, the diagnosis of skin diseases is often performed by image analysis or histopathology respectively, which are either subjective or invasive. The method presented, here, provides an interesting alternative approach for such investigations. Our findings indicate that the orientation of collagen fibres within skin lesions might be detectable by MM measurements in the future, which is of interest for skin diagnostics, and will be further investigated during the next step.
Collapse
Affiliation(s)
- Dierk Fricke
- Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, 30167 Hannover, Germany; (L.J.); (M.W.); (B.W.R.)
- Correspondence:
| | - Alexander Becker
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30167 Hannover, Germany; (A.B.); (S.K.); (B.G.)
- Implant Research and Development (NIFE), Lower Saxony Centre for Biomedical Engineering, 30625 Hannover, Germany
| | - Annice Heratizadeh
- Hannover Medical School, Department of Dermatology and Allergy, 30625 Hannover, Germany; (A.H.); (T.W.)
| | - Sara Knigge
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30167 Hannover, Germany; (A.B.); (S.K.); (B.G.)
- Implant Research and Development (NIFE), Lower Saxony Centre for Biomedical Engineering, 30625 Hannover, Germany
| | - Lennart Jütte
- Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, 30167 Hannover, Germany; (L.J.); (M.W.); (B.W.R.)
| | - Merve Wollweber
- Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, 30167 Hannover, Germany; (L.J.); (M.W.); (B.W.R.)
- Laser Zentrum Hannover e.V., 30419 Hannover, Germany
| | - Thomas Werfel
- Hannover Medical School, Department of Dermatology and Allergy, 30625 Hannover, Germany; (A.H.); (T.W.)
| | - Bernhard Wilhelm Roth
- Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, 30167 Hannover, Germany; (L.J.); (M.W.); (B.W.R.)
- Cluster of Excellence PhoenixD, Leibniz University Hannover, 30167 Hannover, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30167 Hannover, Germany; (A.B.); (S.K.); (B.G.)
- Implant Research and Development (NIFE), Lower Saxony Centre for Biomedical Engineering, 30625 Hannover, Germany
| |
Collapse
|
20
|
Golaraei A, Mostaço-Guidolin LB, Raja V, Navab R, Wang T, Sakashita S, Yasufuku K, Tsao MS, Wilson BC, Barzda V. Polarimetric second-harmonic generation microscopy of the hierarchical structure of collagen in stage I-III non-small cell lung carcinoma. BIOMEDICAL OPTICS EXPRESS 2020; 11:1851-1863. [PMID: 32341852 PMCID: PMC7173881 DOI: 10.1364/boe.387744] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 05/02/2023]
Abstract
Polarimetric second-harmonic generation (P-SHG) microscopy is used to quantify the structural alteration of collagen in stage-I,-II and -III non-small cell lung carcinoma (NSCLC) ex vivo tissue. The achiral and chiral molecular second-order susceptibility tensor components ratios (R and C, respectively), the degree of linear polarization (DLP) and the in-plane collagen fiber orientation (δ) were extracted. Further, texture analysis was performed on the SHG intensity, R, C, DLP and δ. The distributions of R, C, DLP and δ as well as the textural features of entropy, correlation and contrast show significant differences between normal and tumor tissues.
Collapse
Affiliation(s)
- Ahmad Golaraei
- Department of Physics, University of Toronto, 60 St. George St, Toronto, M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd North, Mississauga, L5L 1C6, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Leila B. Mostaço-Guidolin
- Department of Systems and Computer Engineering, Faculty of Engineering and Design, Carleton University, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
| | - Vaishnavi Raja
- Department of Chemistry, University of Western Ontario, 1151 Richmond St, London, N6A 3K7, Canada
| | - Roya Navab
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Tao Wang
- Department of Pathology and Molecular Medicine, Queen’s University, 88 Stuart St, Kingston, K7L 3N6, Canada
| | - Shingo Sakashita
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Kazuhiro Yasufuku
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
- Toronto General Hospital, University Health Network, 200 Elizabeth St, Toronto, M5G 2C4, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
- Department of Medical Biophysics, 101 College St, Toronto, M5G 1L7, Canada
| | - Virginijus Barzda
- Department of Physics, University of Toronto, 60 St. George St, Toronto, M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd North, Mississauga, L5L 1C6, Canada
- Laser Research Centre, Faculty of Physics, Vilnius University, Vilnius, 10223, Lithuania
| |
Collapse
|
21
|
Rouède D, Schaub E, Bellanger JJ, Ezan F, Tiaho F. Wavy nature of collagen fibrils deduced from the dispersion of their second-order nonlinear optical anisotropy parameters ρ. OPTICS EXPRESS 2020; 28:4845-4858. [PMID: 32121716 DOI: 10.1364/oe.380089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
From P-SHG experiments, second-order nonlinear optical anisotropy parameters ρ = χZZZ/χZXX of collagen tissues are calculated assuming the same model of supercoiled collagen fibril characterized by a variable angle θ. Dispersion of experimental ρ values is converted into distribution of θ values based on the wavy nature of collagen fibrils deduced from EM studies. For tendon, the results show that the dispersion of experimental ρ values is mainly due to Poisson photonic shot noise assuming a slight fibrillar undulation with θ = 2.2° ± 1.8°. However for skin and vessels, the dispersion of experimental ρ values is mainly due to a stronger fibrillar undulation with θ = 16.2° ± 1.3°. The results highlight that this undulation is reduced during the development of liver fibrosis therefore, contributing to the rigidity of the tissue.
Collapse
|
22
|
Mirsanaye K, Golaraei A, Habach F, Žurauskas E, Venius J, Rotomskis R, Barzda V. Polar organization of collagen in human cardiac tissue revealed with polarimetric second-harmonic generation microscopy. BIOMEDICAL OPTICS EXPRESS 2019; 10:5025-5030. [PMID: 31646027 PMCID: PMC6788612 DOI: 10.1364/boe.10.005025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 05/18/2023]
Abstract
Polarimetric second-harmonic generation (P-SHG) microscopy is used to characterize the composition and polarity of collagen fibers in various regions of human cardiac tissue. The boundary between the cardiac conduction system and myocardium is shown to possess a distinct composition of collagen compared to other regions in the heart. Moreover, collagen fibers in this region are macroscopically organized in a unipolar arrangement, which may consequently aid in effective propagation of the electrical signal through the cardiac conduction system.
Collapse
Affiliation(s)
- Kamdin Mirsanaye
- Department of Physics, University of Toronto, 60 St. George St, Toronto, M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd North, Mississauga, L5L 1C6, Canada
| | - Ahmad Golaraei
- Department of Physics, University of Toronto, 60 St. George St, Toronto, M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd North, Mississauga, L5L 1C6, Canada
- Princess Margaret Cancer Centre, University Health Network, 101 College St, Toronto, M5G 1L7, Canada
| | - Fayez Habach
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd North, Mississauga, L5L 1C6, Canada
| | - Edvardas Žurauskas
- Department of Pathology, Forensic Medicine and Pharmacology, Faculty of Medicine, Vilnius University, M.K. Ciurlionio St 21/27, LT-03101, Vilnius, Lithuania
| | - Jonas Venius
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St 3b, LT-08406, Vilnius, Lithuania
- Medical Physics Department, National Cancer Institute, Santariskiu St 1, LT-08660, Vilnius, Lithuania
| | - Ricardas Rotomskis
- Biomedical Physics Laboratory, National Cancer Institute, P. Baublio St 3b, LT-08406, Vilnius, Lithuania
- Laser Research Center, Vilnius University, Sauletekio Ave 9 corp. III, LT-10222, Vilnius, Lithuania
| | - Virginijus Barzda
- Department of Physics, University of Toronto, 60 St. George St, Toronto, M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Rd North, Mississauga, L5L 1C6, Canada
- Laser Research Center, Vilnius University, Sauletekio Ave 9 corp. III, LT-10222, Vilnius, Lithuania
| |
Collapse
|
23
|
Xu S, Xu H, Wang W, Li S, Li H, Li T, Zhang W, Yu X, Liu L. The role of collagen in cancer: from bench to bedside. J Transl Med 2019; 17:309. [PMID: 31521169 PMCID: PMC6744664 DOI: 10.1186/s12967-019-2058-1] [Citation(s) in RCA: 474] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 02/06/2023] Open
Abstract
Collagen is the major component of the tumor microenvironment and participates in cancer fibrosis. Collagen biosynthesis can be regulated by cancer cells through mutated genes, transcription factors, signaling pathways and receptors; furthermore, collagen can influence tumor cell behavior through integrins, discoidin domain receptors, tyrosine kinase receptors, and some signaling pathways. Exosomes and microRNAs are closely associated with collagen in cancer. Hypoxia, which is common in collagen-rich conditions, intensifies cancer progression, and other substances in the extracellular matrix, such as fibronectin, hyaluronic acid, laminin, and matrix metalloproteinases, interact with collagen to influence cancer cell activity. Macrophages, lymphocytes, and fibroblasts play a role with collagen in cancer immunity and progression. Microscopic changes in collagen content within cancer cells and matrix cells and in other molecules ultimately contribute to the mutual feedback loop that influences prognosis, recurrence, and resistance in cancer. Nanoparticles, nanoplatforms, and nanoenzymes exhibit the expected gratifying properties. The pathophysiological functions of collagen in diverse cancers illustrate the dual roles of collagen and provide promising therapeutic options that can be readily translated from bench to bedside. The emerging understanding of the structural properties and functions of collagen in cancer will guide the development of new strategies for anticancer therapy.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Huaxiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wenquan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tianjiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Wuhu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 270 Dong An Road, Shanghai, 200032, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, People's Republic of China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
24
|
Golaraei A, Kontenis L, Mirsanaye K, Krouglov S, Akens MK, Wilson BC, Barzda V. Complex Susceptibilities and Chiroptical Effects of Collagen Measured with Polarimetric Second-Harmonic Generation Microscopy. Sci Rep 2019; 9:12488. [PMID: 31462663 PMCID: PMC6713739 DOI: 10.1038/s41598-019-48636-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/07/2019] [Indexed: 11/08/2022] Open
Abstract
Nonlinear optical properties of collagen type-I are investigated in thin tissue sections of pig tendon as a research model using a complete polarimetric second-harmonic generation (P-SHG) microscopy technique called double Stokes-Mueller polarimetry (DSMP). Three complex-valued molecular susceptibility tensor component ratios are extracted. A significant retardance is observed between the chiral susceptibility component and the achiral components, while the achiral components appear to be in phase with each other. The DSMP formalism and microscopy measurements are further used to explain and experimentally validate the conditions required for SHG circular dichroism (SHG-CD) of collagen to occur. The SHG-CD can be observed with the microscope when: (i) the chiral second-order susceptibility tensor component has a non-zero value, (ii) a phase retardance is present between the chiral and achiral components of the second-order susceptibility tensor and (iii) the collagen fibres are tilted out of the image plane. Both positive and negative areas of SHG-CD are observed in microscopy images, which relates to the anti-parallel arrangement of collagen fibres in different fascicles of the tendon. The theoretical formalism and experimental validation of DSMP imaging technique opens new opportunities for ultrastructural characterisation of chiral molecules, in particular collagen, and provides basis for the interpretation of SHG-CD signals. The nonlinear imaging of chiroptical parameters offers new possibilities to further improve the diagnostic sensitivity and/or specificity of nonlinear label-free histopathology.
Collapse
Affiliation(s)
- Ahmad Golaraei
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
- University of Toronto, Department of Physics, Toronto, M5S 1A7, Canada
- University of Toronto Mississauga, Department of Chemical and Physical Sciences, Mississauga, L5L 1C6, Canada
| | - Lukas Kontenis
- Light Conversion Ltd., LT-10223, Vilnius, Lithuania
- Vilnius University, Laser Research Centre, Faculty of Physics, Vilnius, 10223, Lithuania
| | - Kamdin Mirsanaye
- University of Toronto, Department of Physics, Toronto, M5S 1A7, Canada
- University of Toronto Mississauga, Department of Chemical and Physical Sciences, Mississauga, L5L 1C6, Canada
| | - Serguei Krouglov
- University of Toronto, Department of Physics, Toronto, M5S 1A7, Canada
- University of Toronto Mississauga, Department of Chemical and Physical Sciences, Mississauga, L5L 1C6, Canada
| | - Margarete K Akens
- Techna Institute, University Health Network, Toronto, M5G 1L5, Canada
- University of Toronto, Department of Surgery, Toronto, M5S 1A1, Canada
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
| | - Brian C Wilson
- Princess Margaret Cancer Centre, University Health Network, Toronto, M5G 1L7, Canada
- University of Toronto, Department of Medical Biophysics, Toronto, M5G 1L7, Canada
| | - Virginijus Barzda
- University of Toronto, Department of Physics, Toronto, M5S 1A7, Canada.
- University of Toronto Mississauga, Department of Chemical and Physical Sciences, Mississauga, L5L 1C6, Canada.
- Vilnius University, Laser Research Centre, Faculty of Physics, Vilnius, 10223, Lithuania.
| |
Collapse
|
25
|
Schmeltz M, Teulon C, Latour G, Ghoubay D, Borderie V, Aimé C, Schanne-Klein MC. Implementation of artifact-free circular dichroism SHG imaging of collagen. OPTICS EXPRESS 2019; 27:22685-22699. [PMID: 31510554 DOI: 10.1364/oe.27.022685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Second harmonic generation (SHG) enables in situ imaging of fibrillar collagen architecture in connective tissues. Recently, Circular Dichroism SHG (CD-SHG) microscopy has been implemented to take advantage of collagen chirality to improve 3D visualization. It measures the normalized difference in the SHG signal obtained upon excitation by left versus right circular polarizations. However, CD-SHG signal is not well characterized yet, and quite different CD-SHG values are reported in the literature. Here, we identify two major artifacts that may occur in CD-SHG experiments and we demonstrate that thorough optimization and calibration of the experimental setup are required for CD-SHG imaging. Notably it requires a careful calibration of the incident circular polarizations and a perfect mechanical stabilization of the microscope stage. Finally, we successfully record CD-SHG images in human cornea sections and confirm that this technique efficiently reveals collagen fibrils oriented out of the focal plane.
Collapse
|
26
|
Tokarz D, Cisek R, Joseph A, Golaraei A, Mirsanaye K, Krouglov S, Asa SL, Wilson BC, Barzda V. Characterization of Pancreatic Cancer Tissue Using Multiphoton Excitation Fluorescence and Polarization-Sensitive Harmonic Generation Microscopy. Front Oncol 2019; 9:272. [PMID: 31058080 PMCID: PMC6478795 DOI: 10.3389/fonc.2019.00272] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 12/31/2022] Open
Abstract
Thin tissue sections of normal and tumorous pancreatic tissues stained with hematoxylin and eosin were investigated using multiphoton excitation fluorescence (MPF), second harmonic generation (SHG), and third harmonic generation (THG) microscopies. The cytoplasm, connective tissue, collagen and extracellular structures are visualized with MPF due to the eosin stain, whereas collagen is imaged with endogenous SHG contrast that does not require staining. Cellular structures, including membranous interfaces and nuclear components, are seen with THG due to the aggregation of hematoxylin dye. Changes in the collagen ultrastructure in pancreatic cancer were investigated by a polarization-sensitive SHG microscopy technique, polarization-in, polarization-out (PIPO) SHG. This involves measuring the orientation of the linear polarization of the SHG signal as a function of the linear polarization orientation of the incident laser radiation. From the PIPO SHG data, the second-order non-linear optical susceptibility ratio, χ(2) zzz '/χ(2) zxx ', was obtained that serves as a structural parameter for characterizing the tissue. Furthermore, by assuming C6 symmetry, an additional second-order non-linear optical susceptibility ratio, χ(2) xyz '/χ(2) zxx ', was obtained, which is a measure of the chirality of the collagen fibers. Statistically-significant differences in the χ(2) zzz '/χ(2) zxx ' values were found between tumor and normal pancreatic tissues in periductal, lobular, and parenchymal regions, whereas statistically-significant differences in the full width at half maximum (FWHM) of χ(2) xyz '/χ(2) zxx ' occurrence histograms were found between tumor and normal pancreatic tissues in periductal and parenchymal regions. Additionally, the PIPO SHG data were used to determine the degree of linear polarization (DOLP) of the SHG signal, which indicates the relative linear depolarization of the signal. Statistically-significant differences in DOLP values were found between tumor and normal pancreatic tissues in periductal and parenchymal regions. Hence, the differences observed in the χ(2) zzz '/χ(2) zxx ' values, the FWHM of χ(2) xyz '/χ(2) zxx ' values and the DOLP values could potentially be used to aid pathologists in diagnosing pancreatic cancer.
Collapse
Affiliation(s)
- Danielle Tokarz
- Department of Chemistry, Saint Mary's University, Halifax, NS, Canada
| | - Richard Cisek
- Department of Chemistry, Saint Mary's University, Halifax, NS, Canada
| | - Ariana Joseph
- Department of Chemistry, Saint Mary's University, Halifax, NS, Canada
| | - Ahmad Golaraei
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
| | - Kamdin Mirsanaye
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Serguei Krouglov
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Sylvia L. Asa
- University Health Network, University of Toronto, Toronto, ON, Canada
| | - Brian C. Wilson
- Princess Margaret Cancer Centre, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Virginijus Barzda
- Department of Physics, University of Toronto, Toronto, ON, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|