1
|
Steuer NB, Schlanstein PC, Hannig A, Sibirtsev S, Jupke A, Schmitz-Rode T, Kopp R, Steinseifer U, Wagner G, Arens J. Extracorporeal Hyperoxygenation Therapy (EHT) for Carbon Monoxide Poisoning: In-Vitro Proof of Principle. MEMBRANES 2021; 12:membranes12010056. [PMID: 35054581 PMCID: PMC8779470 DOI: 10.3390/membranes12010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022]
Abstract
Carbon monoxide (CO) poisoning is the leading cause of poisoning-related deaths globally. The currently available therapy options are normobaric oxygen (NBO) and hyperbaric oxygen (HBO). While NBO lacks in efficacy, HBO is not available in all areas and countries. We present a novel method, extracorporeal hyperoxygenation therapy (EHT), for the treatment of CO poisoning that eliminates the CO by treating blood extracorporeally at elevated oxygen partial pressure. In this study, we proof the principle of the method in vitro using procine blood: Firstly, we investigated the difference in the CO elimination of a hollow fibre membrane oxygenator and a specifically designed batch oxygenator based on the bubble oxygenator principle at elevated pressures (1, 3 bar). Secondly, the batch oxygenator was redesigned and tested for a broader range of pressures (1, 3, 5, 7 bar) and temperatures (23, 30, 37 °C). So far, the shortest measured carboxyhemoglobin half-life in the blood was 21.32 min. In conclusion, EHT has the potential to provide an easily available and effective method for the treatment of CO poisoning.
Collapse
Affiliation(s)
- Niklas B. Steuer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (P.C.S.); (A.H.); (U.S.); (G.W.); (J.A.)
- Correspondence: ; Tel.:+49-241-80-88764
| | - Peter C. Schlanstein
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (P.C.S.); (A.H.); (U.S.); (G.W.); (J.A.)
| | - Anke Hannig
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (P.C.S.); (A.H.); (U.S.); (G.W.); (J.A.)
| | - Stephan Sibirtsev
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany; (S.S.); (A.J.)
| | - Andreas Jupke
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany; (S.S.); (A.J.)
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany;
| | - Rüdger Kopp
- Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (P.C.S.); (A.H.); (U.S.); (G.W.); (J.A.)
| | - Georg Wagner
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (P.C.S.); (A.H.); (U.S.); (G.W.); (J.A.)
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (P.C.S.); (A.H.); (U.S.); (G.W.); (J.A.)
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, De Horst 2, 7522LW Enschede, The Netherlands
| |
Collapse
|
3
|
Farrell CJL, Carter AC. Serum indices: managing assay interference. Ann Clin Biochem 2016; 53:527-38. [DOI: 10.1177/0004563216643557] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 11/17/2022]
Abstract
Clinical laboratories frequently encounter samples showing significant haemolysis, icterus or lipaemia. Technical advances, utilizing spectrophotometric measurements on automated chemistry analysers, allow rapid and accurate identification of such samples. However, accurate quantification of haemolysis, icterus and lipaemia interference is of limited value if laboratories do not set rational alert limits, based on sound interference testing experiments. Furthermore, in the context of increasing consolidation of laboratories and the formation of laboratory networks, there is an increasing requirement for harmonization of the handling of haemolysis, icterus and lipaemia-affected samples across different analytical platforms. Harmonization may be best achieved by considering both the analytical aspects of index measurement and the possible variations in the effects of haemolysis, icterus and lipaemia interferences on assays from different manufacturers. Initial verification studies, followed up with ongoing quality control testing, can help a laboratory ensure the accuracy of haemolysis, icterus and lipaemia index results, as well as assist in managing any biases in index results from analysers from different manufacturers. Similarities, and variations, in the effect of haemolysis, icterus and lipaemia interference in assays from different manufacturers can often be predicted from the mechanism of interference. Nevertheless, interference testing is required to confirm expected similarities or to quantify differences. It is important that laboratories are familiar with a number of interference testing protocols and the particular strengths and weaknesses of each. A rigorous approach to all aspects of haemolysis, icterus and lipaemia interference testing allows the analytical progress in index measurement to be translated into improved patient care.
Collapse
|
4
|
Kameneva MV, Burgreen GW, Kono K, Repko B, Antaki JF, Umezu M. Effects of Turbulent Stresses upon Mechanical Hemolysis: Experimental and Computational Analysis. ASAIO J 2004; 50:418-23. [PMID: 15497379 PMCID: PMC6400211 DOI: 10.1097/01.mat.0000136512.36370.b5] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Experimental and computational studies were performed to elucidate the role of turbulent stresses in mechanical blood damage (hemolysis). A suspension of bovine red blood cells (RBC) was driven through a closed circulating loop by a centrifugal pump. A small capillary tube (inner diameter 1 mm and length 70 mm) was incorporated into the circulating loop via tapered connectors. The suspension of RBCs was diluted with saline to achieve an asymptotic apparent viscosity of 2.0 +/- 0.1 cP at 23 degrees C to produce turbulent flow at nominal flow rate and pressure. To study laminar flow at the identical wall shear stresses in the same capillary tube, the apparent viscosity of the RBC suspension was increased to 6.3 +/- 0.1 cP (at 23 degrees C) by addition of Dextran-40. Using various combinations of driving pressure and Dextran mediated adjustments in dynamic viscosity Reynolds numbers ranging from 300-5,000 were generated, and rates of hemolysis were measured. Pilot studies were performed to verify that the suspension media did not affect mechanical fragility of the RBCs. The results of these bench studies demonstrated that, at the same wall shear stress in a capillary tube, the level of hemolysis was significantly greater (p < 0.05) for turbulent flow as compared with laminar flow. This confirmed that turbulent stresses contribute strongly to blood mechanical trauma. Numerical predictions of hemolysis obtained by computational fluid dynamic modeling were in good agreement with these experimental data.
Collapse
Affiliation(s)
- Marina V Kameneva
- Department of Surgery, University of Pittsburgh, McGowan Institute for Regenerative Medicine, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | | | | | | | | | | |
Collapse
|