1
|
Corral-Nájera K, Chauhan G, Serna-Saldívar SO, Martínez-Chapa SO, Aeinehvand MM. Polymeric and biological membranes for organ-on-a-chip devices. MICROSYSTEMS & NANOENGINEERING 2023; 9:107. [PMID: 37649779 PMCID: PMC10462672 DOI: 10.1038/s41378-023-00579-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 09/01/2023]
Abstract
Membranes are fundamental elements within organ-on-a-chip (OOC) platforms, as they provide adherent cells with support, allow nutrients (and other relevant molecules) to permeate/exchange through membrane pores, and enable the delivery of mechanical or chemical stimuli. Through OOC platforms, physiological processes can be studied in vitro, whereas OOC membranes broaden knowledge of how mechanical and chemical cues affect cells and organs. OOCs with membranes are in vitro microfluidic models that are used to replace animal testing for various applications, such as drug discovery and disease modeling. In this review, the relevance of OOCs with membranes is discussed as well as their scaffold and actuation roles, properties (physical and material), and fabrication methods in different organ models. The purpose was to aid readers with membrane selection for the development of OOCs with specific applications in the fields of mechanistic, pathological, and drug testing studies. Mechanical stimulation from liquid flow and cyclic strain, as well as their effects on the cell's increased physiological relevance (IPR), are described in the first section. The review also contains methods to fabricate synthetic and ECM (extracellular matrix) protein membranes, their characteristics (e.g., thickness and porosity, which can be adjusted depending on the application, as shown in the graphical abstract), and the biological materials used for their coatings. The discussion section joins and describes the roles of membranes for different research purposes and their advantages and challenges.
Collapse
Affiliation(s)
- Kendra Corral-Nájera
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Gaurav Chauhan
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Sergio O. Serna-Saldívar
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Sergio O. Martínez-Chapa
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| | - Mohammad Mahdi Aeinehvand
- School of Engineering and Science, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, 64849 Mexico
| |
Collapse
|
2
|
Hu X, Wu M, Che L, Huang J, Li H, Liu Z, Li M, Ye D, Yang Z, Wang X, Xie Z, Liu J. Nanoengineering Ultrathin Flexible Pressure Sensor with Superior Sensitivity and Perfect Conformability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208015. [PMID: 37026672 DOI: 10.1002/smll.202208015] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Flexible pressure sensors play an increasingly important role in a wide range of applications such as human health monitoring, soft robotics, and human-machine interfaces. To achieve a high sensitivity, a conventional approach is introducing microstructures to engineer the internal geometry of the sensor. However, this microengineering strategy requires the sensor's thickness to be typically at hundreds to thousands of microns level, impairing the sensor's conformability on surfaces with microscale roughness like human skin. In this manuscript, a nanoengineering strategy is pioneered that paves a path to resolve the conflicts between sensitivity and conformability. A dual-sacrificial-layer method is initiated that facilitates ease of fabrication and precise assembly of two functional nanomembranes to manufacture the thinnest resistive pressure sensor with a total thickness of ≈850 nm that achieves perfectly conformable contact to human skin. For the first time, the superior deformability of the nanothin electrode layer on a carbon nanotube conductive layer is utilized by the authors to achieve a superior sensitivity (92.11 kPa-1 ) and an ultralow detection limit (<0.8 Pa). This work offers a new strategy that is able to overcome a key bottleneck for current pressure sensors, therefore is of potential to inspire the research community for a new wave of breakthroughs.
Collapse
Affiliation(s)
- Xiaoguang Hu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Mengxi Wu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Lixuan Che
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China
| | - Jian Huang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Haoran Li
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Zehan Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| | - Ming Li
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian, 116024, China
| | - Dong Ye
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhuoqing Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuewen Wang
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhaoqian Xie
- Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China
| | - Junshan Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
- Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
3
|
Yang BA, Westerhof TM, Sabin K, Merajver SD, Aguilar CA. Engineered Tools to Study Intercellular Communication. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002825. [PMID: 33552865 PMCID: PMC7856891 DOI: 10.1002/advs.202002825] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Indexed: 05/08/2023]
Abstract
All multicellular organisms rely on intercellular communication networks to coordinate physiological functions. As members of a dynamic social network, each cell receives, processes, and redistributes biological information to define and maintain tissue homeostasis. Uncovering the molecular programs underlying these processes is critical for prevention of disease and aging and development of therapeutics. The study of intercellular communication requires techniques that reduce the scale and complexity of in vivo biological networks while resolving the molecular heterogeneity in "omic" layers that contribute to cell state and function. Recent advances in microengineering and high-throughput genomics offer unprecedented spatiotemporal control over cellular interactions and the ability to study intercellular communication in a high-throughput and mechanistic manner. Herein, this review discusses how salient engineered approaches and sequencing techniques can be applied to understand collective cell behavior and tissue functions.
Collapse
Affiliation(s)
- Benjamin A. Yang
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| | - Trisha M. Westerhof
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
- Department of Internal MedicineDivision of Hematology/Oncology and Rogel Cancer Center1500 East Medical Center Drive, Rogel Cancer CenterAnn ArborMI7314USA
| | - Kaitlyn Sabin
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| | - Sofia D. Merajver
- Department of Internal MedicineDivision of Hematology/Oncology and Rogel Cancer Center1500 East Medical Center Drive, Rogel Cancer CenterAnn ArborMI7314USA
| | - Carlos A. Aguilar
- Department of Biomedical Engineering and Biointerfaces Institute2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
- Program in Cellular and Molecular Biology2800 Plymouth Road, North Campus Research ComplexAnn ArborMIA10‐183USA
| |
Collapse
|
4
|
Mandelli JS, Koepp J, Hama A, Sanaur S, Rae GA, Rambo CR. Cell viability and cytotoxicity of inkjet-printed flexible organic electrodes on parylene C. Biomed Microdevices 2021; 23:2. [PMID: 33386434 DOI: 10.1007/s10544-020-00542-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
This study reports on the fabrication of biocompatible organic devices by means of inkjet printing with a novel combination of materials. The devices were fabricated on Parylene C (PaC), a biocompatible and flexible polymer substrate. The contact tracks were inkjet-printed using a silver nanoparticle ink, while the active sites were inkjet-printed using a poly (3,4ethylenedioxythiophene)/polystyrene sulfonate (PEDOT:PSS) solution. To insulate the final device, a polyimide ink was used to print a thick film, leaving small open windows upon the active sites. Electrical characterization of the final device revealed conductivities in the order of 103 and 102 S.cm-1 for Ag and PEDOT based inks, respectively. Cell adhesion assays performed with PC-12 cells after 96 h of culture, and B16F10 cells after 24 h of culture, demonstrated that the cells adhered on top of the inks and cell differentiation occurred, which indicates Polyimide and PEDOT:PSS inks are non-toxic to these cells. The results indicate that PaC, along with its surface-treated variants, is a potentially useful material for fabricating cell-based microdevices.
Collapse
Affiliation(s)
- Jaqueline S Mandelli
- Department of Electrical and Electronic Engineering, Graduate Program on Materials Science and Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Janice Koepp
- Department of Pharmacology, Graduate Program on Pharmacology, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.,Biocelltis Biotechnology SA, Rod. SC 401 km 05, 5326, 88032-005, Florianópolis, Brazil
| | - Adel Hama
- Department of Bioelectronics, IMT Mines Saint-Etienne, Provence Microelectronics Center, 880 avenue de Mimet, 13541, Gardanne, France
| | - Sébastien Sanaur
- Department of Bioelectronics, IMT Mines Saint-Etienne, Provence Microelectronics Center, 880 avenue de Mimet, 13541, Gardanne, France.,Department of Flexible Electronics, IMT Mines Saint-Etienne, Provence Microelectronics Center, 880 avenue de Mimet, 13541, Gardanne, France
| | - Giles A Rae
- Department of Pharmacology, Graduate Program on Pharmacology, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Carlos R Rambo
- Department of Electrical and Electronic Engineering, Graduate Program on Materials Science and Engineering, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil.
| |
Collapse
|
5
|
Gholizadeh S, Allahyari Z, Carter R, Delgadillo LF, Blaquiere M, Nouguier-Morin F, Marchi N, Gaborski TR. Robust and Gradient Thickness Porous Membranes for In Vitro Modeling of Physiological Barriers. ADVANCED MATERIALS TECHNOLOGIES 2020; 5:2000474. [PMID: 33709013 PMCID: PMC7942760 DOI: 10.1002/admt.202000474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Indexed: 05/06/2023]
Abstract
Porous membranes are fundamental elements for tissue-chip barrier and co-culture models. However, the exaggerated thickness of commonly available membranes may represent a stumbling block impeding a more accurate in vitro modeling. Existing techniques to fabricate membranes such as solvent cast, spin-coating, sputtering and PE-CVD result in uniform thickness films. Here, we developed a robust method to generate ultrathin porous parylene C (UPP) membranes not just with precise thicknesses down to 300 nm, but with variable gradients in thicknesses, while at the same time having porosities up to 25%. We also show surface etching and increased roughness lead to improved cell attachment. Next, we examined the mechanical properties of UPP membranes with varying porosity and thickness and fit our data to previously published models, which can help determine practical upper limits of porosity and lower limits of thickness. Lastly, we validate a straightforward approach allowing the successful integration of the UPP membranes into a prototyped 3D-printed scaffold, demonstrating mechanical robustness and allowing cell adhesion under varying flow conditions. Collectively, our results support the integration and the use of UPP membranes to examine cell-cell interaction in vitro.
Collapse
Affiliation(s)
- Shayan Gholizadeh
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Zahra Allahyari
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Robert Carter
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Luis F Delgadillo
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14620, USA
| | - Marine Blaquiere
- Cerebrovascular and Glia Research, Institute of Functional Genomics (CNRS UMR5203, INSERM U1191, and University of Montpellier), Montpellier, 34094, France
| | - Frederic Nouguier-Morin
- Cerebrovascular and Glia Research, Institute of Functional Genomics (CNRS UMR5203, INSERM U1191, and University of Montpellier), Montpellier, 34094, France
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (CNRS UMR5203, INSERM U1191, and University of Montpellier), Montpellier, 34094, France
| | - Thomas R Gaborski
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| |
Collapse
|
6
|
Tran R, Hoesli CA, Moraes C. Accessible dynamic micropatterns in monolayer cultures via modified desktop xurography. Biofabrication 2020; 13. [PMID: 33238251 DOI: 10.1088/1758-5090/abce0b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/25/2020] [Indexed: 11/12/2022]
Abstract
Micropatterned cell cultures provide an important tool to understand dynamic biological processes, but often require specialized equipment and expertise. Here we present subtractive bioscribing (SuBscribe), a readily accessible and inexpensive technique to generate dynamic micropatterns in biomaterial monolayers on-the-fly. We first describe our modifications to a commercially available desktop xurographer and demonstrate the utility and limits of this system in creating micropatterned cultures by mechanically scribing patterns into a brittle, non-adhesive biomaterial layer. Patterns are sufficiently small to influence cell morphology and orientation and can be extended to pattern large areas with complex reproducible shapes. We also demonstrate the use of this system as a dynamic patterning tool for cocultures. Finally, we use this technique to explore and improve upon the well-established epithelial scratch assay, and demonstrate that robotic control of the scratching tool can be used to create custom-shaped wounds in epithelial monolayers, and that the scribing direction leaves trace remnants of matrix molecules that may significantly affect conventional implementations of this common assay.
Collapse
Affiliation(s)
- Raymond Tran
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, H4X1N3, CANADA
| | - Corinne Annette Hoesli
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, Quebec, H4X 1N3, CANADA
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, 3610 University Street, Rm 3A, Montreal, Quebec, H4X1N3, CANADA
| |
Collapse
|
7
|
Ma Q, Song Y, Sun W, Cao J, Yuan H, Wang X, Sun Y, Shum HC. Cell-Inspired All-Aqueous Microfluidics: From Intracellular Liquid-Liquid Phase Separation toward Advanced Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903359. [PMID: 32274317 PMCID: PMC7141073 DOI: 10.1002/advs.201903359] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/06/2020] [Indexed: 05/24/2023]
Abstract
Living cells have evolved over billions of years to develop structural and functional complexity with numerous intracellular compartments that are formed due to liquid-liquid phase separation (LLPS). Discovery of the amazing and vital roles of cells in life has sparked tremendous efforts to investigate and replicate the intracellular LLPS. Among them, all-aqueous emulsions are a minimalistic liquid model that recapitulates the structural and functional features of membraneless organelles and protocells. Here, an emerging all-aqueous microfluidic technology derived from micrometer-scaled manipulation of LLPS is presented; the technology enables the state-of-art design of advanced biomaterials with exquisite structural proficiency and diversified biological functions. Moreover, a variety of emerging biomedical applications, including encapsulation and delivery of bioactive gradients, fabrication of artificial membraneless organelles, as well as printing and assembly of predesigned cell patterns and living tissues, are inspired by their cellular counterparts. Finally, the challenges and perspectives for further advancing the cell-inspired all-aqueous microfluidics toward a more powerful and versatile platform are discussed, particularly regarding new opportunities in multidisciplinary fundamental research and biomedical applications.
Collapse
Affiliation(s)
- Qingming Ma
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Yang Song
- Wallace H Coulter Department of Biomedical EngineeringGeorgia Institute of Technology & Emory School of MedicineAtlantaGA30332USA
| | - Wentao Sun
- Center for Basic Medical ResearchTEDA International Cardiovascular HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjin300457China
| | - Jie Cao
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Hao Yuan
- Institute of Applied MechanicsNational Taiwan UniversityTaipei10617Taiwan
| | - Xinyu Wang
- Institute of Thermal Science and TechnologyShandong UniversityJinan250061China
| | - Yong Sun
- Department of PharmaceuticsSchool of PharmacyQingdao UniversityQingdao266021China
| | - Ho Cheung Shum
- Department of Mechanical EngineeringUniversity of Hong KongPokfulam RoadHong Kong
- HKU‐Shenzhen Institute of Research and Innovation (HKU‐SIRI)Shenzhen518000China
| |
Collapse
|
8
|
Hun T, Liu Y, Guo Y, Sun Y, Fan Y, Wang W. A micropore array-based solid lift-off method for highly efficient and controllable cell alignment and spreading. MICROSYSTEMS & NANOENGINEERING 2020; 6:86. [PMID: 34567696 PMCID: PMC8433473 DOI: 10.1038/s41378-020-00191-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/03/2020] [Indexed: 05/04/2023]
Abstract
Interpretation of cell-cell and cell-microenvironment interactions is critical for both advancing knowledge of basic biology and promoting applications of regenerative medicine. Cell patterning has been widely investigated in previous studies. However, the reported methods cannot simultaneously realize precise control of cell alignment and adhesion/spreading with a high efficiency at a high throughput. Here, a novel solid lift-off method with a micropore array as a shadow mask was proposed. Efficient and precise control of cell alignment and adhesion/spreading are simultaneously achieved via an ingeniously designed shadow mask, which contains large micropores (capture pores) in central areas and small micropores (spreading pores) in surrounding areas contributing to capture/alignment and adhesion/spreading control, respectively. The solid lift-off functions as follows: (1) protein micropattern generates through both the capture and spreading pores, (2) cell capture/alignment control is realized through the capture pores, and (3) cell adhesion/spreading is controlled through previously generated protein micropatterns after lift-off of the shadow mask. High-throughput (2.4-3.2 × 104 cells/cm2) cell alignments were achieved with high efficiencies (86.2 ± 3.2%, 56.7 ± 9.4% and 51.1 ± 4.0% for single-cell, double-cell, and triple-cell alignments, respectively). Precise control of cell spreading and applications for regulating cell skeletons and cell-cell junctions were investigated and verified using murine skeletal muscle myoblasts. To the best of our knowledge, this is the first report to demonstrate highly efficient and controllable multicell alignment and adhesion/spreading simultaneously via a simple solid lift-off operation. This study successfully fills a gap in literatures and promotes the effective and reproducible application of cell patterning in the fields of both basic mechanism studies and applied medicine.
Collapse
Affiliation(s)
- Tingting Hun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- Institute of Microelectronics, Peking University, 100871 Beijing, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
| | - Yaoping Liu
- Institute of Microelectronics, Peking University, 100871 Beijing, China
| | - Yechang Guo
- Institute of Microelectronics, Peking University, 100871 Beijing, China
| | - Yan Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100083 Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, 100191 Beijing, China
- State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, 200050 Shanghai, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, 100083 Beijing, China
| | - Wei Wang
- Institute of Microelectronics, Peking University, 100871 Beijing, China
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, 100871 Beijing, China
- Frontiers Science Center for Nano-optoelectronics, Peking University, 100871 Beijing, China
| |
Collapse
|
9
|
Gray ME, Meehan J, Blair EO, Ward C, Langdon SP, Morrison LR, Marland JRK, Tsiamis A, Kunkler IH, Murray A, Argyle D. Biocompatibility of common implantable sensor materials in a tumor xenograft model. J Biomed Mater Res B Appl Biomater 2019; 107:1620-1633. [PMID: 30367816 PMCID: PMC6767110 DOI: 10.1002/jbm.b.34254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/30/2018] [Accepted: 09/09/2018] [Indexed: 12/22/2022]
Abstract
Real-time monitoring of tumor microenvironment parameters using an implanted biosensor could provide valuable information on the dynamic nature of a tumor's biology and its response to treatment. However, following implantation biosensors may lose functionality due to biofouling caused by the foreign body response (FBR). This study developed a novel tumor xenograft model to evaluate the potential of six biomaterials (silicon dioxide, silicon nitride, Parylene-C, Nafion, biocompatible EPOTEK epoxy resin, and platinum) to trigger a FBR when implanted into a solid tumor. Biomaterials were chosen based on their use in the construction of a novel biosensor, designed to measure spatial and temporal changes in intra-tumoral O2 , and pH. None of the biomaterials had any detrimental effect on tumor growth or body weight of the murine host. Immunohistochemistry showed no significant changes in tumor necrosis, hypoxic cell number, proliferation, apoptosis, immune cell infiltration, or collagen deposition. The absence of biofouling supports the use of these materials in biosensors; future investigations in preclinical cancer models are required, with a view to eventual applications in humans. To our knowledge this is the first documented investigation of the effects of modern biomaterials, used in the production of implantable sensors, on tumor tissue after implantation. © 2018 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1620-1633, 2019.
Collapse
Affiliation(s)
- Mark E. Gray
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
- Institute of Sensors, Signals and Systems, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghEH14 4ASUK
| | - Ewen O. Blair
- School of Engineering, Faraday BuildingEdinburghEH9 3JLUK
| | - Carol Ward
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Linda R. Morrison
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
| | | | | | - Ian H. Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Alan Murray
- School of Engineering, Faraday BuildingEdinburghEH9 3JLUK
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
| |
Collapse
|
10
|
Design and Fabrication by Thermal Imprint Lithography and Mechanical Characterization of a Ring-Based PDMS Soft Probe for Sensing and Actuating Forces in Biological Systems. Polymers (Basel) 2019; 11:polym11030424. [PMID: 30960408 PMCID: PMC6473920 DOI: 10.3390/polym11030424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 11/16/2022] Open
Abstract
In this paper, the design, fabrication and mechanical characterization of a novel polydimethylsiloxane (PDMS) soft probe for delivering and sensing forces in biological systems is proposed. On the basis of preliminary finite element (FEM) analysis, the design takes advantage of a suitable core geometry, characterized by a variable spring-like ring. The compliance of probes can be finely set in a wide range to measure forces in the micronewton to nanonewton range. In particular, this is accomplished by properly resizing the ring geometry and/or exploiting the mixing ratio-based elastic properties of PDMS. Fabrication by the thermal imprint lithography method allows fast and accurate tuning of ring sizes and tailoring of the contact section to their targets. By only varying geometrical parameters, the stiffness ranges from 1080 mNm-1 to 50 mNm-1, but by changing the base-curing agent proportion of the elastomer from 10:1 to 30:1, the stiffness drops to 37 mNm-1. With these compliances, the proposed device will provide a new experimental tool for investigating force-dependent biological functions in sensory systems.
Collapse
|
11
|
Khadpekar AJ, Khan M, Sose A, Majumder A. Low Cost and Lithography-free Stamp fabrication for Microcontact Printing. Sci Rep 2019; 9:1024. [PMID: 30705344 PMCID: PMC6355877 DOI: 10.1038/s41598-018-36521-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 11/12/2018] [Indexed: 11/18/2022] Open
Abstract
Microcontact printing (µCP) is a commonly used technique for patterning proteins of interest on substrates. The cells take the shape of these printed patterns. This technique is used to explore the effect of cellular morphology on their various functions such as survival, differentiation, migration, etc. An essential step for µCP is to fabricate a stamp from a silicon mould, prepared using lithography. Lithography is cost intensive and needs a high level of expertise to handle the instrumentation. Also, one stamp can be used to print patterns of one size and shape. Here, to overcome these limitations, we devised a low-cost fabrication technique using readily available objects such as injection needles and polystyrene beads. We patterned the C2C12, myoblasts cells on the shapes printed using lithography-free fabricated stamps. We further exploited the surface curvature of the stamp to vary the size of the print either by changing the applied load and/or the substrate stiffness. We showed that the print dimension could be predicted well by using JKR theory of contact mechanics. Moreover, some innovative improvisations enabled us to print complex shapes, which would be otherwise difficult with conventional lithography technique. We envisage that this low cost and easy to fabricate method will allow many research laboratories with limited resources to perform exciting research which is at present out of their reach.
Collapse
Affiliation(s)
| | - Moin Khan
- Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Abhishek Sose
- Indian Institute of Technology Bombay, Mumbai, 400076, India
| | | |
Collapse
|
12
|
Wu C, Zhu X, Man T, Chung PS, Teitell MA, Chiou PY. Lift-off cell lithography for cell patterning with clean background. LAB ON A CHIP 2018; 18:3074-3078. [PMID: 30183051 DOI: 10.1039/c8lc00726h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We developed a highly efficient method for patterning cells by a novel and simple technique called lift-off cell lithography (LCL). Our approach borrows the key concept of lift-off lithography from microfabrication and utilizes a fully biocompatible process to achieve high-throughput, high-efficiency cell patterning with nearly zero background defects across a large surface area. Using LCL, we reproducibly achieved >70% patterning efficiency for both adherent and non-adherent cells with <1% defects in undesired areas.
Collapse
Affiliation(s)
- Cong Wu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
| | | | | | | | | | | |
Collapse
|
13
|
Li J, Kang L, Yu Y, Long Y, Jeffery JJ, Cai W, Wang X. Study of Long-Term Biocompatibility and Bio-Safety of Implantable Nanogenerators. NANO ENERGY 2018; 51:728-735. [PMID: 30221128 PMCID: PMC6135531 DOI: 10.1016/j.nanoen.2018.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Implantable nanogenerator (i-NG) has shown great promises for enabling self-powered implantable medical devices (IMDs). One essential requirement for practical i-NG applications is its long-term bio-compatibility and bio-safety. This paper presents a systematic study of polydimethylsiloxane (PDMS) and PDMS/Parylene-C packaged Polyvinylidene fluoride (PVDF) NGs implanted inside female ICR (Institute of Cancer Research) mice for up to six months. The PVDF NG had a stable in vitro output of 0.3 V when bended for 7200 cycles and an in vivo output of 0.1V under stretching. Multiple advanced imaging techniques, including computed tomography (CT), ultrasound, and photoacoustic were used to characterize the embedded i-NGs in vivo. The i-NGs kept excellent adhesion to the adjacent muscle surface, and exhibited stable electrical output during the entire examine period. No signs of toxicity or incompatibility were observed from the surrounding tissues, as well as from the whole body functions by pathological analyses and blood and serum test. The PDMS package was also able to effectively insulate the i-NG in biological environment with negligible stray currents at a pA scale. This series of in-vivo and in-vitro study confirmed the biological feasibility of using i-NG in vivo for biomechanical energy harvesting.
Collapse
Affiliation(s)
- Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, WI, 53706, USA
| | - Lei Kang
- Department of Radiology, University of Wisconsin - Madison, WI, 53705, USA
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, 100034, China
| | - Yanhao Yu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, WI, 53706, USA
| | - Yin Long
- Department of Materials Science and Engineering, University of Wisconsin-Madison, WI, 53706, USA
| | - Justin J. Jeffery
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA
| | - Weibo Cai
- Department of Radiology, University of Wisconsin - Madison, WI, 53705, USA
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, 53705, USA
- School of Pharmacy, University of Wisconsin - Madison, Madison, WI, 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, 53705, USA
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, WI, 53706, USA
| |
Collapse
|
14
|
Chang CW, Guan ZY, Kan MY, Lee LW, Chen HY, Kang DY. Vapor-phase synthesis of poly( p -xylylene) membranes for gas separations. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Sanzari I, Callisti M, Grazia AD, Evans DJ, Polcar T, Prodromakis T. Parylene C topographic micropattern as a template for patterning PDMS and Polyacrylamide hydrogel. Sci Rep 2017; 7:5764. [PMID: 28720761 PMCID: PMC5516021 DOI: 10.1038/s41598-017-05434-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/16/2017] [Indexed: 11/09/2022] Open
Abstract
Parylene C is a well-known polymer and it has been mainly employed as a protective layer for implantable electronics. In this paper, we propose a new approach to use Parylene C as a versatile template for patterning soft materials potentially applicable as scaffolds in cardiac tissue engineering (TE). Parylene C substrates were anisotropically patterned through standard lithographic process with hydrophilic channels separating raised hydrophobic strips. Ridges and grooves of the template are 10 µm width and depth ranging from 1 to 17 µm. Polydimethylsiloxane (PDMS) and Polyacrylamide (PAm) hydrogel have been chosen as soft polymers to be moulded. Thanks to their chemical and physical properties PDMS and PAm hydrogel mimic the extracellular matrix (ECM). PDMS was spin coated on micropatterned Parylene C obtaining composite substrates with 460 nm and 1.15 µm high grooves. The Young's modulus of the composite Parylene C/PDMS was evaluated and it was found to be almost half when compared to PDMS. PAm hydrogel was also printed using collagen coated micro-grooved Parylene C. Optical micrographs and fluorescence analysis show the successful topographic and protein pattern transfer on the hydrogel.
Collapse
Affiliation(s)
- Ilaria Sanzari
- Nanoelectronics & Nanotechnology Research Group, Department of Electronics and Computer Science, Faculty of Physical Science and Engineering, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom. .,Department of Electronics and Computer Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom.
| | - Mauro Callisti
- Engineering Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| | - Antonio De Grazia
- Department of Electronics and Computer Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| | - Daniel J Evans
- Nanoelectronics & Nanotechnology Research Group, Department of Electronics and Computer Science, Faculty of Physical Science and Engineering, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom.,Department of Electronics and Computer Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| | - Tomas Polcar
- Engineering Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| | - Themistoklis Prodromakis
- Nanoelectronics & Nanotechnology Research Group, Department of Electronics and Computer Science, Faculty of Physical Science and Engineering, University of Southampton, University Road, Southampton, SO17 1BJ, United Kingdom.,Department of Electronics and Computer Science, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
16
|
Hassanzadeh-Barforoushi A, Shemesh J, Farbehi N, Asadnia M, Yeoh GH, Harvey RP, Nordon RE, Warkiani ME. A rapid co-culture stamping device for studying intercellular communication. Sci Rep 2016; 6:35618. [PMID: 27752145 PMCID: PMC5067516 DOI: 10.1038/srep35618] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 09/26/2016] [Indexed: 02/05/2023] Open
Abstract
Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 μl with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications.
Collapse
Affiliation(s)
| | - Jonathan Shemesh
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nona Farbehi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mohsen Asadnia
- Department of Engineering, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia
| | - Guan Heng Yeoh
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard P. Harvey
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, NSW, 2010; St. Vincent’s Clinical School and School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert E. Nordon
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Majid Ebrahimi Warkiani
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for Nanomedicine, University of New South Wales, Sydney, NSW 2052, Australia; Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- School of Medical Sciences, Edith Cowan University, Joondalup, Perth, WA 6027, Australia
| |
Collapse
|
17
|
Human astrocytic grid networks patterned in parylene-C inlayed SiO2 trenches. Biomaterials 2016; 105:117-126. [PMID: 27521614 DOI: 10.1016/j.biomaterials.2016.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/09/2016] [Accepted: 08/02/2016] [Indexed: 12/30/2022]
Abstract
Recent literature suggests that glia, and in particular astrocytes, should be studied as organised networks which communicate through gap junctions. Astrocytes, however, adhere to most surfaces and are highly mobile cells. In order to study, such organised networks effectively in vitro it is necessary to influence them to pattern to certain substrates whilst being repelled from others and to immobilise the astrocytes sufficiently such that they do not continue to migrate further whilst under study. In this article, we demonstrate for the first time how it is possible to facilitate the study of organised patterned human astrocytic networks using hNT astrocytes in a SiO2 trench grid network that is inlayed with the biocompatible material, parylene-C. We demonstrate how the immobilisation of astrocytes lies in the depth of the SiO2 trench, determining an optimum trench depth and that the optimum patterning of astrocytes is a consequence of the parylene-C inlay and the grid node spacing. We demonstrate high fidelity of the astrocytic networks and demonstrate that functionality of the hNT astrocytes through ATP evoked calcium signalling is also dependent on the grid node spacing. Finally, we demonstrate that the location of the nuclei on the grid nodes is also a function of the grid node spacing. The significance of this work, is to describe a suitable platform to facilitate the study of hNT astrocytes from the single cell level to the network level to improve knowledge and understanding of how communication links to spatial organisation at these higher order scales and trigger in vitro research further in this area with clinical applications in the area of epilepsy, stroke and focal cerebral ischemia.
Collapse
|
18
|
McGuigan AP, Javaherian S. Tissue Patterning: Translating Design Principles from In Vivo to In Vitro. Annu Rev Biomed Eng 2016; 18:1-24. [DOI: 10.1146/annurev-bioeng-083115-032943] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry and
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E5, Canada;
| | | |
Collapse
|
19
|
Chiu YJ, Cai W, Shih YRV, Lian I, Lo YH. A Single-Cell Assay for Time Lapse Studies of Exosome Secretion and Cell Behaviors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3658-66. [PMID: 27254278 PMCID: PMC5023418 DOI: 10.1002/smll.201600725] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 04/18/2016] [Indexed: 05/17/2023]
Abstract
To understand the inhomogeneity of cells in biological systems, there is a growing demand on the capability of characterizing the properties of individual single cells. Since single-cell studies require continuous monitoring of the cell behaviors, an effective single-cell assay that can support time lapsed studies in a high throughput manner is desired. Most currently available single-cell technologies cannot provide proper environments to sustain cell growth and, proliferation of single cells and convenient, noninvasive tests of single-cell behaviors from molecular markers. Here, a highly versatile single-cell assay is presented that can accommodate different cellular types, enable easy and efficient single-cell loading and culturing, and be suitable for the study of effects of in vitro environmental factors in combination with drug screening. One salient feature of the assay is the noninvasive collection and surveying of single-cell secretions at different time points, producing unprecedented insight of single-cell behaviors based on the biomarker signals from individual cells under given perturbations. Above all, the acquired information is quantitative, for example, measured by the number of exosomes each single-cell secretes for a given time period. Therefore, our single-cell assay provides a convenient, low-cost, and enabling tool for quantitative, time lapsed studies of single-cell properties.
Collapse
Affiliation(s)
- Yu-Jui Chiu
- Materials Science and Engineering Program, University of California at San Diego, La Jolla, California, USA
| | - Wei Cai
- Materials Science and Engineering Program, University of California at San Diego, La Jolla, California, USA
| | - Yu-Ru V. Shih
- Department of Bioengineering, University of California at San Diego, La Jolla, California, USA
| | - Ian Lian
- Department of Biology, Lamar University, Beaumont, Texas, USA
| | - Yu-Hwa Lo
- Materials Science and Engineering Program, University of California at San Diego, La Jolla, California, USA
- Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
20
|
Sahni G, Yuan J, Toh YC. Stencil Micropatterning of Human Pluripotent Stem Cells for Probing Spatial Organization of Differentiation Fates. J Vis Exp 2016. [PMID: 27340925 DOI: 10.3791/54097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, have the intrinsic ability to differentiate into all three germ layers. This makes them an attractive cell source for regenerative medicine and experimental modeling of normal and diseased organogenesis. However, the differentiation of hPSCs in vitro is heterogeneous and spatially disordered. Cell micropatterning technologies potentially offer the means to spatially control stem cell microenvironments and organize the resultant differentiation fates. Micropatterning hPSCs needs to take into account the stringent requirements for hPSC survival and maintenance. Here, we describe stencil micropatterning as a method that is highly compatible with hPSCs. hPSC micropatterns are specified by the geometries of the cell stencil through-holes, which physically confine the locations where hPSCs can access and attach to the underlying extracellular matrix-coated substrate. Due to this mode of operation, there is greater flexibility to use substrates that can adequately support hPSCs as compared to other cell micropatterning methods. We also highlight critical steps for the successful generation of hPSC micropatterns. As an example, we demonstrate that stencil micropatterning of hPSCs can be used to modulate spatial polarization of cell-cell and cell-matrix adhesions, which in turn determines mesoendoderm differentiation patterns. This simple and robust method to micropattern hPSCs widens the prospects of establishing experimental models to investigate tissue organization and patterning during early embryonic development.
Collapse
Affiliation(s)
- Geetika Sahni
- Department of Biomedical Engineering, National University of Singapore
| | - Jun Yuan
- Department of Biomedical Engineering, National University of Singapore
| | - Yi-Chin Toh
- Department of Biomedical Engineering, National University of Singapore; Singapore Institute of Neurotechnology (SINAPSE), National University of Singapore;
| |
Collapse
|
21
|
Marei I, Chester A, Carubelli I, Prodromakis T, Trantidou T, Yacoub MH. Assessment of Parylene C Thin Films for Heart Valve Tissue Engineering. Tissue Eng Part A 2015; 21:2504-14. [PMID: 26101808 DOI: 10.1089/ten.tea.2014.0607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Scaffolds are a key component of tissue-engineered heart valves (TEHVs). Several approaches had been adopted in the design of scaffolds using both natural and synthetic resources. We have investigated the suitability of parylene C (PC), a vapor deposited polymeric material, for the use as a scaffold in TEHV. AIMS To evaluate the adsorption of extracellular matrix components onto plasma-activated PC and study the biocompatibility of PC by measuring cellular adhesion, viability, apoptosis, and phenotypic expression of valve endothelial and interstitial cells. Finally, the mechanical properties of PC were compared with those of native aortic valve cusp tissue. METHODS PC slides were plasma activated and then coated with gelatin, type I collagen, or fibronectin. Porcine pulmonary valve endothelial and interstitial cells were then grown on plasma oxidized PC with different types of coatings and their adhesion was observed after 20 h of incubation. Cell viability was tested using the MTS assay, and apoptosis was estimated using TUNEL staining. The mechanical properties of PC and valve tissue were measured using a Bose Mechanical Tester. Finally, cell-seeded PC films were exposed to pulsatile pressure and aortic shear stress, respectively, to test their durability in a dynamic environment. RESULTS Our findings show that collagen and fibronectin could bind to plasma oxidized PC. Both valve endothelial and interstitial cells adhered to protein-coated ECM. PC had a profile of mechanical stiffness and ultimate tensile strength that were comparable with or in excess of those seen in porcine aortic valve cusps. Cells were still attached to PC films after 3 days of exposure to up to 50 mmHg pulsatile pressure or aortic levels of shear stress. CONCLUSION PC is a promising candidate for use as a scaffold in tissue engineering heart valves. Additional studies are required to determine both the durability and long-term performance of cell-seeded PC when in a similar hemodynamic environment to that of the aortic valve.
Collapse
Affiliation(s)
- Isra Marei
- 1 Heart Science Centre, National Heart and Lung Institute , United Kingdom .,2 Imperial College, London, United Kingdom .,3 Qatar Cardiovascular Research Center , Doha, Qatar
| | - Adrian Chester
- 1 Heart Science Centre, National Heart and Lung Institute , United Kingdom .,2 Imperial College, London, United Kingdom
| | - Ivan Carubelli
- 1 Heart Science Centre, National Heart and Lung Institute , United Kingdom
| | - Themistoklis Prodromakis
- 4 Centre for Bio-Inspired Technology, Institute of Biomedical Engineering , Imperial College London, London, United Kingdom .,5 Nano Group, ECS, University of Southampton , Southampton, United Kingdom
| | - Tatiana Trantidou
- 4 Centre for Bio-Inspired Technology, Institute of Biomedical Engineering , Imperial College London, London, United Kingdom .,5 Nano Group, ECS, University of Southampton , Southampton, United Kingdom
| | - Magdi H Yacoub
- 1 Heart Science Centre, National Heart and Lung Institute , United Kingdom .,2 Imperial College, London, United Kingdom
| |
Collapse
|
22
|
Zhao C, Xia L, Zhai D, Zhang N, Liu J, Fang B, Chang J, Lin K. Designing ordered micropatterned hydroxyapatite bioceramics to promote the growth and osteogenic differentiation of bone marrow stromal cells. J Mater Chem B 2015; 3:968-976. [DOI: 10.1039/c4tb01838a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
HAp bioceramics with micropatterned surfaces significantly enhance cell responses.
Collapse
Affiliation(s)
- Cancan Zhao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Lunguo Xia
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Na Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiaqiang Liu
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Bing Fang
- Center of Craniofacial Orthodontics
- Department of Oral and Cranio-maxillofacial Science
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University
- School of Medicine
- Shanghai 200011
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Kaili Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
23
|
Calcagnile P, Blasi L, Rizzi F, Qualtieri A, Athanassiou A, Gogolides E, De Vittorio M. Parylene C surface functionalization and patterning with pH-responsive microgels. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15708-15715. [PMID: 25184311 DOI: 10.1021/am502467y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Parylene C is a polymer well-known for its inertness and chemical resistance, thus ideal for covering and sealing 3D substrates and structures by conformal coating. In the present study, the Parylene C surface is modified by functionalization with pH-responsive poly(methacrylic acid) microgels either over the whole surface, or in a pattern through a poly(dimethylsiloxane) stamp. The surface functionalization consists of two phases: first, an oxygen plasma treatment is used to make the surface superhydrophilic, inducing the formation of polar functional groups and surface topography modifications; then, the plasma-treated samples are functionalized by drop casting a solution of pH-responsive microgels, or in a pattern via microcontact printing of the same solution. While both techniques, namely, drop casting and microcontact printing, are easy to use, fast, and cheap, the microcontact printing was found to provide a more homogeneous functionalization and to be applicable to any shape of substrate. The functionalization effectiveness was tested by the repeated uptake and release of a fluorescent labeled monoclonal CD4 antibody at different pH values, thus suggesting a new sensing approach.
Collapse
Affiliation(s)
- Paola Calcagnile
- Center for Biomolecular Nanotechnologies (CBN) @UNILE, Istituto Italiano di Tecnologia (IIT) Via Barsanti , 73010 Arnesano (LE), Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Tan K, Zhang H, Wen M, Du Z. Effects of the film thickness on the morphology, structure, and crystal orientation behavior of poly(chloro-p-xylylene) films. J Appl Polym Sci 2014. [DOI: 10.1002/app.41394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kaiyuan Tan
- Institute of Chemical Materials, China Academy of Engineering Physics; Mianyang Sichuan 621900 People's Republic of China
| | - Hao Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics; Mianyang Sichuan 621900 People's Republic of China
| | - Maoping Wen
- Institute of Chemical Materials, China Academy of Engineering Physics; Mianyang Sichuan 621900 People's Republic of China
| | - Ziwei Du
- Institute of Chemical Materials, China Academy of Engineering Physics; Mianyang Sichuan 621900 People's Republic of China
| |
Collapse
|
25
|
Rana K, Timmer BJ, Neeves KB. A combined microfluidic-microstencil method for patterning biomolecules and cells. BIOMICROFLUIDICS 2014; 8:056502. [PMID: 25332748 PMCID: PMC4191368 DOI: 10.1063/1.4896231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/11/2014] [Indexed: 06/04/2023]
Abstract
Despite the myriad of soft lithography based micropatterning methods available to researchers, it is still challenging to define small features (10-100 μm) that are spaced far apart (1-10 mm). In this report, we describe a combined microfluidic-microstencil patterning method that can produce multifunctional substrates of small features, O(10 μm), with a large pitch, O(1 mm). In that, we fabricate microstencils using an UV curable polyurethane (Norland Optical Adhesive 81) with dense arrays of 10-100 μm holes. Overlaying arrays of microfluidic channels over these microstencils allow for the control of the spacing between features and the ability to pattern multiple substrates. We show that this method is capable of patterning soluble proteins, fibrillar insoluble collagen, liposomes, cells, and nanoparticles. We demonstrate the utility of the method by measuring platelet adhesion under flow to three adhesive proteins (insoluble fibrillar collagen, laminin, and reconstituted acid solubilized collagen fibers) in a single assay.
Collapse
Affiliation(s)
- Kuldeepsinh Rana
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden , Colorado 80401, USA
| | - Benjamin J Timmer
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden , Colorado 80401, USA
| | - Keith B Neeves
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden , Colorado 80401, USA
| |
Collapse
|
26
|
Ge L, Li Q, Huang Y, Yang S, Ouyang J, Bu S, Zhong W, Liu Z, Xing MMQ. Polydopamine-coated paper-stack nanofibrous membranes enhancing adipose stem cells' adhesion and osteogenic differentiation. J Mater Chem B 2014; 2:6917-6923. [DOI: 10.1039/c4tb00570h] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Trantidou T, Rao C, Barrett H, Camelliti P, Pinto K, Yacoub MH, Athanasiou T, Toumazou C, Terracciano CM, Prodromakis T. Selective hydrophilic modification of Parylene C films: a new approach to cell micro-patterning for synthetic biology applications. Biofabrication 2014; 6:025004. [PMID: 24658120 DOI: 10.1088/1758-5082/6/2/025004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We demonstrate a simple, accurate and versatile method to manipulate Parylene C, a material widely known for its high biocompatibility, and transform it to a substrate that can effectively control the cellular microenvironment and consequently affect the morphology and function of the cells in vitro. The Parylene C scaffolds are fabricated by selectively increasing the material's surface water affinity through lithography and oxygen plasma treatment, providing free bonds for attachment of hydrophilic biomolecules. The micro-engineered constructs were tested as culture scaffolds for rat ventricular fibroblasts and neonatal myocytes (NRVM), toward modeling the unique anisotropic architecture of native cardiac tissue. The scaffolds induced the patterning of extracellular matrix compounds and therefore of the cells, which demonstrated substantial alignment compared to typical unstructured cultures. Ca(2+) cycling properties of the NRVM measured at rates of stimulation 0.5-2 Hz were significantly modified with a shorter time to peak and time to 90% decay, and a larger fluorescence amplitude (p < 0.001). The proposed technique is compatible with standard cell culturing protocols and exhibits long-term pattern durability. Moreover, it allows the integration of monitoring modalities into the micro-engineered substrates for a comprehensive interrogation of physiological parameters.
Collapse
Affiliation(s)
- T Trantidou
- Centre for Bio-Inspired Technology, Institute of Biomedical Engineering, Imperial College London, SW7 2BT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hughes MA, Brennan PM, Bunting AS, Shipston MJ, Murray AF. Cell patterning on photolithographically defined parylene-C: SiO2 substrates. J Vis Exp 2014. [PMID: 24637580 PMCID: PMC4143168 DOI: 10.3791/50929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cell patterning platforms support broad research goals, such as construction of predefined in vitro neuronal networks and the exploration of certain central aspects of cellular physiology. To easily combine cell patterning with Multi-Electrode Arrays (MEAs) and silicon-based ‘lab on a chip’ technologies, a microfabrication-compatible protocol is required. We describe a method that utilizes deposition of the polymer parylene-C on SiO2 wafers. Photolithography enables accurate and reliable patterning of parylene-C at micron-level resolution. Subsequent activation by immersion in fetal bovine serum (or another specific activation solution) results in a substrate in which cultured cells adhere to, or are repulsed by, parylene or SiO2 regions respectively. This technique has allowed patterning of a broad range of cell types (including primary murine hippocampal cells, HEK 293 cell line, human neuron-like teratocarcinoma cell line, primary murine cerebellar granule cells, and primary human glioma-derived stem-like cells). Interestingly, however, the platform is not universal; reflecting the importance of cell-specific adhesion molecules. This cell patterning process is cost effective, reliable, and importantly can be incorporated into standard microfabrication (chip manufacturing) protocols, paving the way for integration of microelectronic technology.
Collapse
Affiliation(s)
- Mark A Hughes
- Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh;
| | - Paul M Brennan
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital
| | - Andrew S Bunting
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh
| | - Mike J Shipston
- Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh
| | - Alan F Murray
- School of Engineering, Institute for Integrated Micro and Nano Systems, The University of Edinburgh
| |
Collapse
|
29
|
Rodriguez N, Desai RA, Trappmann B, Baker BM, Chen CS. Micropatterned multicolor dynamically adhesive substrates to control cell adhesion and multicellular organization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1327-35. [PMID: 24401172 PMCID: PMC3983373 DOI: 10.1021/la404037s] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/24/2013] [Indexed: 05/24/2023]
Abstract
We present a novel technique to examine cell-cell interactions and directed cell migration using micropatterned substrates of three distinct regions: an adhesive region, a nonadhesive region, and a dynamically adhesive region switched by addition of a soluble factor to the medium. Combining microcontact printing with avidin-biotin capture chemistry, we pattern nonadhesive regions of avidin that become adhesive through the capture of biotinylated fibronectin. Our strategy overcomes several limitations of current two-color dynamically adhesive substrates by incorporating a third, permanently nonadhesive region. Having three spatially and functionally distinct regions allows for the realization of more complex configurations of cellular cocultures as well as intricate interface geometries between two cell populations for diverse heterotypic cell-cell interaction studies. We can now achieve spatial control over the path and direction of migration in addition to temporal control of the onset of migration, enabling studies that better recapitulate coordinated multicellular migration and organization in vitro. We confirm that cellular behavior is unaltered on captured biotinylated fibronectin as compared to printed fibronectin by examining the cells' ability to spread, form adhesions, and migrate. We demonstrate the versatility of this approach in studies of migration and cellular cocultures, and further highlight its utility by probing Notch-Delta juxtacrine signaling at a patterned interface.
Collapse
Affiliation(s)
- Natalia
M. Rodriguez
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
| | - Ravi A. Desai
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Britta Trappmann
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
| | - Brendon M. Baker
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
| | - Christopher S. Chen
- Department
of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- Department
of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States
| |
Collapse
|
30
|
Abstract
A unique live-cell printing technique, termed "Block-Cell-Printing" (BloC-Printing), allows for convenient, precise, multiplexed, and high-throughput printing of functional single-cell arrays. Adapted from woodblock printing techniques, the approach employs microfluidic arrays of hook-shaped traps to hold cells at designated positions and directly transfer the anchored cells onto various substrates. BloC-Printing has a minimum turnaround time of 0.5 h, a maximum resolution of 5 µm, close to 100% cell viability, the ability to handle multiple cell types, and efficiently construct protrusion-connected single-cell arrays. The approach enables the large-scale formation of heterotypic cell pairs with controlled morphology and allows for material transport through gap junction intercellular communication. When six types of breast cancer cells are allowed to extend membrane protrusions in the BloC-Printing device for 3 h, multiple biophysical characteristics of cells--including the protrusion percentage, extension rate, and cell length--are easily quantified and found to correlate well with their migration levels. In light of this discovery, BloC-Printing may serve as a rapid and high-throughput cell protrusion characterization tool to measure the invasion and migration capability of cancer cells. Furthermore, primary neurons are also compatible with BloC-Printing.
Collapse
|
31
|
Kim MY, Li DJ, Pham LK, Wong BG, Hui EE. Microfabrication of High-Resolution Porous Membranes for Cell Culture. J Memb Sci 2014; 452:460-469. [PMID: 24567663 DOI: 10.1016/j.memsci.2013.11.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Microporous membranes are widely utilized in cell biology to study cell-cell signaling and cell migration. However, the thickness and low porosity of commercial track-etched membranes limit the quality of cell imaging and the degree of cell-cell contact that can be achieved on such devices. We employ photolithography-based microfabrication to achieve porous membranes with pore diameter as small as 0.9 μm, up to 40% porosity, and less than 5% variation in pore size. Through the use of a soap release layer, membranes as thin as 1 μm can be achieved. The thin membranes minimally disrupt contrast enhancement optics, thus allowing good quality imaging of unlabeled cells under white light, unlike commercial membranes. In addition, the polymer membrane materials display low autofluorescence even after patterning, facilitating high quality fluorescence microscopy. Finally, confocal imaging suggests that substantial cell-cell contact is possible through the pores of these thin membranes. This membrane technology can enhance existing uses of porous membranes in cell biology as well as enable new types of experiments.
Collapse
Affiliation(s)
- Monica Y Kim
- Department of Biomedical Engineering, University of California, Irvine 3120 Natural Sciences II, Irvine, CA 92697-2715 +1-949-824-8723 (O)
- +1-949-824-1727 (F)
| | - David Jiang Li
- Department of Biomedical Engineering, University of California, Irvine 3120 Natural Sciences II, Irvine, CA 92697-2715 +1-949-824-8723 (O)
- +1-949-824-1727 (F)
| | - Long K Pham
- Department of Biomedical Engineering, University of California, Irvine 3120 Natural Sciences II, Irvine, CA 92697-2715 +1-949-824-8723 (O)
- +1-949-824-1727 (F)
| | - Brandon G Wong
- Department of Biomedical Engineering, University of California, Irvine 3120 Natural Sciences II, Irvine, CA 92697-2715 +1-949-824-8723 (O)
- +1-949-824-1727 (F)
| | - Elliot E Hui
- Department of Biomedical Engineering, University of California, Irvine 3120 Natural Sciences II, Irvine, CA 92697-2715 +1-949-824-8723 (O)
- +1-949-824-1727 (F)
| |
Collapse
|
32
|
Bae H, Chu H, Edalat F, Cha JM, Sant S, Kashyap A, Ahari AF, Kwon CH, Nichol JW, Manoucheri S, Zamanian B, Wang Y, Khademhosseini A. Development of functional biomaterials with micro- and nanoscale technologies for tissue engineering and drug delivery applications. J Tissue Eng Regen Med 2014; 8:1-14. [PMID: 22711442 PMCID: PMC4199309 DOI: 10.1002/term.1494] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 01/07/2012] [Accepted: 01/24/2012] [Indexed: 12/13/2022]
Abstract
Micro- and nanotechnologies have emerged as potentially effective fabrication tools for addressing the challenges faced in tissue engineering and drug delivery. The ability to control and manipulate polymeric biomaterials at the micron and nanometre scale with these fabrication techniques has allowed for the creation of controlled cellular environments, engineering of functional tissues and development of better drug delivery systems. In tissue engineering, micro- and nanotechnologies have enabled the recapitulation of the micro- and nanoscale detail of the cell's environment through controlling the surface chemistry and topography of materials, generating 3D cellular scaffolds and regulating cell-cell interactions. Furthermore, these technologies have led to advances in high-throughput screening (HTS), enabling rapid and efficient discovery of a library of materials and screening of drugs that induce cell-specific responses. In drug delivery, controlling the size and geometry of drug carriers with micro- and nanotechnologies have allowed for the modulation of parametres such as bioavailability, pharmacodynamics and cell-specific targeting. In this review, we introduce recent developments in micro- and nanoscale engineering of polymeric biomaterials, with an emphasis on lithographic techniques, and present an overview of their applications in tissue engineering, HTS and drug delivery.
Collapse
Affiliation(s)
- Hojae Bae
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Partners Research Building, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hunghao Chu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Faramarz Edalat
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Partners Research Building, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jae Min Cha
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Partners Research Building, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shilpa Sant
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Partners Research Building, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aditya Kashyap
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Partners Research Building, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology Zurich (ETH), 8092 Zurich, Switzerland
| | - Amir F. Ahari
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Partners Research Building, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chung Hoon Kwon
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Partners Research Building, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason W. Nichol
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Partners Research Building, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sam Manoucheri
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Partners Research Building, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Behnam Zamanian
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Partners Research Building, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Partners Research Building, 65 Landsdowne Street, Room 252, Cambridge, MA 02139, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
33
|
Lee D, Yang S. On-chip parylene-C microstencil for simple-to-use patterning of proteins and cells on polydimethylsiloxane. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2658-2668. [PMID: 23477911 DOI: 10.1021/am4001166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polydimethylsiloxane (PDMS) is widely used as a substrate in miniaturized devices, given its suitability for execution of biological and chemical assays. Here, we present a patterning approach for PDMS, which uses an on-chip Parylene-C microstencil to pattern proteins and cells. To implement the on-chip Parylene-C microstencil, we applied SiOx-like nanoparticle layers using atmospheric-pressure plasma-enhanced chemical vapor deposition (AP-PECVD) of tetraethyl orthosilicate (TEOS) mixed with oxygen. The complete removal of Parylene-C from PDMS following application of SiOx-like nanoparticle layers was demonstrated by various surface characterization analysis, including optical transparency, surface morphology, chemical composition, and peel-off force. Furthermore, the effects of the number of AP-PECVD treatments were investigated. Our approach overcomes the tendency of Parylene-C to peel off incompletely from PDMS, which has limited its use with PDMS to date. The on-chip Parylene-C microstencil approach that is based on this Parylene-C peel-off process on PDMS can pattern proteins with 2-μm resolution and cells at single-cell resolution with a vacancy ratio as small as 10%. This provides superior user-friendliness and a greater degree of geometrical freedom than previously described approaches that require meticulous care in handling of stencil. Thus, this patterning method could be applied in various research fields to pattern proteins or cells on the flexible PDMS substrate.
Collapse
Affiliation(s)
- Donghee Lee
- Department of Medical System Engineering, School of Mechatronics, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 500-712, Republic of Korea
| | | |
Collapse
|
34
|
Ashby WJ, Zijlstra A. Established and novel methods of interrogating two-dimensional cell migration. Integr Biol (Camb) 2013; 4:1338-50. [PMID: 23038152 DOI: 10.1039/c2ib20154b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regulation of cell motility is central to living systems. Consequently, cell migration assays are some of the most frequently used in vitro assays. This article provides a comprehensive, detailed review of in vitro cell migration assays both currently in use and possible with existing technology. Emphasis is given to two-dimensional migration assays using densely organized cells such as the scratch assay. Assays are compared and categorized in an outline format according to their primary biological readout and physical parameters. The individual benefits of the various methods and quantification strategies are also discussed. This review provides an in-depth, structured overview of in vitro cell migration assays as a means of enabling the reader to make informed decisions among the growing number of options available for their specific cell migration application.
Collapse
Affiliation(s)
- William J Ashby
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
35
|
Warkiani ME, Bhagat AAS, Khoo BL, Han J, Lim CT, Gong HQ, Fane AG. Isoporous micro/nanoengineered membranes. ACS NANO 2013; 7:1882-1904. [PMID: 23442009 DOI: 10.1021/nn305616k] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Isoporous membranes are versatile structures with numerous potential and realized applications in various fields of science such as micro/nanofiltration, cell separation and harvesting, controlled drug delivery, optics, gas separation, and chromatography. Recent advances in micro/nanofabrication techniques and material synthesis provide novel methods toward controlling the detailed microstructure of membrane materials, allowing fabrication of membranes with well-defined pore size and shape. This review summarizes the current state-of-the-art for isoporous membrane fabrication using different techniques, including microfabrication, anodization, and advanced material synthesis. Various applications of isoporous membranes, such as protein filtration, pathogen isolation, cell harvesting, biosensing, and drug delivery, are also presented.
Collapse
Affiliation(s)
- Majid Ebrahimi Warkiani
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore.
| | | | | | | | | | | | | |
Collapse
|
36
|
Raos BJ, Unsworth CP, Costa JL, Rohde CA, Doyle CS, Bunting AS, Delivopoulos E, Murray AF, Dickinson ME, Simpson MC, Graham ES. Infra-red laser ablative micromachining of parylene-C on SiO2 substrates for rapid prototyping, high yield, human neuronal cell patterning. Biofabrication 2013; 5:025006. [PMID: 23466346 DOI: 10.1088/1758-5082/5/2/025006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cell patterning commonly employs photolithographic methods for the micro fabrication of structures on silicon chips. These require expensive photo-mask development and complex photolithographic processing. Laser based patterning of cells has been studied in vitro and laser ablation of polymers is an active area of research promising high aspect ratios. This paper disseminates how 800 nm femtosecond infrared (IR) laser radiation can be successfully used to perform laser ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes (derived from the human teratocarcinoma cell line (hNT)) whilst 248 nm nanosecond ultra-violet laser radiation produces photo-oxidization of the parylene-C and destroys cell patterning. In this work, we report the laser ablation methods used and the ablation characteristics of parylene-C for IR pulse fluences. Results follow that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells. We disseminate the variation in yield of patterned hNT astrocytes on parylene-C with laser pulse spacing, pulse number, pulse fluence and parylene-C strip width. The findings demonstrate how laser ablative micromachining of parylene-C on SiO2 substrates can offer an accessible alternative for rapid prototyping, high yield cell patterning with broad application to multi-electrode arrays, cellular micro-arrays and microfluidics.
Collapse
Affiliation(s)
- B J Raos
- Department of Engineering Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Ross AM, Lahann J. Surface engineering the cellular microenvironment via patterning and gradients. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/polb.23275] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Hosseinkhani M, Shirazi R, Rajaei F, Mahmoudi M, Mohammadi N, Abbasi M. Engineering of the embryonic and adult stem cell niches. IRANIAN RED CRESCENT MEDICAL JOURNAL 2013; 15:83-92. [PMID: 23682319 PMCID: PMC3652509 DOI: 10.5812/ircmj.7541] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 01/08/2013] [Indexed: 12/15/2022]
Abstract
CONTEXT Stem cells have the potential to generate a renewable source of cells for regenerative medicine due to their ability to self-renew and differentiate to various functional cell types of the adult organism. The extracellular microenvironment plays a pivotal role in controlling stem cell fate responses. Therefore, identification of appropriate environmental stimuli that supports cellular proliferation and lineage-specific differentiation is critical for the clinical application of the stem cell therapies. EVIDENCE ACQUISITION Traditional methods for stem cells culture offer limited manipulation and control of the extracellular microenvironment. Micro engineering approaches are emerging as powerful tools to control stem cell-microenvironment interactions and for performing high-throughput stem cell experiments. RESULTS In this review, we provided an overview of the application of technologies such as surface micropatterning, microfluidics, and engineered biomaterials for directing stem cell behavior and determining the molecular cues that regulate cell fate decisions. CONCLUSIONS Stem cells have enormous potential for therapeutic and pharmaceutical applications, because they can give rise to various cell types. Despite their therapeutic potential, many challenges, including the lack of control of the stem cell microenvironment remain. Thus, a greater understanding of stem cell biology that can be used to expand and differentiate embryonic and adult stem cells in a directed manner offers great potential for tissue repair and regenerative medicine.
Collapse
Affiliation(s)
- Mohsen Hosseinkhani
- Department of Anatomy, Qazvin University of Medical Science, Qazvin, IR Iran
- Corresponding author: Mohsen Hosseinkhani, Department of Anatomy, Qazvin University of Medical Science, Qazvin, IR Iran. Tel: +98-2188274683, Fax: +98-2188274683, E-mail:
| | - Reza Shirazi
- Department of Anatomy, Qazvin University of Medical Science, Qazvin, IR Iran
| | - Farzad Rajaei
- Department of Anatomy, Qazvin University of Medical Science, Qazvin, IR Iran
| | - Masoud Mahmoudi
- Department of Anatomy, Qazvin University of Medical Science, Qazvin, IR Iran
| | - Navid Mohammadi
- Department of Community Medicine, Tehran University of Medical Science, Tehran, IR Iran
| | - Mahnaz Abbasi
- Department of Rheumatology, Qazvin University of Medical Science, Qazvin, IR Iran
| |
Collapse
|
39
|
Ornoff DM, Wang Y, Allbritton NL. Characterization of freestanding photoresist films for biological and MEMS applications. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2013; 23:025009. [PMID: 24072957 PMCID: PMC3780457 DOI: 10.1088/0960-1317/23/2/025009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Photoresists are light-sensitive resins used in a variety of technological applications. In most applications, however, photoresists are generally used as sacrificial layers or a structural layer that remains on the fabrication substrate. Thin layers of patterned 1002F photoresist were fabricated and released to form a freestanding film. Films of thickness in the range of 4.5-250 μm were patterned with through-holes to a resolution of 5 μm and an aspect ratio of up to 6:1. Photoresist films could be reliably released from the substrate after a 12-hour immersion in water. The Young's modulus of a 50 μm-thick film was 1.43 ± 0.20 GPa. Use of the films as stencils for patterning sputtered metal onto a surface was demonstrated. These 1002F stencils were used multiple times without deterioration in feature quality. Furthermore, the films provided biocompatible, transparent surfaces of low autofluorescence on which cells could be grown. Culture of cells on a film with an isolated small pore enabled a single cell to be accessed through the underlying channel and loaded with exogenous molecules independently of nearby cells. Thus 1002F photoresist was patterned into thin, flexible, free-standing films that will have numerous applications in the biological and MEMS fields.
Collapse
Affiliation(s)
- D M Ornoff
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599 ; Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599
| | | | | |
Collapse
|
40
|
Cell-Based Biosensors: Electrical Sensing in Microfluidic Devices. Diagnostics (Basel) 2012; 2:83-96. [PMID: 26859401 PMCID: PMC4665553 DOI: 10.3390/diagnostics2040083] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/13/2012] [Accepted: 12/03/2012] [Indexed: 01/08/2023] Open
Abstract
Cell-based biosensors provide new horizons for medical diagnostics by adopting complex recognition elements such as mammalian cells in microfluidic devices that are simple, cost efficient and disposable. This combination renders possible a new range of applications in the fields of diagnostics and personalized medicine. The review looks at the most recent developments in cell-based biosensing microfluidic systems with electrical and electrochemical transduction, and relevance to medical diagnostics.
Collapse
|
41
|
Underhill GH, Peter G, Chen CS, Bhatia SN. Bioengineering Methods for Analysis of Cells In Vitro. Annu Rev Cell Dev Biol 2012; 28:385-410. [DOI: 10.1146/annurev-cellbio-101011-155709] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Galie Peter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Christopher S. Chen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sangeeta N. Bhatia
- Division of Health Sciences and Technology,
- Department of Electrical Engineering and Computer Science,
- The Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
- Division of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
42
|
Masters T, Engl W, Weng ZL, Arasi B, Gauthier N, Viasnoff V. Easy fabrication of thin membranes with through holes. Application to protein patterning. PLoS One 2012; 7:e44261. [PMID: 22952944 PMCID: PMC3432078 DOI: 10.1371/journal.pone.0044261] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Accepted: 07/31/2012] [Indexed: 01/16/2023] Open
Abstract
Since protein patterning on 2D surfaces has emerged as an important tool in cell biology, the development of easy patterning methods has gained importance in biology labs. In this paper we present a simple, rapid and reliable technique to fabricate thin layers of UV curable polymer with through holes. These membranes are as easy to fabricate as microcontact printing stamps and can be readily used for stencil patterning. We show how this microfabrication scheme allows highly reproducible and highly homogeneous protein patterning with micron sized resolution on surfaces as large as 10 cm(2). Using these stencils, fragile proteins were patterned without loss of function in a fully hydrated state. We further demonstrate how intricate patterns of multiple proteins can be achieved by stacking the stencil membranes. We termed this approach microserigraphy.
Collapse
Affiliation(s)
- Thomas Masters
- MechanoBiology Institute of Singapore, Singapore, Singapore
| | - Wilfried Engl
- MechanoBiology Institute of Singapore, Singapore, Singapore
| | - Zhe L. Weng
- MechanoBiology Institute of Singapore, Singapore, Singapore
| | - Bakya Arasi
- MechanoBiology Institute of Singapore, Singapore, Singapore
| | - Nils Gauthier
- MechanoBiology Institute of Singapore, Singapore, Singapore
| | - Virgile Viasnoff
- MechanoBiology Institute of Singapore, Singapore, Singapore
- CNRS, ESPCI Paristech, Paris, France
| |
Collapse
|
43
|
Ashby WJ, Wikswo JP, Zijlstra A. Magnetically attachable stencils and the non-destructive analysis of the contribution made by the underlying matrix to cell migration. Biomaterials 2012; 33:8189-203. [PMID: 22940214 DOI: 10.1016/j.biomaterials.2012.07.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 07/08/2012] [Indexed: 11/26/2022]
Abstract
Cell migration is controlled by the integration of numerous distinct components. Consequently, the analysis of cell migration is advancing towards comprehensive, multifaceted in vitro models. To accurately evaluate the contribution of an underlying substrate to cell motility in complex cellular environments we developed a migration assay using magnetically attachable stencils (MAts). When attached to a culture surface, MAts create a defined void in the cell monolayer without disrupting the cells or damaging the underlying substrate. Quantitative analysis of migration into this void reveals the substrate's contribution to migration. The magnetically-guided placement of a microfabricated stencil allows for full experimental control of the substrate on which migration is analyzed. MAts enable the evaluation of intact, defined matrix, and make it possible to analyze migration on unique surfaces such as micropatterned proteins, nano-textured surfaces, and pliable hydrogels. These studies also revealed that mechanical disruption, including the damage that occurs during scratch assays, diminishes migration and confounds the analysis of individual cell behavior. Analysis of migration on increasingly complex biomaterials reveals that the contribution of the underlying matrix depends not only on its molecular composition but also its organization and the context in which it is presented.
Collapse
Affiliation(s)
- William J Ashby
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, C2104A Medical Center North, 1161 21st Ave. S., Nashville, TN 37232, USA
| | | | | |
Collapse
|
44
|
Unsworth CP, Graham ES, Delivopoulos E, Murray AF. First human hNT astrocytes patterned to single cell resolution on parylene-C/silicon dioxide substrates. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2012; 2011:3605-8. [PMID: 22255119 DOI: 10.1109/iembs.2011.6090604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In our previous work we developed a successful protocol to pattern the human hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO(2) substrates. This communication, reports how we have successfully managed to pattern the supportive cell to the neuron, the hNT astrocyte, on such substrates. Here we disseminate the nanofabrication, cell differentiation and cell culturing protocols necessary to successfully pattern the first human hNT astrocytes to single cell resolution on parylene-C/SiO(2) substrates. This is performed for varying parylene strip widths providing excellent contrast to the SiO(2) substrate and elegant single cell isolation at 10 μm strip widths. The breakthrough in patterning human cells on a silicon chip has widespread implications and is valuable as a platform technology as it enables a detailed study of the human brain at the cellular and network level.
Collapse
Affiliation(s)
- Charles P Unsworth
- Department of Engineering Science, The University of Auckland, Auckland 1010, New Zealand.
| | | | | | | |
Collapse
|
45
|
Zorlutuna P, Annabi N, Camci-Unal G, Nikkhah M, Cha JM, Nichol JW, Manbachi A, Bae H, Chen S, Khademhosseini A. Microfabricated biomaterials for engineering 3D tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:1782-804. [PMID: 22410857 PMCID: PMC3432416 DOI: 10.1002/adma.201104631] [Citation(s) in RCA: 279] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Indexed: 05/04/2023]
Abstract
Mimicking natural tissue structure is crucial for engineered tissues with intended applications ranging from regenerative medicine to biorobotics. Native tissues are highly organized at the microscale, thus making these natural characteristics an integral part of creating effective biomimetic tissue structures. There exists a growing appreciation that the incorporation of similar highly organized microscale structures in tissue engineering may yield a remedy for problems ranging from vascularization to cell function control/determination. In this review, we highlight the recent progress in the field of microscale tissue engineering and discuss the use of various biomaterials for generating engineered tissue structures with microscale features. In particular, we will discuss the use of microscale approaches to engineer the architecture of scaffolds, generate artificial vasculature, and control cellular orientation and differentiation. In addition, the emergence of microfabricated tissue units and the modular assembly to emulate hierarchical tissues will be discussed.
Collapse
Affiliation(s)
- Pinar Zorlutuna
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Unsworth CP, Holloway H, Delivopoulos E, Murray AF, Simpson MC, Dickinson ME, Graham ES. Patterning and detailed study of human hNT astrocytes on parylene-C/silicon dioxide substrates to the single cell level. Biomaterials 2011; 32:6541-50. [PMID: 21641029 DOI: 10.1016/j.biomaterials.2011.05.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 05/10/2011] [Indexed: 01/21/2023]
Abstract
It is estimated that the adult human brain contains 100 billion neurons with 5-10 times as many astrocytes. Although it has been generally considered that the astrocyte is a simple supportive cell to the neuron, recent research has revealed new functionality of the astrocyte in the form of information transfer to neurons of the brain. In our previous work we developed a protocol to pattern the hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO(2) substrates. In this work, we report how we have managed to pattern hNT astrocytes, on parylene-C/SiO(2) substrates to single cell resolution. This article disseminates the nanofabrication and cell culturing steps necessary for the patterning of such cells. In addition, it reports the necessary strip lengths and strip width dimensions of parylene-C that encourage high degrees of cellular coverage and single cell isolation for this cell type. The significance in patterning the hNT astrocyte on silicon chip is that it will help enable single cell and network studies into the undiscovered functionality of this interesting cell, thus, contributing to closer pathological studies of the human brain.
Collapse
Affiliation(s)
- Charles P Unsworth
- Department of Engineering Science, The University of Auckland, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
47
|
Yamaguchi M, Ikeda K, Suzuki M, Kiyohara A, Kudoh SN, Shimizu K, Taira T, Ito D, Uchida T, Gohara K. Cell patterning using a template of microstructured organosilane layer fabricated by vacuum ultraviolet light lithography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:12521-12532. [PMID: 21899360 DOI: 10.1021/la202904g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Micropatterning techniques have become increasingly important in cellular biology. Cell patterning is achieved by various methods. Photolithography is one of the most popular methods, and several light sources (e.g., excimer lasers and mercury lamps) are used for that purpose. Vacuum ultraviolet (VUV) light that can be produced by an excimer lamp is advantageous for fabricating material patterns, since it can decompose organic materials directly and efficiently without photoresist or photosensitive materials. Despite the advantages, applications of VUV light to pattern biological materials are few. We have investigated cell patterning by using a template of a microstructured organosilane layer fabricated by VUV lithography. We first made a template of a microstructured organosilane layer by VUV lithography. Cell adhesive materials (poly(d-lysine) and polyethyleneimine) were chemically immobilized on the organosilane template, producing a cell adhesive material pattern. Primary rat cardiac and neuronal cells were successfully patterned by culturing them on the pattern substrate. Long-term culturing was attained for up to two weeks for cardiac cells and two months for cortex cells. We have discussed the reproducibility of cell patterning and made suggestions to improve it.
Collapse
Affiliation(s)
- Munehiro Yamaguchi
- Advanced Industrial Science and Technology (AIST), 2-17-2-1, Tsukisamu-Higashi, Sapporo, 062-8517 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Witters D, Vergauwe N, Vermeir S, Ceyssens F, Liekens S, Puers R, Lammertyn J. Biofunctionalization of electrowetting-on-dielectric digital microfluidic chips for miniaturized cell-based applications. LAB ON A CHIP 2011; 11:2790-4. [PMID: 21720645 DOI: 10.1039/c1lc20340a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this paper we report on the controlled biofunctionalization of the hydrophobic layer of electrowetting-on-dielectric (EWOD) based microfluidic chips with the aim to execute (adherent) cell-based assays. The biofunctionalization technique involves a dry lift-off method with an easy to remove Parylene-C mask and allows the creation of spatially controlled micropatches of biomolecules in the Teflon-AF(®) layer of the chip. Compared to conventional methods, this method (i) is fully biocompatible; and (ii) leaves the hydrophobicity of the chip surface unaffected by the fabrication process, which is a crucial feature for digital microfluidic chips. In addition, full control of the geometry and the dimensions of the micropatches is achieved, allowing cells to be arrayed as cell clusters or as single cells on the digital microfluidic chip surface. The dry Parylene-C lift-off technique proves to have great potential for precise biofunctionalization of digital microfluidic chips, and can enhance their use for heterogeneous bio-assays that are of interest in various biomedical applications.
Collapse
Affiliation(s)
- Daan Witters
- BIOSYST-MeBioS, Willem de Croylaan 42, Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|
49
|
Tekin H, Ozaydin-Ince G, Tsinman T, Gleason KK, Langer R, Khademhosseini A, Demirel MC. Responsive microgrooves for the formation of harvestable tissue constructs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5671-9. [PMID: 21449596 PMCID: PMC3098811 DOI: 10.1021/la200183x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Given its biocompatibility, elasticity, and gas permeability, poly(dimethylsiloxane) (PDMS) is widely used to fabricate microgrooves and microfluidic devices for three-dimensional (3D) cell culture studies. However, conformal coating of complex PDMS devices prepared by standard microfabrication techniques with desired chemical functionality is challenging. This study describes the conformal coating of PDMS microgrooves with poly(N-isopropylacrylamide) (PNIPAAm) by using initiated chemical vapor deposition (iCVD). These microgrooves guided the formation of tissue constructs from NIH-3T3 fibroblasts that could be retrieved by the temperature-dependent swelling property and hydrophilicity change of the PNIPAAm. The thickness of swollen PNIPAAm films at 24 °C was approximately 3 times greater than at 37 °C. Furthermore, PNIPAAm-coated microgroove surfaces exhibit increased hydrophilicity at 24 °C (contact angle θ = 30° ± 2) compared to 37 °C (θ = 50° ± 1). Thus PNIPAAm film on the microgrooves exhibits responsive swelling with higher hydrophilicity at room temperature, which could be used to retrieve tissue constructs. The resulting tissue constructs were the same size as the grooves and could be used as modules in tissue fabrication. Given its ability to form and retrieve cell aggregates and its integration with standard microfabrication, PNIPAAm-coated PDMS templates may become useful for 3D cell culture applications in tissue engineering and drug discovery.
Collapse
Affiliation(s)
- Halil Tekin
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Building 76-661, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Gozde Ozaydin-Ince
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Tonia Tsinman
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Karen K. Gleason
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Building 76-661, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Prof. Melik C. Demirel - Corresponding-Author (), Prof. Ali Khademhosseini - Corresponding-Author (), Prof. Robert Langer - Corresponding-Author ()
| | - Ali Khademhosseini
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, 02138
- Prof. Melik C. Demirel - Corresponding-Author (), Prof. Ali Khademhosseini - Corresponding-Author (), Prof. Robert Langer - Corresponding-Author ()
| | - Melik C. Demirel
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA, 02138
- Materials Research Institute and Department of Engineering Science, Pennsylvania State University, University Park, PA 16802
- Prof. Melik C. Demirel - Corresponding-Author (), Prof. Ali Khademhosseini - Corresponding-Author (), Prof. Robert Langer - Corresponding-Author ()
| |
Collapse
|
50
|
Kaji H, Camci-Unal G, Langer R, Khademhosseini A. Engineering systems for the generation of patterned co-cultures for controlling cell-cell interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1810:239-50. [PMID: 20655984 PMCID: PMC3026923 DOI: 10.1016/j.bbagen.2010.07.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 06/08/2010] [Accepted: 07/09/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Inside the body, cells lie in direct contact or in close proximity to other cell types in a tightly controlled architecture that often regulates the resulting tissue function. Therefore, tissue engineering constructs that aim to reproduce the architecture and the geometry of tissues will benefit from methods of controlling cell-cell interactions with microscale resolution. SCOPE OF THE REVIEW We discuss the use of microfabrication technologies for generating patterned co-cultures. In addition, we categorize patterned co-culture systems by cell type and discuss the implications of regulating cell-cell interactions in the resulting biological function of the tissues. MAJOR CONCLUSIONS Patterned co-cultures are a useful tool for fabricating tissue engineered constructs and for studying cell-cell interactions in vitro, because they can be used to control the degree of homotypic and heterotypic cell-cell contact. In addition, this approach can be manipulated to elucidate important factors involved in cell-matrix interactions. GENERAL SIGNIFICANCE Patterned co-culture strategies hold significant potential to develop biomimetic structures for tissue engineering. It is expected that they would create opportunities to develop artificial tissues in the future. This article is part of a Special Issue entitled Nanotechnologies - Emerging Applications in Biomedicine.
Collapse
Affiliation(s)
- Hirokazu Kaji
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Bioengineering and Robotics, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Gulden Camci-Unal
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Robert Langer
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| |
Collapse
|