1
|
Velasquillo C, Silva-Bermudez P, Vázquez N, Martínez A, Espadín A, García-López J, Medina-Vega A, Lecona H, Pichardo-Baena R, Ibarra C, Shirai K. In vitro
and in vivo
assessment of lactic acid-modified chitosan scaffolds for potential treatment of full-thickness burns. J Biomed Mater Res A 2017; 105:2875-2891. [DOI: 10.1002/jbm.a.36132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 05/26/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Cristina Velasquillo
- Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra; Av. México Xochimilco No. 289 Col. Arenal de Guadalupe C.P. 14389 Ciudad de México México
| | - Phaedra Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra; Av. México Xochimilco No. 289 Col. Arenal de Guadalupe C.P. 14389 Ciudad de México México
| | - Nadia Vázquez
- Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra; Av. México Xochimilco No. 289 Col. Arenal de Guadalupe C.P. 14389 Ciudad de México México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México. Ciudad Universitaria; No. 3000, C.P. 04360 Ciudad de México México
| | - Alan Martínez
- Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra; Av. México Xochimilco No. 289 Col. Arenal de Guadalupe C.P. 14389 Ciudad de México México
| | - Andres Espadín
- Departamento de Biotecnología, Laboratorio de Biopolímeros; Universidad Autónoma Metropolitana Unidad Iztapalapa; San Rafael Atlixco No. 186 Col. Vicentina C.P. 09340 Ciudad de México México
| | - Julieta García-López
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra; Av. México Xochimilco No. 289 Col. Arenal de Guadalupe C.P. 14389 Ciudad de México México
| | - Antonio Medina-Vega
- Cirugía Pediátrica, Instituto Nacional de Pediatría; Insurgentes Sur No. 3700, Letra C, CP. 04530 Ciudad de México México
| | - Hugo Lecona
- Bioterio y Cirugía Experimental, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra; Av. México Xochimilco No. 289 Col. Arenal de Guadalupe C.P. 14389 Ciudad de México México
| | - Raúl Pichardo-Baena
- Servicio de Anatomía Patológica y Microscopia Electrónica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra; Av. México Xochimilco No. 289 Col. Arenal de Guadalupe C.P.14389 Ciudad de México México
| | - Clemente Ibarra
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra; Av. México Xochimilco No. 289 Col. Arenal de Guadalupe C.P. 14389 Ciudad de México México
| | - Keiko Shirai
- Departamento de Biotecnología, Laboratorio de Biopolímeros; Universidad Autónoma Metropolitana Unidad Iztapalapa; San Rafael Atlixco No. 186 Col. Vicentina C.P. 09340 Ciudad de México México
| |
Collapse
|
2
|
Demina TS, Gilman AB, Zelenetskii AN. Application of high-energy chemistry methods to the modification of the structure and properties of polylactide (a review). HIGH ENERGY CHEMISTRY 2017. [DOI: 10.1134/s0018143917040038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Lopez-Donaire ML, Santerre JP. Surface modifying oligomers used to functionalize polymeric surfaces: Consideration of blood contact applications. J Appl Polym Sci 2014. [DOI: 10.1002/app.40328] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- M. Luisa Lopez-Donaire
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Ontario Canada
- Faculty of Dentistry; University of Toronto; Ontario M5G 1G6 Canada
| | - J. Paul Santerre
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Ontario Canada
- Faculty of Dentistry; University of Toronto; Ontario M5G 1G6 Canada
| |
Collapse
|
4
|
Li J, Kong M, Cheng XJ, Dang QF, Zhou X, Wei YN, Chen XG. Preparation of biocompatible chitosan grafted poly(lactic acid) nanoparticles. Int J Biol Macromol 2012; 51:221-7. [PMID: 22609681 DOI: 10.1016/j.ijbiomac.2012.05.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 05/03/2012] [Accepted: 05/09/2012] [Indexed: 11/24/2022]
Abstract
Chitosan grafted poly(lactic acid) (CS-g-PLA) copolymer was synthesized and characterized by FT-IR and elemental analysis. The degree of poly(lactic acid) substitution on chitosan was 1.90 ± 0.04%. The critical aggregation concentration of CS-g-PLA in distilled water was 0.17 mg/ml. Three methods of preparing CS-g-PLA nanoparticles (diafiltration method, ultrasonication method and diafiltration combined with ultrasonication method) were investigated and their effect was compared. Of the three methods, diafiltration combined with ultrasonication method produced nanoparticles with optimal property in terms of size and morphology, with size ranging from 133 to 352 nm and zeta potential from 36 to 43 mV. Also, the hemolytic activity and cytotoxicity of the CS-g-PLA based nanoparticles was tested, and results showed low hemolysis rate (<5%) and no significant cytotoxicity effect of these nanoparticles.
Collapse
Affiliation(s)
- Jing Li
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | | | | | | | | | | | | |
Collapse
|
5
|
Protein adsorption and cytocompatibility of poly(L-lactic acid) surfaces modified with biomacromolecules. J Appl Polym Sci 2012. [DOI: 10.1002/app.36976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Jiao Y, Xu J, Zhou C. Effect of Ammonia Plasma Treatment on the Properties and Cytocompatibility of a Poly(L-Lactic Acid) Film Surface. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:763-77. [DOI: 10.1163/092050611x560690] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yanpeng Jiao
- a Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, P. R. China
| | - Jiqing Xu
- b Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, P. R. China
| | - Changren Zhou
- c Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, P. R. China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Jinan University, Guangzhou 510632, P. R. China.
| |
Collapse
|
7
|
Meng ZX, Zeng QT, Sun ZZ, Xu XX, Wang YS, Zheng W, Zheng YF. Immobilizing natural macromolecule on PLGA electrospun nanofiber with surface entrapment and entrapment-graft techniques. Colloids Surf B Biointerfaces 2012; 94:44-50. [PMID: 22326650 DOI: 10.1016/j.colsurfb.2012.01.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 12/30/2011] [Accepted: 01/13/2012] [Indexed: 11/30/2022]
Abstract
Surface entrapment is a convenient method to immobilize the natural macromolecules on the surface of synthetic polymers. In this study, the gelatin modified and sodium alginate/gelatin modified PLGA nanofibrous membranes were fabricated via surface entrapment and entrapment-graft techniques. The surface morphology of the each single modified PLGA nanofiber was as smooth as that of untreated PLGA nanofibers. The results of water angle contact measurements and tensile tests showed that the surface entrapment cannot only improve the hydrophilicity but also enhance mechanical properties of the modified nanofibrous membranes. In addition, the sodium alginate/gelatin modified electrospun PLGA nanofibrous membrane exhibited higher hydrophilicity and better biocompatibility than the simply gelatin modified PLGA nanofibrous membrane, which suggested the surface entrapment is a facile and efficient approach to surface modification for electrospun nanofibours membranes.
Collapse
Affiliation(s)
- Z X Meng
- Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Yeh HY, Lin JC. Surface phosphorylation for polyelectrolyte complex of chitosan and its sulfonated derivative: surface analysis, blood compatibility and adipose derived stem cell contact properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2011; 23:233-50. [PMID: 21244720 DOI: 10.1163/092050610x547001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many studies have tried to look for the application of chitosan in tissue engineering since its structure is similar to glycoaminoglycans, the main components of the extracellular matrix. Previous studies had indicated that the incorporation of sulfonic or phosphonic functionalities would be beneficial to the growth of certain cells. However, no study has explored the effect of incorporation of both above-mentioned anionic functionalities onto the chitosan structure. In this study, we have surface-phosphorylated the polyelectrolyte film formed by chitosan and water-soluble sulfonated chitosan with the aim to incorporate phosphonic and sulfonic functionalities onto the film surface. Surface analyses by ESCA and ATR-FT-IR have shown that these two functional groups have been successfully grafted onto the surface, and that the ratio of P/S was dependent upon the weight ratio of phosphorylation agents added. Blood compatibility evaluation indicated that phosphorylated polyelectrolyte complexes extended the plasma recalcification time as compared to non-treated chitosan and direct-phosphorylated chitosan film. In addition, these phosphorylated polyelectrolyte complexes showed similar or slightly less platelet reactivity than the non-phosphorylated counterpart. In contrast, significant platelet activation and adhesion were noted on the direct-phosphorylated chitosan. This implicated the incorporation of sulfonic acid onto the phosphorylated surface can increase the platelet compatibility. An adipose-derived stem cell incubation study has demonstrated that the incorporation of both phosphonic and sulfonic acid functionalities onto the chitosan surface can enhance the stem cell growth. Therefore, the phosphorylated polyelectrolyte complexes were not only blood compatible but also stem cell compatible, and could be a novel biomaterial in tissue-engineering applications.
Collapse
Affiliation(s)
- Hsi-Yi Yeh
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, ROC
| | | |
Collapse
|
9
|
The biocompatability of mesoporous inorganic–organic hybrid resin films with ionic and hydrophilic characteristics. Biomaterials 2010; 31:2517-25. [DOI: 10.1016/j.biomaterials.2009.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 12/03/2009] [Indexed: 11/22/2022]
|
10
|
|
11
|
Zhang L, Tang P, Zhang W, Xu M, Wang Y. Effect of Chitosan as a Dispersant on Collagen–Hydroxyapatite Composite Matrices. Tissue Eng Part C Methods 2010; 16:71-9. [PMID: 19364274 DOI: 10.1089/ten.tec.2008.0688] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lihai Zhang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Peifu Tang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Wei Zhang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Meng Xu
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| | - Yan Wang
- Department of Orthopaedics, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Jiao Y, Zhou C, Li L, Ding S, Lu L, Luo B, Li H. Protein adsorption on the poly(L-lactic acid) surface modified by chitosan and its derivatives. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0266-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Zhang H, Lin CY, Hollister SJ. The interaction between bone marrow stromal cells and RGD-modified three-dimensional porous polycaprolactone scaffolds. Biomaterials 2009; 30:4063-9. [PMID: 19487019 DOI: 10.1016/j.biomaterials.2009.04.015] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 04/13/2009] [Indexed: 10/20/2022]
Abstract
We previously established a simple method to immobilize the Arg-Gly-Asp (RGD) peptide on polycaprolactone (PCL) two-dimensional film surfaces that significantly improved bone marrow stromal cell (BMSC) adhesion to these films. The current work extends this modification strategy to three-dimensional (3D) PCL scaffolds to investigate BMSC attachment, cellular distribution and cellularity, signal transduction and survival on the modified PCL scaffold compared to those on the untreated ones. The results demonstrated that treatment of 3D PCL scaffold surfaces with 1,6-hexanediamine introduced the amino functional groups onto the porous PCL scaffold homogenously as detected by a ninhydrin staining method. Followed by the cross-linking reaction, RGDC peptide was successfully immobilized on the surface of PCL scaffold. Although the static seeding method used in this study caused heterogeneous cell distribution, the RGD-modified PCL scaffold still demonstrated the improved BMSC attachment and cellular distribution in the scaffold. More importantly, the integrin-mediated signal transduction FAK-PI3K-Akt pathway was significantly up-regulated by RGD modification and a subsequent increase in cell survival and growth was found in the modified scaffold. The present study introduces an easy method to immobilize RGD peptide on the 3D porous PCL scaffold and provides further evidence that modification of 3D PCL scaffolds with RGD peptides elicits specific cellular responses and improves the final cell-biomaterial interaction.
Collapse
Affiliation(s)
- Huina Zhang
- Scaffold Tissue Engineering Group, Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
14
|
Li X, Xie J, Yuan X, Xia Y. Coating electrospun poly(epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:14145-14150. [PMID: 19053657 DOI: 10.1021/la802984a] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrospinning was employed to fabricate fibrous scaffolds of poly(epsilon-caprolactone) in the form of nonwoven mats. The surfaces of the fibers were then coated with gelatin through layer-by-layer self-assembly, followed by functionalization with a uniform coating of bonelike calcium phosphate by mineralization in the 10 times concentrated simulated body fluid for 2 h. Transmission electron microscopy, water contact angle, and scanning electron microscopy measurements confirmed the presence of gelatin and calcium phosphate coating layers, and X-ray diffraction results suggested that the deposited mineral phase was a mixture of dicalcium phosphate dehydrate (a precursor to apatite) and apatite. It was also demonstrated that the incorporation of gelatin promoted nucleation and growth of calcium phosphate. The porous scaffolds could mimic the structure, composition, and biological function of bone extracellular matrix. It was found that the preosteoblastic MC3T3-E1 cells attached, spread, and proliferated well with a flat morphology on the mineralized scaffolds. The proliferation rate of the cells on the mineralized scaffolds was significantly higher (by 1.9-fold) than that on the pristine fibrous scaffolds after culture for 7 days. These results indicated that the hybrid system containing poly(epsilon-caprolactone), gelatin, and calcium phosphate could serve as a new class of biomimetic scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Xiaoran Li
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | |
Collapse
|