1
|
Schiera V, Carfì Pavia F, La Carrubba V, Brucato V, Dintcheva NT. Poly-l-Lactic Acid Scaffolds Additivated with Rosmarinic Acid: A Multi-Analytical Approach to Assess The Morphology, Thermal Behavior, and Hydrophilicity. Polymers (Basel) 2024; 16:1672. [PMID: 38932024 PMCID: PMC11207696 DOI: 10.3390/polym16121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
This study aims to demonstrate the possibility of incorporating a natural antioxidant biomolecule into polymeric porous scaffolds. To this end, Poly-l-Lactic Acid (PLLA) scaffolds were produced using the Thermally Induced Phase Separation (TIPS) technique and additivated with different amounts of rosmarinic acid (RA). The scaffolds, with a diameter of 4 mm and a thickness of 2 mm, were characterized with a multi-analytical approach. Specifically, Scanning Electron Microscopy analyses demonstrated the presence of an interconnected porous network, characterized by a layer of RA at the level of the pore's surfaces. Moreover, the presence of RA biomolecules increased the hydrophilic nature of the sample, as evidenced by the decrease in the contact angle with water from 128° to 76°. The structure of PLLA and PLLA containing RA molecules has been investigated through DSC and XRD analyses, and the obtained results suggest that the crystallinity decreases when increasing the RA content. This approach is cost-effective, and it can be customized with different biomolecules, offering the possibility of producing porous polymeric structures containing antioxidant molecules. These scaffolds meet the requirements of tissue engineering and could offer a potential solution to reduce inflammation associated with scaffold implantation, thus improving tissue regeneration.
Collapse
Affiliation(s)
- Veronica Schiera
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| | | | | | | | - Nadka Tz. Dintcheva
- Dipartimento di Ingegneria, Università degli Studi di Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy
| |
Collapse
|
2
|
Rosiak N, Tykarska E, Cielecka-Piontek J. Amorphous Pterostilbene Delivery Systems Preparation-Innovative Approach to Preparation Optimization. Pharmaceutics 2023; 15:pharmaceutics15041231. [PMID: 37111715 PMCID: PMC10145601 DOI: 10.3390/pharmaceutics15041231] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of our research was to improve the solubility and antioxidant activity of pterostilbene (PTR) by developing a novel amorphous solid dispersion (ASD) with Soluplus® (SOL). DSC analysis and mathematical models were used to select the three appropriate PTR and SOL weight ratios. The amorphization process was carried out by a low-cost and green approach involving dry milling. An XRPD analysis confirmed the full amorphization of systems in 1:2 and 1:5 weight ratios. One glass transition (Tg) observed in DSC thermograms confirmed the complete miscibility of the systems. The mathematical models indicated strong heteronuclear interactions. SEM micrographs suggest dispersed PTR within the SOL matrix and a lack of PTR crystallinity, and showed that after the amorphization process, PTR-SOL systems had a smaller particle size and larger surface area compared with PTR and SOL. An FT-IR analysis confirmed that hydrogen bonds were responsible for stabilizing the amorphous dispersion. HPLC studies showed no decomposition of PTR after the milling process. PTR's apparent solubility and antioxidant activity after introduction into ASD increased compared to the pure compound. The amorphization process improved the apparent solubility by ~37-fold and ~28-fold for PTR-SOL, 1:2 and 1:5 w/w, respectively. The PTR-SOL 1:2 w/w system was preferred due to it having the best solubility and antioxidant activity (ABTS: IC50 of 56.389 ± 0.151 µg·mL-1 and CUPRAC: IC0.5 of 82.52 ± 0.88 µg·mL-1).
Collapse
Affiliation(s)
- Natalia Rosiak
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 6 Grunwaldzka St., 60-780 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland
| |
Collapse
|
3
|
Fabrication and Characterization of Electrospun Poly(Caprolactone)/Tannic Acid Scaffold as an Antibacterial Wound Dressing. Polymers (Basel) 2023; 15:polym15030593. [PMID: 36771894 PMCID: PMC9921954 DOI: 10.3390/polym15030593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Antibacterial wound dressings are promising materials to treat infected skin wounds, which greatly affect the wound-healing process. In this study, tannic acid (TA), a natural antibacterial agent, was successfully loaded by electrospinning into poly(caprolactone) (PCL) fibers in a high concentration. It is suggested that the addition of TA was beneficial for producing uniform and continuous PCL nanofibers. Hydrogen bonds existed between the PCL and TA molecules based on the analysis of FTIR spectra and DSC results. The interactions and continuous network improved the mechanical properties of the scaffolds. Meanwhile, increasing the amount of TA also enhanced the hydrophilicity and water absorption capacity of the scaffold, both of which are beneficial for accelerating wound healing. Moreover, a burst release of the TA in the initial stage and a controlled, steady release behavior over time contributed to the highly antibacterial properties of the PCL/TA scaffolds. The fabrication of the composite scaffold supplies a facile, efficient, and controllable approach to address the issue of antibacterial treatment in wound dressing.
Collapse
|
4
|
Amorphous Solid Dispersion of Hesperidin with Polymer Excipients for Enhanced Apparent Solubility as a More Effective Approach to the Treatment of Civilization Diseases. Int J Mol Sci 2022; 23:ijms232315198. [PMID: 36499518 PMCID: PMC9740072 DOI: 10.3390/ijms232315198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
The present study reports amorphous solid dispersions (ASDs) of hesperidin (Hes) prepared by ball milling to improve its solubility and apparent solubility over the unmodified compound. The carriers were Soluplus® (Sol), alginate sodium (SA), and hydroxypropylmethylcellulose (HPMC). XRPD analysis confirmed full amorphization of all binary systems in 1:5 w/w ratio. One glass transition (Tg) observed in DSC thermograms of hesperidin:Soluplus® (Hes:Sol) and hesperidin:HPMC (Hes:HPMC) 1:5 w/w systems confirmed complete miscibility. The mathematical model (Gordon-Taylor equation) indicates that the obtained amorphous systems are characterized by weak interactions. The FT-IR results confirmed that hydrogen bonds are responsible for stabilizing the amorphous state of Hes. Stability studies indicate that the strength of these bonds is insufficient to maintain the amorphous state of Hes under stress conditions (25 °C and 60 °C 76.4% RH). HPLC analysis suggested that the absence of degradation products indicates safe hesperidin delivery systems. The solubility and apparent solubility were increased in all media (water, phosphate buffer pH 6.8 and HCl (0.1 N)) compared to the pure compound. Our study showed that all obtained ASDs are promising systems for Hes delivery, wherein Hes:Sol 1:5 w/w has the best solubility (about 300-fold in each media) and apparent solubility (about 70% in phosphate buffer pH 6.8 and 63% in HCl).
Collapse
|
5
|
|
6
|
Nagarajan S, Woo EM. Unique Optical Periodicity Assembly of Discrete Dendritic Lamellae and Pyramidal Single Crystals in Poly(ε-caprolactone). ACS APPLIED MATERIALS & INTERFACES 2021; 13:41200-41208. [PMID: 34423644 DOI: 10.1021/acsami.1c09099] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A unique zig-zag banded morphology poly(ε-caprolactone) (PCL), crystallized at high Tc = 46-47 °C and confined in thin films (<1 μm), is found to be assembled of parallel cogrowth of two totally crystal entities: edge-on dendritic lamellar protrusion from surfaces and flat-on pyramidal single crystals. The alternating PCL optical bands are assembled as flat-on single crystals aligned as straight dendrites as a valley band in series with edge-on branches as a ridge band, leading to a unique assembly mechanism of periodic optical rings where these two crystal pieces are assembled in series. Detailed assembly mechanisms are proposed to explain how the composite bands in the PCL aggregates are correlated to optical birefringence periodicity. By techniques of melt crystallization via periodic species drainage, PCL single crystals could be prepared and tailor-made to a variety of nanopatterns as templates for applications.
Collapse
Affiliation(s)
- Selvaraj Nagarajan
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Eamor M Woo
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
7
|
Koopmann AK, Schuster C, Torres-Rodríguez J, Kain S, Pertl-Obermeyer H, Petutschnigg A, Hüsing N. Tannin-Based Hybrid Materials and Their Applications: A Review. Molecules 2020; 25:E4910. [PMID: 33114152 PMCID: PMC7660623 DOI: 10.3390/molecules25214910] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
Tannins are eco-friendly, bio-sourced, natural, and highly reactive polyphenols. In the past decades, the understanding of their versatile properties has grown substantially alongside a continuously broadening of the tannins' application scope. In particular, recently, tannins have been increasingly investigated for their interaction with other species in order to obtain tannin-based hybrid systems that feature advanced and/or novel properties. Furthermore, in virtue of the tannins' chemistry and their high reactivity, they either physicochemically or physically interact with a wide variety of different compounds, including metals and ceramics, as well as a number of organic species. Such hybrid or hybrid-like systems allow the preparation of various advanced nanomaterials, featuring improved performances compared to the current ones. Consequently, these diverse-shaped materials have potential use in wastewater treatment or catalysis, as well as in some novel fields such as UV-shielding, functional food packaging, and biomedicine. Since these kinds of tannin-based hybrids represent an emerging field, thus far no comprehensive overview concerning their potential as functional chemical building blocks is available. Hence, this review aims to provide a structured summary of the current state of research regarding tannin-based hybrids, detailed findings on the chemical mechanisms as well as their fields of application.
Collapse
Affiliation(s)
- Ann-Kathrin Koopmann
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Straße 2A, 5020 Salzburg, Austria
| | - Christian Schuster
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Straße 2A, 5020 Salzburg, Austria
| | - Jorge Torres-Rodríguez
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Straße 2A, 5020 Salzburg, Austria
| | - Stefan Kain
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
| | - Heidi Pertl-Obermeyer
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Straße 2A, 5020 Salzburg, Austria
- Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
| | - Alexander Petutschnigg
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Forest Products Technology & Timber Constructions Department, Salzburg University of Applied Sciences, Markt 136a, 5431 Kuchl, Austria
| | - Nicola Hüsing
- Salzburg Center for Smart Materials, Jakob-Haringer-Straße 2a, 5020 Salzburg, Austria; (A.-K.K.); (C.S.); (J.T.-R.); (S.K.); (H.P.-O.); (A.P.)
- Department of Chemistry and Physics of Materials, Paris-Lodron-University Salzburg, Jakob-Haringer-Straße 2A, 5020 Salzburg, Austria
| |
Collapse
|
8
|
Li L, Huang Q, Li H, Sun X, Yan S. Effect of hydrogen bonding strength on the morphology and polymorphism of poly(butylene adipate). POLYMER CRYSTALLIZATION 2020. [DOI: 10.1002/pcr2.10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Li Li
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing China
- School of Chemistry and Chemical EngineeringHeze University Heze China
| | - Qigu Huang
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing China
| | - Huihui Li
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical Technology Beijing China
- Key Laboratory of Rubber‐Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber‐plasticsQingdao University of Science and Technology Qingdao China
| |
Collapse
|
9
|
Acevedo F, Hermosilla J, Sanhueza C, Mora-Lagos B, Fuentes I, Rubilar M, Concheiro A, Alvarez-Lorenzo C. Gallic acid loaded PEO-core/zein-shell nanofibers for chemopreventive action on gallbladder cancer cells. Eur J Pharm Sci 2018; 119:49-61. [PMID: 29630938 DOI: 10.1016/j.ejps.2018.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 01/30/2023]
Abstract
Coaxial electrospinning was used to develop gallic acid (GA) loaded poly(ethylene oxide)/zein nanofibers in order to improve its chemopreventive action on human gallbladder cancer cells. Using a Plackett-Burman design, the effects of poly(ethylene oxide) and zein concentration and applied voltage on the diameter and morphology index of nanofibers were investigated. Coaxial nanofibers were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). GA loading efficiency as high as 77% was obtained under optimal process conditions. The coaxial nanofibers controlled GA release in acid and neutral pH medium. Cytotoxicity and reactive oxygen species (ROS) production on gallbladder cancer cell lines GB-d1 and NOZ in the presence of GA-nanofibers were assessed. GA-nanofibers triggered an increase in the cellular cytotoxicity compared with free GA on GB-d1 and NOZ cells. Statistically significant differences were found in ROS levels of GA-nanofibers compared with free GA on NOZ cells. Differently, ROS production on GB-d1 cell line was similar. Based on these results, the coaxial nanofibers obtained in this study under optimized operational conditions offer an alternative for the development of a GA release system with improved chemopreventive action on gallbladder cancer cells.
Collapse
Affiliation(s)
- Francisca Acevedo
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco, Chile.
| | - Jeyson Hermosilla
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Claudia Sanhueza
- Doctoral Program in Science of Natural Resources, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Barbara Mora-Lagos
- Center of Excellence in Traslational Medicine, Faculty of Medicine, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Doctoral Program in Sciences, Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Casilla 54-D, Temuco, Chile
| | - Irma Fuentes
- Centro de Materiales Poliméricos y Macromoléculas, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Alemania 01090, Temuco, Chile; Centro de Investigación Multidisciplinario de La Araucanía (CIMA), Universidad Autónoma de Chile, Avenida Alemania #01090, Temuco, Chile
| | - Mónica Rubilar
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Casilla 54-D, Temuco, Chile; Department of Chemical Engineering, Faculty of Engineering and Sciences, Casilla 54-D, Universidad de La Frontera, Temuco, Chile
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+D Pharma Group (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15872 Santiago de Compostela, Spain
| |
Collapse
|
10
|
Liang H, Pei Y, Li J, Xiong W, He Y, Liu S, Li Y, Li B. pH-Degradable antioxidant nanoparticles based on hydrogen-bonded tannic acid assembly. RSC Adv 2016. [DOI: 10.1039/c6ra02527g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hydrogen-bonded polyphenol-based assemblies have attracted increasing interest for biomedical applications.
Collapse
Affiliation(s)
- Hongshan Liang
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Yaqiong Pei
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Jing Li
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Wenfei Xiong
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Yun He
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Shilin Liu
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Yan Li
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University)
| | - Bin Li
- College of Food Science and Technology
- Huazhong Agricultural University
- Wuhan 430070
- China
- Hubei Collaborative Innovation Centre for Industrial Fermentation
| |
Collapse
|
11
|
Ghitescu RE, Popa AM, Popa VI, Rossi RM, Fortunato G. Encapsulation of polyphenols into pHEMA e-spun fibers and determination of their antioxidant activities. Int J Pharm 2015; 494:278-87. [PMID: 26278487 DOI: 10.1016/j.ijpharm.2015.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 01/08/2023]
Abstract
This study reports on the development of electrospun poly(2-hydroxyethyl methacrylate) (pHEMA) fibers loaded with synthetic and natural antioxidants in the form of selected types of polyphenols such as vanillic, gallic, syringic acids, catechin or natural spruce bark extract to investigate their release behavior in terms of antioxidant activities. Homogenous fiber morphologies were obtained at specified concentration ranges of pHEMA within the spinning solutions, exhibiting fiber diameters in the range from 0.5±0.1 μm to 1.9±0.5 μm. The addition of polyphenols resulted in an increase of fiber diameters with increasing concentration of additives. This is attributed to the effect of hydrogen bonding between the active ingredients and the polymeric matrix, increasing shear viscosities and thus hindering effective drawing processes during fiber formation. Polyphenol release measurement gave high release rates in a first phase followed by a smooth release at long term. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, used to monitor antioxidant activity, showed that polyphenols had retained their activity after incorporation into the pHEMA nanofibers. Furthermore, it was demonstrated that the encapsulation of polyphenols in pHEMA nanofibers can delay to a high extent their degradation induced by environmental factors.
Collapse
Affiliation(s)
- Roxana-Elena Ghitescu
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Protection and Physiology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland; Gheorghe Asachi Technical University, Faculty of Chemical Engineering and Environmental Protection, 71 A Mangeron Blvd., Iasi 700050, Romania
| | - Ana-Maria Popa
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Protection and Physiology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Valentin I Popa
- Gheorghe Asachi Technical University, Faculty of Chemical Engineering and Environmental Protection, 71 A Mangeron Blvd., Iasi 700050, Romania
| | - Rene M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Protection and Physiology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Giuseppino Fortunato
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Protection and Physiology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland.
| |
Collapse
|
12
|
Puerta-Gomez AF, Castell-Perez ME. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems. J Food Sci 2015; 80:E1209-17. [PMID: 25922272 DOI: 10.1111/1750-3841.12874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 03/15/2015] [Indexed: 01/27/2023]
Abstract
The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%-OSA-modified DWxCn, WPI, 3%-OSA-modified DWxRc, α-L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid-like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.
Collapse
Affiliation(s)
- Alex F Puerta-Gomez
- Dept. of Biological and Agricultural Engineering, Texas A&M Univ., College Station, TX, 77843-2117, USA
| | - M Elena Castell-Perez
- Biological and Agricultural Engineering Dept, Texas A&M Univ., College Station, TX, 77843-2117, USA
| |
Collapse
|
13
|
Jiang Z, Qiu Z. Unusual crystallization behavior of biodegradable poly(ethylene adipate) based nanocomposites induced by graphene oxide. RSC Adv 2015. [DOI: 10.1039/c5ra10332k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GO increases both the nucleation density and the growth rate of PEA spherulites in nanocomposites.
Collapse
Affiliation(s)
- Zinan Jiang
- State Key Laboratory of Chemical Resource Engineering
- MOE Key Laboratory of Carbon Fiber and Functional Polymers
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhaobin Qiu
- State Key Laboratory of Chemical Resource Engineering
- MOE Key Laboratory of Carbon Fiber and Functional Polymers
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
14
|
Coradini K, Lima FO, Oliveira CM, Chaves PS, Athayde ML, Carvalho LM, Beck RCR. Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. Eur J Pharm Biopharm 2014; 88:178-85. [PMID: 24780440 DOI: 10.1016/j.ejpb.2014.04.009] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/02/2014] [Accepted: 04/04/2014] [Indexed: 12/15/2022]
Abstract
Resveratrol and curcumin are natural antioxidants found in the human diet that have been used in the prevention and treatment of different diseases associated with oxidative stress. Aiming to improve the antioxidant effects of resveratrol and curcumin, lipid-core nanocapsules containing the combination of both polyphenols were developed. Physicochemical characteristics were evaluated and compared to the formulations containing each polyphenol individually. Co-encapsulation did not influence nanotechnological characteristics, and all formulations presented mean diameter around 200 nm, low polydispersity index, and encapsulation efficiency close to 100%. Nanoencapsulation increases the photostability of resveratrol and curcumin, and co-encapsulation improves resveratrol photostability. The in vitro antioxidant activity of polyphenols against HO radicals was enhanced by nanoencapsulation, and a better effect was observed after their co-nanoencapsulation. Also, nanocapsules exhibited controlled release profile, for both polyphenols. The results showed that the strategy to co-encapsulate resveratrol and curcumin is a promising approach to improve the performance of medicines used to prevent and treat diseases associated with oxidative stress.
Collapse
Affiliation(s)
- K Coradini
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - F O Lima
- Departamento de Química, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - C M Oliveira
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - P S Chaves
- Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - M L Athayde
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - L M Carvalho
- Departamento de Química, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
| | - R C R Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
15
|
Lee LT, Wu MC, Lee MH. Novel miscible blends of biodegradable polymer and biocompatible polyphenol acquired from natural source. JOURNAL OF POLYMER RESEARCH 2013. [DOI: 10.1007/s10965-013-0282-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Su CC, Wang SC, Chen WJ, Lee LT. Phase Compatibilization through Chemical Exchange Reactions in Blends of Copolyesters with Poly(hydroxyether of bisphenol A) upon Annealing. Ind Eng Chem Res 2013. [DOI: 10.1021/ie401371y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chean-Cheng Su
- Department of Chemical and Materials
Engineering, National University of Kaohsiung, Number 700, Kaohsiung University Road, Nan-Tzu District, Kaohsiung
81148, Taiwan
| | - Shiang-Ching Wang
- Department of Chemical and Materials
Engineering, National University of Kaohsiung, Number 700, Kaohsiung University Road, Nan-Tzu District, Kaohsiung
81148, Taiwan
| | - Wan-Jing Chen
- Department
of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Li-Ting Lee
- Department
of Materials Science and Engineering, Feng Chia University, Number 100 Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| |
Collapse
|
17
|
Wu H, Qiu Z. A Comparative Study of Crystallization, Melting Behavior, and Morphology of Biodegradable Poly(ethylene adipate) and Poly(ethylene adipate-co-5 mol % ethylene succinate). Ind Eng Chem Res 2012. [DOI: 10.1021/ie301968f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huina Wu
- State Key Laboratory of Chemical Resource
Engineering, Key Laboratory of Carbon Fiber and Functional Polymers,
Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People’s
Republic of China
| | - Zhaobin Qiu
- State Key Laboratory of Chemical Resource
Engineering, Key Laboratory of Carbon Fiber and Functional Polymers,
Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, People’s
Republic of China
| |
Collapse
|
18
|
Wu H, Qiu Z. Synthesis, crystallization kinetics and morphology of novel poly(ethylene succinate-co-ethylene adipate) copolymers. CrystEngComm 2012. [DOI: 10.1039/c2ce06629g] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Liang Y, Yang F, Qiu Z. Miscibility and crystallization behavior of biodegradable poly(ε-caprolactone)/tannic acid blends. J Appl Polym Sci 2011. [DOI: 10.1002/app.35430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Yang F, Qiu Z. Miscibility and Crystallization Behavior of Biodegradable Poly(butylene succinate)/Tannic Acid Blends. Ind Eng Chem Res 2011. [DOI: 10.1021/ie201480e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fang Yang
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhaobin Qiu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Nurkhamidah S, Woo EM, Huang IH, Su CC. Phase behavior and crystal morphology in poly(ethylene succinate) biodegradably modified with tannin. Colloid Polym Sci 2011. [DOI: 10.1007/s00396-011-2479-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Huang IH, Chang L, Woo EM. Tannin Induced Single Crystalline Morphology in Poly(ethylene succinate). MACROMOL CHEM PHYS 2011. [DOI: 10.1002/macp.201100005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Costa E, Coelho M, Ilharco LM, Aguiar-Ricardo A, Hammond PT. Tannic Acid Mediated Suppression of PNIPAAm Microgels Thermoresponsive Behavior. Macromolecules 2011. [DOI: 10.1021/ma1025016] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eunice Costa
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Margarida Coelho
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Laura M. Ilharco
- Centro de Química-Física Molecular and IN-Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Ana Aguiar-Ricardo
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Paula T. Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Amorphous phase behavior and crystalline morphology in blends of poly(vinyl methyl ether) with isomeric polyesters: poly(hexamethylene adipate) and poly(ɛ-caprolactone). Polym J 2010. [DOI: 10.1038/pj.2010.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Yen KC, Woo EM, Tashiro K. Amorphous phase and crystalline morphology in blend of two polymorphic polyesters: Poly(hexamethylene terephthalate) and poly(heptamethylene terephthalate). POLYMER 2009. [DOI: 10.1016/j.polymer.2009.10.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Yen KC, Woo EM. Formation of dendrite crystals in poly(ethylene oxide) interacting with bioresourceful tannin. Polym Bull (Berl) 2008. [DOI: 10.1007/s00289-008-0005-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|