1
|
Le LTT, Chien PN, Trinh TTT, Seo JW, Giang NN, Nga PT, Zhang XR, Jin YX, Nam SY, Heo CY. Evaluating the efficacy of intra-articular polydioxanone (PDO) injections as a novel viscosupplement in osteoarthritis treatment. Life Sci 2025; 361:123303. [PMID: 39662776 DOI: 10.1016/j.lfs.2024.123303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
AIMS Osteoarthritis (OA) is a chronic joint disorder marked by cartilage breakdown, bone alterations, and inflammation, leading to significant pain and disability. Current therapeutic strategies, ranging from lifestyle interventions to pharmacological and surgical treatments, offer limited efficacy and are often accompanied by side effects. This study investigates the potential of Polydioxanone (PDO), a biocompatible synthetic polymer, as a novel intra-articular (IA) viscosupplement in OA. MATERIALS AND METHODS A validated rabbit model of OA was employed to compare the therapeutic effects of IA injections of PDO against established viscosupplements like hyaluronic acid (HA) and Conjuran (CJR). Sixty rabbits with collagenase-induced OA were randomized into four groups, receiving respective treatments over 12 weeks. The effect of PDO was analyzed by histopathological examination, immunofluorescence staining (IF), immunoblotting, quantitative real-time polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA). KEY FINDINGS The histopathological examination revealed substantial improvements in the PDO group's cartilage structure and matrix composition. qRT-PCR, IF staining, and Western Blot showed significant downregulation of matrix metalloproteinases (MMPs) and upregulation of type II collagen (COL II) and aggrecan (ACAN). ELISA results corroborated decreased inflammatory mediators- interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) in the PDO-treatment group. SIGNIFICANCE Preliminary results indicate that PDO may enhance cartilage regeneration and reduce inflammation, suggesting it is a viable and superior treatment option for OA. These findings merit further investigation to translate into clinical applications.
Collapse
Affiliation(s)
- Linh Thi Thuy Le
- Department of Biomedical Science, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Hai Phong University of Medicine and Pharmacy, Haiphong 180000, Viet Nam
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Korean Institute of Nonclinical Study Center, Seongnam 13620, Republic of Korea
| | - Thuy-Tien Thi Trinh
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Korean Institute of Nonclinical Study Center, Seongnam 13620, Republic of Korea
| | - Ji-Won Seo
- Korean Institute of Nonclinical Study Center, Seongnam 13620, Republic of Korea
| | - Nguyen Ngan Giang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Department of Medical Device Development, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Pham Thi Nga
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Korean Institute of Nonclinical Study Center, Seongnam 13620, Republic of Korea
| | - Xin Rui Zhang
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Yong Xun Jin
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
| | - Sun-Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Department of Medical Device Development, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea.
| | - Chan-Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea; Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Department of Medical Device Development, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea; Korean Institute of Nonclinical Study Center, Seongnam 13620, Republic of Korea.
| |
Collapse
|
2
|
Xu Y, Saiding Q, Zhou X, Wang J, Cui W, Chen X. Electrospun fiber-based immune engineering in regenerative medicine. SMART MEDICINE 2024; 3:e20230034. [PMID: 39188511 PMCID: PMC11235953 DOI: 10.1002/smmd.20230034] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/26/2024] [Indexed: 08/28/2024]
Abstract
Immune engineering, a burgeoning field within regenerative medicine, involves a spectrum of strategies to optimize the intricate interplay between tissue regenerative biomaterials and the host tissue. These strategies are applied across different types of biomaterials and various disease models, which encompasses finely modulating the immune response at the levels of immune cells and factors, aiming to mitigate adverse effects like fibrosis and persistent inflammation that may arise at the injury site and consequently promote tissue regeneration. With the continuous progress in electrospinning technology, the immunoregulatory capabilities of electrospun fibers have gained substantial attention over the years. Electrospun fibers, with their extracellular matrix-like characteristics, high surface-area-to-volume ratio, and reliable pharmaceutical compound capacity, have emerged as key players among tissue engineering materials. This review specifically focuses on the role of electrospun fiber-based immune engineering, emphasizing their unique design strategies. Notably, electrospinning actively engages in immune engineering by modulating immune responses through four essential strategies: (i) surface modification, (ii) drug loading, (iii) physicochemical parameters, and (iv) biological grafting. This review presents a comprehensive overview of the intricate mechanisms of the immune system in injured tissues while unveiling the key strategies adopted by electrospun fibers to orchestrate immune regulation. Furthermore, the review explores the current developmental trends and limitations concerning the immunoregulatory function of electrospun fibers, aiming to drive the advancements in electrospun fiber-based immune engineering to its full potential.
Collapse
Affiliation(s)
- Yiru Xu
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue Zhou
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinliang Chen
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| |
Collapse
|
3
|
Frisch E, Clavier L, Belhamdi A, Vrana NE, Lavalle P, Frisch B, Heurtault B, Gribova V. Preclinical in vitro evaluation of implantable materials: conventional approaches, new models and future directions. Front Bioeng Biotechnol 2023; 11:1193204. [PMID: 37576997 PMCID: PMC10416115 DOI: 10.3389/fbioe.2023.1193204] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Nowadays, implants and prostheses are widely used to repair damaged tissues or to treat different diseases, but their use is associated with the risk of infection, inflammation and finally rejection. To address these issues, new antimicrobial and anti-inflammatory materials are being developed. Aforementioned materials require their thorough preclinical testing before clinical applications can be envisaged. Although many researchers are currently working on new in vitro tissues for drug screening and tissue replacement, in vitro models for evaluation of new biomaterials are just emerging and are extremely rare. In this context, there is an increased need for advanced in vitro models, which would best recapitulate the in vivo environment, limiting animal experimentation and adapted to the multitude of these materials. Here, we overview currently available preclinical methods and models for biological in vitro evaluation of new biomaterials. We describe several biological tests used in biocompatibility assessment, which is a primordial step in new material's development, and discuss existing challenges in this field. In the second part, the emphasis is made on the development of new 3D models and approaches for preclinical evaluation of biomaterials. The third part focuses on the main parameters to consider to achieve the optimal conditions for evaluating biocompatibility; we also overview differences in regulations across different geographical regions and regulatory systems. Finally, we discuss future directions for the development of innovative biomaterial-related assays: in silico models, dynamic testing models, complex multicellular and multiple organ systems, as well as patient-specific personalized testing approaches.
Collapse
Affiliation(s)
- Emilie Frisch
- Université de Strasbourg, CNRS UMR 7199, 3Bio Team, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Strasbourg, France
| | - Lisa Clavier
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| | | | | | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- SPARTHA Medical, Strasbourg, France
| | - Benoît Frisch
- Université de Strasbourg, CNRS UMR 7199, 3Bio Team, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Strasbourg, France
| | - Béatrice Heurtault
- Université de Strasbourg, CNRS UMR 7199, 3Bio Team, Laboratoire de Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Strasbourg, France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale, Inserm UMR_S 1121 Biomaterials and Bioengineering, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
| |
Collapse
|
4
|
Ghosh M, Hartmann H, Jakobi M, März L, Bichmann L, Freudenmann LK, Mühlenbruch L, Segan S, Rammensee HG, Schneiderhan-Marra N, Shipp C, Stevanović S, Joos TO. The Impact of Biomaterial Cell Contact on the Immunopeptidome. Front Bioeng Biotechnol 2021; 8:571294. [PMID: 33392160 PMCID: PMC7773052 DOI: 10.3389/fbioe.2020.571294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Biomaterials play an increasing role in clinical applications and regenerative medicine. A perfectly designed biomaterial should restore the function of damaged tissue without triggering an undesirable immune response, initiate self-regeneration of the surrounding tissue and gradually degrade after implantation. The immune system is well recognized to play a major role in influencing the biocompatibility of implanted medical devices. To obtain a better understanding of the effects of biomaterials on the immune response, we have developed a highly sensitive novel test system capable of examining changes in the immune system by biomaterial. Here, we evaluated for the first time the immunopeptidome, a highly sensitive system that reflects cancer transformation, virus or drug influences and passes these cellular changes directly to T cells, as a test system to examine the effects of contact with materials. Since monocytes are one of the first immune cells reacting to biomaterials, we have tested the influence of different materials on the immunopeptidome of the monocytic THP-1 cell line. The tested materials included stainless steel, aluminum, zinc, high-density polyethylene, polyurethane films containing zinc diethyldithiocarbamate, copper, and zinc sulfate. The incubation with all material types resulted in significantly modulated peptides in the immunopeptidome, which were material-associated. The magnitude of induced changes in the immunopeptidome after the stimulation appeared comparable to that of bacterial lipopolysaccharides (LPS). The source proteins of many detected peptides are associated with cytotoxicity, fibrosis, autoimmunity, inflammation, and cellular stress. Considering all tested materials, it was found that the LPS-induced cytotoxicity-, inflammation- and cellular stress-associated HLA class I peptides were mainly induced by aluminum, whereas HLA class II peptides were mainly induced by stainless steel. These findings provide the first insights into the effects of biomaterials on the immunopeptidome. A more thorough understanding of these effects may enable the design of more biocompatible implant materials using in vitro models in future. Such efforts will provide a deeper understanding of possible immune responses induced by biomaterials such as fibrosis, inflammation, cytotoxicity, and autoimmune reactions.
Collapse
Affiliation(s)
- Michael Ghosh
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.,Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Hanna Hartmann
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Meike Jakobi
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Léo März
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Leon Bichmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,Applied Bioinformatics, Center for Bioinformatics, University of Tübingen, Tübingen, Germany
| | - Lena K Freudenmann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Lena Mühlenbruch
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Sören Segan
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | | | - Christopher Shipp
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.,DKFZ Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany.,Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Thomas O Joos
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| |
Collapse
|
5
|
Time-Dependent Response of Human Deciduous Tooth-Derived Dental Pulp Cells Treated with TheraCal LC: Functional Analysis of Gene Interactions Compared to MTA. J Clin Med 2020; 9:jcm9020531. [PMID: 32075286 PMCID: PMC7074006 DOI: 10.3390/jcm9020531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022] Open
Abstract
Pulp capping material should facilitate hard tissue regeneration on the injured pulp tissue. TheraCal LC (TC) was recently developed. Although TC has shown reliable clinical outcomes after direct pulp capping, there are still remaining concerns regarding its detrimental effect on pulp cells. Therefore, this study aimed to identify the gene expression of human deciduous tooth-derived dental pulp cells exposed to TC compared to mineral trioxide aggregate (MTA). The cells were cultured and exposed to TC and MTA for 24 and 72 h. Next, total RNA was isolated. QuantSeq 3′ mRNA-sequencing was used to examine differentially expressed genes (DEGs) in exposed to TC and MTA. Functional analysis of DEGs was performed using bioinformatics analysis. In gene ontology (GO) functional enrichment analysis, cells in TC for 24 h presented significantly enriched immune response (p < 0.001) and inflammatory response (p < 0.01) compared to MTA. TC showed enriched positive regulation of cell migration at 72 h (p < 0.001). In Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, neuroactive ligand–receptor interaction (p = 1.19 × 10−7) and calcium signaling pathway (p = 2.96 × 10−5) were confirmed in the shared DEGs in TC. In conclusion, DEGs in TC may be involved in pathways associated with osteoclastogenesis and osteoclastic differentiation.
Collapse
|
6
|
The Role of In Vitro Immune Response Assessment for Biomaterials. J Funct Biomater 2019; 10:jfb10030031. [PMID: 31336893 PMCID: PMC6787714 DOI: 10.3390/jfb10030031] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/15/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022] Open
Abstract
Grafts are required to restore tissue integrity and function. However, current gold standard autografting techniques yield limited harvest, with high rates of complication. In the search for viable substitutes, the number of biomaterials being developed and studied has increased rapidly. To date, low clinical uptake has accompanied inherently high failure rates, with immune rejection a specific and common end result. The objective of this review article was to evaluate published immune assays evaluating biomaterials, and to stress the value that incorporating immune assessment into evaluations carries. Immunogenicity assays have had three areas of focus: cell viability, maturation and activation, with the latter being the focus in the majority of the literature due to its relevance to functional outcomes. With recent studies suggesting poor correlation between current in vitro and in vivo testing of biomaterials, in vitro immune response assays may be more relevant and enhance ability in predicting acceptance prior to in vivo application. Uptake of in vitro immune response assessment will allow for substantial reductions in experimental time and resources, including unnecessary and unethical animal use, with a simultaneous decrease in inappropriate biomaterials reaching clinic. This improvement in bench to bedside safety is paramount to reduce patient harm.
Collapse
|
7
|
Abstract
Rotator cuff tears continue to be at significant risk for re-tear or for failure to heal after surgical repair despite the use of a variety of surgical techniques and augmentation devices. Therefore, there is a need for functionalized scaffold strategies to provide sustained mechanical augmentation during the critical first 12-weeks following repair, and to enhance the healing potential of the repaired tendon and tendon-bone interface. Tissue engineered approaches that combine the use of scaffolds, cells, and bioactive molecules towards promising new solutions for rotator cuff repair are reviewed. The ideal scaffold should have adequate initial mechanical properties, be slowly degrading or non-degradable, have non-toxic degradation products, enhance cell growth, infiltration and differentiation, promote regeneration of the tendon-bone interface, be biocompatible and have excellent suture retention and handling properties. Scaffolds that closely match the inhomogeneity and non-linearity of the native rotator cuff may significantly advance the field. While substantial pre-clinical work remains to be done, continued progress in overcoming current tissue engineering challenges should allow for successful clinical translation.
Collapse
|
8
|
Amini AR, Laurencin CT, Nukavarapu SP. Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 2013; 40:363-408. [PMID: 23339648 DOI: 10.1615/critrevbiomedeng.v40.i5.10] [Citation(s) in RCA: 1409] [Impact Index Per Article: 117.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The worldwide incidence of bone disorders and conditions has trended steeply upward and is expected to double by 2020, especially in populations where aging is coupled with increased obesity and poor physical activity. Engineered bone tissue has been viewed as a potential alternative to the conventional use of bone grafts, due to their limitless supply and no disease transmission. However, bone tissue engineering practices have not proceeded to clinical practice due to several limitations or challenges. Bone tissue engineering aims to induce new functional bone regeneration via the synergistic combination of biomaterials, cells, and factor therapy. In this review, we discuss the fundamentals of bone tissue engineering, highlighting the current state of this field. Further, we review the recent advances of biomaterial and cell-based research, as well as approaches used to enhance bone regeneration. Specifically, we discuss widely investigated biomaterial scaffolds, micro- and nano-structural properties of these scaffolds, and the incorporation of biomimetic properties and/or growth factors. In addition, we examine various cellular approaches, including the use of mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), adult stem cells, induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), and their clinical application strengths and limitations. We conclude by overviewing the challenges that face the bone tissue engineering field, such as the lack of sufficient vascularization at the defect site, and the research aimed at functional bone tissue engineering. These challenges will drive future research in the field.
Collapse
Affiliation(s)
- Ami R Amini
- Department of Orthopedic Surgery, University of Connecticut Health Center, Farmington, CT, USA
| | | | | |
Collapse
|
9
|
Zhou J, Zhao Y, Wang J, Zhang S, Liu Z, Zhen M, Liu Y, Liu P, Yin Z, Wang X. Therapeutic angiogenesis using basic fibroblast growth factor in combination with a collagen matrix in chronic hindlimb ischemia. ScientificWorldJournal 2012; 2012:652794. [PMID: 22666143 PMCID: PMC3362026 DOI: 10.1100/2012/652794] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/23/2012] [Indexed: 11/26/2022] Open
Abstract
Although therapeutic angiogenesis by angiogenic cytokines is a feasible strategy to improve regional blood flow in ischemic regions, the optimal delivery mode needs to be established. Here we designed a complex of collagen matrix (CM) and basic fibroblast growth factor (bFGF) and evaluated its proangiogenic effect in ischemic hindlimbs. The bFGF-CM was prepared using lyophilization. The morphology, porosity and toxicity of CM were examined. The bFGF releasing profile and bioactivity of released bFGF were assessed. bFGF-CM was intramuscularly implanted into the rabbit ischemic hindlimb model. Oxygen saturation parameters (OSP) of ischemic hindlimbs was measured to evaluate the extremity perfusion at intervals. Histological examination was performed to evaluate the level of angiogenesis. The CM and bFGF-CM were of identical multiporous structure lacking cytotoxicity. The releasing profile lasted 10 days and the released bFGF remained bioactive. OSP in bFGF-CM group was significantly higher
than that in CM, bFGF and ischemic groups at 2 and 4 weeks. The number of capillaries and mature vessels in bFGF-CM group were significantly greater than that in untreated control, CM and bFGF groups. Therefore, bFGF-CM enables the safe and effective long-term release of bFGF with improved angiogenesis in ischemic hindlimbs compared with CM devoid of bFGF.
Collapse
Affiliation(s)
- Jianyin Zhou
- Department of Hepatobiliary Surgery, Zhongshan Hospital, Xiamen University, Xiamen 361001, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Garg K, Ryan JJ, Bowlin GL. Modulation of mast cell adhesion, proliferation, and cytokine secretion on electrospun bioresorbable vascular grafts. J Biomed Mater Res A 2011; 97:405-13. [PMID: 21472976 DOI: 10.1002/jbm.a.33073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/15/2010] [Accepted: 01/21/2011] [Indexed: 12/24/2022]
Abstract
Mast cells synthesize several potent angiogenic factors and can also stimulate fibroblasts, endothelial cells, and macrophages. An understanding of how they participate in wound healing and angiogenesis is important to further our knowledge about in situ vascular prosthetic regeneration. The adhesion, proliferation, and cytokine secretion of bone marrow-derived murine mast cells (BMMC) on electrospun polydioxanone, polycaprolactone, and silk scaffolds, as well as tissue culture plastic, has been investigated in the presence or absence of IL-3, stem cell factor, IgE and IgE with a crosslinking antigen, dinitrophenol-conjugated albumin (DNP). It was previously believed that only activated BMMCs exhibit adhesion and cytokine secretion. However, this study shows nonactivated BMMC adhesion to electrospun scaffolds. Silk scaffold was not found to be conducive for mast cell adhesion and cytokine secretion. Activation by IgE and DNP significantly enhanced mast cell adhesion, proliferation, migration, and secretion of tumor necrosis factor alpha, macrophage inflammatory protein-1α, and IL-13. This indicates that mast cells might play a role in the process of biomaterial integration into the host tissue, regeneration, and possibly angiogenesis.
Collapse
Affiliation(s)
- K Garg
- Department of Biomedical Engineering, Virginia Commonwealth University, Virginia 23284, USA
| | | | | |
Collapse
|
11
|
Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials 2010; 31:3793-803. [PMID: 20171732 DOI: 10.1016/j.biomaterials.2010.01.120] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 01/19/2010] [Indexed: 11/20/2022]
Abstract
Several tissue engineering approaches for the treatment of cardiovascular diseases are based on a xenogeneic extracellular matrix. However, the application of engineered heart valves has failed in some patients, causing severe signs of inflammation by so far undetermined processes. Therefore we investigated the immune-mediated responses to porcine valve matrices (native, decellularized and glutaraldehyde-fixed) and to purified xenogeneic extracellular matrix proteins (ECMp). The induction of human immune responses in vitro was evaluated by analyzing the co-stimulatory effects of matrices and ECMp collagen and elastin on the proliferation of immune cell sub-populations via CFSE-based proliferation assays. The pattern of cytokine release was also determined. In porcine matrix punches we demonstrated strong immune responses with the native as well as the decellularized type, in contrast to attenuated effects with glutaraldehyde-fixed matrices. Furthermore, our results indicate that collagen type I (porcine and human) and human elastin were able to elicit proliferation in co-stimulation with anti-CD3 antibody, accompanied by a strong release of Th1 cytokines (IFN-gamma, TNF-alpha). In contrast, porcine elastin did not elicit any response at all. This low immunogenic potential of porcine elastin suggests its suitability for the creation of new tissue engineering heart valve scaffolds in the future.
Collapse
|