1
|
Dousti M, Golmohamadpour A, Hami Z, Jamalpoor Z. Ca-AlN MOFs-loaded chitosan/gelatin scaffolds; a dual-delivery system for bone tissue engineering applications. NANOTECHNOLOGY 2024; 35:145101. [PMID: 37992401 DOI: 10.1088/1361-6528/ad0ef4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/22/2023] [Indexed: 11/24/2023]
Abstract
Creating a scaffold for bone tissue engineering that is bioactive and capable of acting as a local-dual delivery system, releasing bioactive molecules and regulating the bone remodeling process to achieve balanced bone resorption and formation, is a significant challenge. The objective of this research is to create a composite scaffold using chitosan/gelatin (CHS/Gel) and the calcium (Ca)-alendronate (ALN) metal-organic frameworks (MOFs). The scaffold will act as a dual-delivery system, releasing Ca ions and ALN to regulate bone formation. Ca-ALN MOF nanoparticles (NPs) were prepared in mild conditions and studied by FTIR, XRD, FESEM, and TGA. Ca-ALN NPs-loaded CHS/Gel scaffolds were opportunely fabricated through freeze-drying approach. Physicochemical features of the scaffolds after incorporating NPs equated by CHS/Gel scaffold changed, therefore, the attendance of NPs caused a decreasing porosity, decreased swelling, and low rate of degradation. The release profile results showed that the NPs-loaded CHS/Gel scaffolds were able to simultaneously release ALN and Ca ions due to the decomposition of NPs. Additionally, the loading of NPs in the CHS/Gel scaffold led to an increment in alkaline phosphatase (ALP) activity and the quantity of deposited Ca along with osteogenesis gene markers. These findings suggest that the NPs-loaded CHS/Gel scaffold has the potential to enhance the differentiation of human adipose tissue-derived mesenchymal stem cells, making it a promising approach for bone repair.
Collapse
Affiliation(s)
- Mahdi Dousti
- Trauma and Surgery Research Center, Aja University of Medical Sciences, Tehran, Iran
| | | | - Zahra Hami
- Toxicology Research Center, Aja University of Medical Sciences, Tehran, Iran
| | - Zahra Jamalpoor
- Trauma and Surgery Research Center, Aja University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Qasim SSB, Ahmed J, Karched M, Al-Asfour A. The potential of nano graphene oxide and chlorhexidine composite membranes for use as a surface layer in functionally graded membranes for periodontal lesions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:63. [PMID: 38103062 PMCID: PMC10725336 DOI: 10.1007/s10856-023-06767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023]
Abstract
Membranes have been used for treating periodontal defects and play a crucial role in guided bone regeneration applications. Nano graphene oxide have been exploited in tissue engineering due to its biomechanical properties. Its composite formulations with hydroxyapatite and chitosan with controlled degradation could aid in becoming part of a surface layer in a functionally graded membrane. The aim of the study was to synthesize chitosan and composite formulations of nano graphene oxide, hydroxyapatite and chlorhexidine digluconate using solvent casting technique and to characterize the physiochemical, mechanical, water vapor transmission rate (barrier), degradation and antimicrobial potential of the membranes. Altogether four different membranes were prepared (CH, CCG, 3511 and 3322). Results revealed the chemical interactions of hydroxyapatite, chitosan and nanographene oxide due to inter and intra molecular hydrogen bonding. The tensile strength of 3322 (33.72 ± 6.3 MPa) and 3511 (32.06 ± 5.4 MPa) was higher than CH (27.46 ± 9.6 MPa). CCG showed the lowest water vapor transmission rate (0.23 ± 0.01 g/h.m2) but the highest weight loss at day 14 (76.6 %). 3511 showed a higher drug release after 72 h (55.6 %) Significant biofilm growth inhibition was observed for all membranes. 3511 showed complete inhibition against A. actinomycetemcomitans. Detailed characterization of the synthesized membranes revealed that 3511 composite membrane proved to be a promising candidate for use as a surface layer of membranes for guided bone regeneration of periodontal lesions.
Collapse
Affiliation(s)
- Syed Saad Bin Qasim
- Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait, Kuwait.
| | - Jasim Ahmed
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat, Kuwait
| | - Maribasappa Karched
- Department of Biological Sciences, College of Dentistry, Kuwait University, Kuwait, Kuwait
| | - Adel Al-Asfour
- Department of Surgical Sciences, College of Dentistry, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
3
|
Wang D, Zhou X, Cao H, Zhang H, Wang D, Guo J, Wang J. Barrier membranes for periodontal guided bone regeneration: a potential therapeutic strategy. FRONTIERS IN MATERIALS 2023; 10. [DOI: 10.3389/fmats.2023.1220420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Periodontal disease is one of the most common oral diseases with the highest incidence world-wide. In particular, the treatment of periodontal bone defects caused by periodontitis has attracted extensive attention. Guided bone regeneration (GBR) has been recognized as advanced treatment techniques for periodontal bone defects. GBR technique relies on the application of barrier membranes to protect the bone defects. The commonly used GBR membranes are resorbable and non-resorbable. Resorbable GBR membranes are divided into natural polymer resorbable membranes and synthetic polymer resorbable membranes. Each has its advantages and disadvantages. The current research focuses on exploring and improving its preparation and application. This review summarizes the recent literature on the application of GBR membranes to promote the regeneration of periodontal bone defects, elaborates on GBR development strategies, specific applications, and the progress of inducing periodontal bone regeneration to provide a theoretical basis and ideas for the future application of GBR membranes to promote the repair of periodontal bone defects.
Collapse
|
4
|
Alqahtani AM. Guided Tissue and Bone Regeneration Membranes: A Review of Biomaterials and Techniques for Periodontal Treatments. Polymers (Basel) 2023; 15:3355. [PMID: 37631412 PMCID: PMC10457807 DOI: 10.3390/polym15163355] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
This comprehensive review provides an in-depth analysis of the use of biomaterials in the processes of guided tissue and bone regeneration, and their indispensable role in dental therapeutic interventions. These interventions serve the critical function of restoring both structural integrity and functionality to the dentition that has been lost or damaged. The basis for this review is laid through the exploration of various relevant scientific databases such as Scopus, PubMed, Web of science and MEDLINE. From a meticulous selection, relevant literature was chosen. This review commences by examining the different types of membranes used in guided bone regeneration procedures and the spectrum of biomaterials employed in these operations. It then explores the manufacturing technologies for the scaffold, delving into their significant impact on tissue and bone regenerations. At the core of this review is the method of guided bone regeneration, which is a crucial technique for counteracting bone loss induced by tooth extraction or periodontal disease. The discussion advances by underscoring the latest innovations and strategies in the field of tissue regeneration. One key observation is the critical role that membranes play in guided reconstruction; they serve as a barrier, preventing the entry of non-ossifying cells, thereby promoting the successful growth and regeneration of bone and tissue. By reviewing the existing literature on biomaterials, membranes, and scaffold manufacturing technologies, this paper illustrates the vast potential for innovation and growth within the field of dental therapeutic interventions, particularly in guided tissue and bone regeneration.
Collapse
Affiliation(s)
- Ali M Alqahtani
- Department of Restorative Dental Sciences, College of Dentistry, King Khalid University, Al Fara, Abha 62223, Saudi Arabia
| |
Collapse
|
5
|
He Y, Tian Y, Zhang W, Wang X, Yang X, Li B, Ge L, Bai D, Li D. Fabrication of oxidized sodium alginate-collagen heterogeneous bilayer barrier membrane with osteogenesis-promoting ability. Int J Biol Macromol 2022; 202:55-67. [PMID: 34998883 DOI: 10.1016/j.ijbiomac.2021.12.155] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/20/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
Guided bone regeneration technique is an effective approach to repair bone defects, in which a barrier membrane is essential. However, the collagen barrier membranes commonly used lose stability quickly, leading to connective tissue invasion and failure of osteogenesis. Herein, we presented an oxidized sodium alginate (OSA)-collagen heterogeneous bilayer barrier membrane with well-controlled pore size and osteogenesis-promoting ability. The OSA crosslinking significantly improved the structural stability, compressive strength, swelling behavior, and slowed down the biodegradation rate of collagen membranes. Meanwhile, the collagen-based membranes exhibited superior cytocompatibility, osteogenesis-promotion, and barrier function against fibroblasts. Especially, the osteogenic differentiation was most promoted on the membrane with a large pore size (240-310 μm), while the barrier function was most improved on the membrane with a small pore size (30-60 μm). Then the above two membranes were combined together to obtain a heterogeneous bilayer membrane. This bilayer barrier membrane showed excellent osteogenesis-promoting ability in rats.
Collapse
Affiliation(s)
- Yiruo He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Ye Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Xinghai Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xue Yang
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Bin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Liming Ge
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Defu Li
- Department of Pharmaceutics and Bioengineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
6
|
Highly Segregated Biocomposite Membrane as a Functionally Graded Template for Periodontal Tissue Regeneration. MEMBRANES 2021; 11:membranes11090667. [PMID: 34564484 PMCID: PMC8469372 DOI: 10.3390/membranes11090667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/16/2022]
Abstract
Guided tissue regeneration (GTR) membranes are used for treating chronic periodontal lesions with the aim of regenerating lost periodontal attachment. Spatially designed functionally graded bioactive membranes with surface core layers have been proposed as the next generation of GTR membranes. Composite formulations of biopolymer and bioceramic have the potential to meet these criteria. Chitosan has emerged as a well-known biopolymer for use in tissue engineering applications due to its properties of degradation, cytotoxicity and antimicrobial nature. Hydroxyapatite is an essential component of the mineral phase of bone. This study developed a GTR membrane with an ideal chitosan to hydroxyapatite ratio with adequate molecular weight. Membranes were fabricated using solvent casting with low and medium molecular weights of chitosan. They were rigorously characterised with scanning electron microscopy, Fourier transform infrared spectroscopy in conjunction with photoacoustic sampling accessory (FTIR-PAS), swelling ratio, degradation profile, mechanical tensile testing and cytotoxicity using human osteosarcoma and mesenchymal progenitor cells. Scanning electron microscopy showed two different features with 70% HA at the bottom surface packed tightly together, with high distinction of CH from HA. FTIR showed distinct chitosan dominance on top and hydroxyapatite on the bottom surface. Membranes with medium molecular weight showed higher swelling and longer degradation profile as compared to low molecular weight. Cytotoxicity results indicated that the low molecular weight membrane with 30% chitosan and 70% hydroxyapatite showed higher viability with time. Results suggest that this highly segregated bilayer membrane shows promising potential to be adapted as a surface layer whilst constructing a functionally graded GTR membrane on its own and for other biomedical applications.
Collapse
|
7
|
Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, Kumar N. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics (Basel) 2020; 5:E34. [PMID: 32679703 PMCID: PMC7557867 DOI: 10.3390/biomimetics5030034] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Biomimetic has emerged as a multi-disciplinary science in several biomedical subjects in recent decades, including biomaterials and dentistry. In restorative dentistry, biomimetic approaches have been applied for a range of applications, such as restoring tooth defects using bioinspired peptides to achieve remineralization, bioactive and biomimetic biomaterials, and tissue engineering for regeneration. Advancements in the modern adhesive restorative materials, understanding of biomaterial-tissue interaction at the nano and microscale further enhanced the restorative materials' properties (such as color, morphology, and strength) to mimic natural teeth. In addition, the tissue-engineering approaches resulted in regeneration of lost or damaged dental tissues mimicking their natural counterpart. The aim of the present article is to review various biomimetic approaches used to replace lost or damaged dental tissues using restorative biomaterials and tissue-engineering techniques. In addition, tooth structure, and various biomimetic properties of dental restorative materials and tissue-engineering scaffold materials, are discussed.
Collapse
Affiliation(s)
- Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Faiza Amin
- Science of Dental Materials Department, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Muhmmad Amber Fareed
- Adult Restorative Dentistry, Dental Biomaterials and Prosthodontics Oman Dental College, Muscat 116, Sultanate of Oman;
| | - Hani Ghabbani
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
| | - Samiya Riaz
- School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudia Arabia;
| | - Naresh Kumar
- Department of Science of Dental Materials, Dow University of Health Sciences, Karachi 74200, Pakistan;
| |
Collapse
|
8
|
Lauritano D, Limongelli L, Moreo G, Favia G, Carinci F. Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. A Systematic Review. NANOMATERIALS 2020; 10:nano10040605. [PMID: 32218206 PMCID: PMC7221778 DOI: 10.3390/nano10040605] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/15/2020] [Accepted: 03/21/2020] [Indexed: 02/07/2023]
Abstract
Introduction. Several biomaterials are used in periodontal tissue engineering in order to obtain a three-dimensional scaffold, which could enhance the oral bone regeneration. These novel biomaterials, when placed in the affected area, activate a cascade of events, inducing regenerative cellular responses, and replacing the missing tissue. Natural and synthetic polymers can be used alone or in combination with other biomaterials, growth factors, and stem cells. Natural-based polymer chitosan is widely used in periodontal tissue engineering. It presents biodegradability, biocompatibility, and biological renewability properties. It is bacteriostatic and nontoxic and has hemostatic and mucoadhesive capacity. The aim of this systematic review is to obtain an updated overview of the utilization and effectiveness of chitosan-based scaffold (CS-bs) in the alveolar bone regeneration process. Materials and Methods. During database searching (using PubMed, Cochrane Library, and CINAHL), 72 items were found. The title, abstract, and full text of each study were carefully analyzed and only 22 articles were selected. Thirteen articles were excluded based on their title, five after reading the abstract, twenty-six after reading the full text, and six were not considered because of their publication date (prior to 2010). Quality assessment and data extraction were performed in the twelve included randomized controlled trials. Data concerning cell proliferation and viability (CPV), mineralization level (M), and alkaline phosphatase activity (ALPA) were recorded from each article Results. All the included trials tested CS-bs that were combined with other biomaterials (such as hydroxyapatite, alginate, polylactic-co-glycolic acid, polycaprolactone), growth factors (basic fibroblast growth factor, bone morphogenetic protein) and/or stem cells (periodontal ligament stem cells, human jaw bone marrow-derived mesenchymal stem cells). Values about the proliferation of cementoblasts (CB) and periodontal ligament cells (PDLCs), the activity of alkaline phosphatase, and the mineralization level determined by pure chitosan scaffolds resulted in lower than those caused by chitosan-based scaffolds combined with other molecules and biomaterials. Conclusions. A higher periodontal regenerative potential was recorded in the case of CS-based scaffolds combined with other polymeric biomaterials and bioceramics (bio compared to those provided by CS alone. Furthermore, literature demonstrated that the addition of growth factors and stem cells to CS-based scaffolds might improve the biological properties of chitosan.
Collapse
Affiliation(s)
- Dorina Lauritano
- Department of Medicine and Surgery, Centre of Neuroscience of Milan, University of Milano-Bicocca, 20126 Milan, Italy;
- Correspondence:
| | - Luisa Limongelli
- Interdisciplinary Department of Medicine, University of Bari, 70121 Bari, Italy; (L.L.); (G.F.)
| | - Giulia Moreo
- Department of Medicine and Surgery, Centre of Neuroscience of Milan, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Gianfranco Favia
- Interdisciplinary Department of Medicine, University of Bari, 70121 Bari, Italy; (L.L.); (G.F.)
| | - Francesco Carinci
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy;
| |
Collapse
|
9
|
Design of a biodegradable UV-irradiated gelatin-chitosan/nanocomposed membrane with osteogenic ability for application in bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:875-886. [DOI: 10.1016/j.msec.2019.01.135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
|
10
|
Cruz-Maya I, Guarino V, Almaguer-Flores A, Alvarez-Perez MA, Varesano A, Vineis C. Highly polydisperse keratin rich nanofibers: Scaffold design and in vitro characterization. J Biomed Mater Res A 2019; 107:1803-1813. [PMID: 31004452 DOI: 10.1002/jbm.a.36699] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/11/2019] [Accepted: 04/16/2019] [Indexed: 02/03/2023]
Abstract
The use of bioactive proteins such as keratin has been successfully explored to improve the biological interface of scaffolds with cells during the tissue regeneration. In this work, it is optimized the fabrication of nanofibers combining wool keratin extracted by sulfitolysis, with polycaprolactone (PCL) in order to design bicomponent fibrous matrices able to exert a self-adapting pattern of signals-morphological, chemical, or physical-confined at the single fiber level, to influence cell and bacteria interactions. It is demonstrated that the blending of highly polydisperse keratin with PCL (50:50) improves the stability of the electrospinning process, promoting the formation of nanofibers-144.1 ± 43.9 nm-without the formation of defects (i.e., beads, ribbons) typically recognized in the fabrication of keratin ones. Moreover, keratin drastically increases the fiber hydrophilicity-compared with PCL fiber alone-thus improving the hMSC adhesion and in vitro proliferation until 14 days. Moreover, the growth of bacterial strains (i.e., Escherichia coli and Staphylococcus aureus) seems to be not specifically inhibited by the contribution of keratin, so that the integration of further selected compounds (i.e., metal ions) is suggested to more efficiently fight against bacteria resistance, to make them suitable for the regeneration of different interfaces and soft tissues (i.e., skin and cornea). © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1803-1813, 2019.
Collapse
Affiliation(s)
- Iriczalli Cruz-Maya
- IPCB/CNR, Institute of Polymers, Composites and Biomaterials - Consiglio Nazionale delle Ricerche, Mostra D'Oltremare, Pad. 20, V.le J.F. Kennedy 54, 80125, Naples, Italy.,Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
| | - Vincenzo Guarino
- IPCB/CNR, Institute of Polymers, Composites and Biomaterials - Consiglio Nazionale delle Ricerche, Mostra D'Oltremare, Pad. 20, V.le J.F. Kennedy 54, 80125, Naples, Italy
| | - Argelia Almaguer-Flores
- Tissue Bioengineering Laboratory, DEPeI, School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n C.P., 04510, Coyoacán, Mexico, DF, Mexico
| | - Marco A Alvarez-Perez
- Tissue Bioengineering Laboratory, DEPeI, School of Dentistry, Universidad Nacional Autonoma de Mexico (UNAM), Circuito Exterior s/n C.P., 04510, Coyoacán, Mexico, DF, Mexico
| | - Alessio Varesano
- ISMAC/CNR, Institute for Macromolecular Studies - Consiglio Nazionale delle Ricerche, C.so G. Pella 16, Biella, Italy
| | - Claudia Vineis
- ISMAC/CNR, Institute for Macromolecular Studies - Consiglio Nazionale delle Ricerche, C.so G. Pella 16, Biella, Italy
| |
Collapse
|
11
|
Navarro J, Swayambunathan J, Lerman M, Santoro M, Fisher JP. Development of keratin-based membranes for potential use in skin repair. Acta Biomater 2019; 83:177-188. [PMID: 30342286 DOI: 10.1016/j.actbio.2018.10.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
The layers in skin determine its protective and hemostasis functions. This layered microstructure cannot be naturally regenerated after severe burns; we aim to reconstruct it using guided tissue regeneration (GTR). In GTR, a membrane is used to regulate tissue growth by stopping fast-proliferating cells and allowing slower cells to migrate and reconstruct specialized microstructures. Here, we proposed the use of keratin membranes crosslinked via dityrosine bonding. Variables from the crosslinking process were grouped within an energy density (ED) parameter to manufacture and evaluate the membranes. Sol fraction, spectrographs, and thermograms were used to quantify the non-linear relation between ED and the resulting crosslinking degree (CD). Mechanical and swelling properties increased until an ED threshold was reached; at higher ED, the CD and properties of the membranes remained invariable indicating that all possible dityrosine bonds were formed. Transport assays showed that the membranes allow molecular diffusion; low ED membranes retain solutes within their structure while the high ED samples allow higher transport rates indicating that uncrosslinked proteins can be responsible of reducing transport. This was confirmed with lower transport of adipogenic growth factors to stem cells when using low ED membranes; high ED samples resulted in increased production of intracellular lipids. Overall, we can engineer keratin membranes with specific CD, a valuable tool to tune microstructural and transport properties.
Collapse
Affiliation(s)
- Javier Navarro
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Jay Swayambunathan
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Max Lerman
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States
| | - Marco Santoro
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States.
| | - John P Fisher
- Fischell Department of Bioengineering, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States; Center for Engineering Complex Tissues, University of Maryland, 3121 A. James Clark Hall, College Park, MD 20742, United States.
| |
Collapse
|
12
|
Rajan M, Sumathra M. Biomedical Applications of Hydroxyapatite Nanocomposites. LECTURE NOTES IN BIOENGINEERING 2019:167-204. [DOI: 10.1007/978-3-030-04741-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Nano-hydroxyapatite/collagen film as a favorable substrate to maintain the phenotype and promote the growth of chondrocytes cultured in vitro. Int J Mol Med 2018; 41:2150-2158. [PMID: 29393382 PMCID: PMC5810202 DOI: 10.3892/ijmm.2018.3431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/18/2018] [Indexed: 11/05/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) has emerged as a novel approach to cartilage repair through the use of harvested chondrocytes. However, the expansion of the chondrocytes from the donor tissue in vitro is restricted by the limited cell numbers and the dedifferentiation of the chondrocytes. The present study investigated the effect of collagen-based films, including collagen, hydroxyapatite (HA)/collagen (HC) and in situ synthesis of nano‑HC (nHC), on monolayer cultures of chondrocytes. As a substrate for the chondrocytes monolayer culture in vitro, nHC was able to restrain the dedifferentiation of chondrocytes and facilitate cell expansion, which was detected by methyl thiazolyl tetrazolium assay, scanning electron microscopy, calcein‑acetoxymethyl/propidium iodide staining, hematoxylin and eosin staining, Safranin O staining, immunohistochemical staining and reverse transcription‑quantitative polymerase chain reaction. Furthermore, the nHC films significantly facilitated cell growth and enhanced the expression of cartilage‑specific extracellular matrix (ECM) components, including aggrecan and type II collagen. In addition, nHC films markedly downregulated the expression of collagen type I, an indicator of dedifferentiation. The results indicated that nHC, a collagen‑based substrate optimized by nanoparticles, was able to better support cell growth and preserve cell phenotype compared with collagen alone or HC. The nHC film, which favors cell growth and prevents the dedifferentiation of chondrocytes, may therefore serve as a useful cartilage‑like ECM for chondrocytes. In conclusion, nHC film is a promising substrate for the culture of chondrocytes in cell-based therapy.
Collapse
|
14
|
Injectable nanohydroxyapatite-chitosan-gelatin micro-scaffolds induce regeneration of knee subchondral bone lesions. Sci Rep 2017; 7:16709. [PMID: 29196647 PMCID: PMC5711958 DOI: 10.1038/s41598-017-17025-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 11/21/2017] [Indexed: 02/06/2023] Open
Abstract
Subchondral bone has been identified as an attractive target for KOA. To determine whether a minimally invasive micro-scaffolds could be used to induce regeneration of knee subchondral bone lesions, and to examine the protective effect of subchondral bone regeneration on upper cartilage, a ready-to-use injectable treatment with nanohydroxyapatite-chitosan-gelatin micro-scaffolds (HaCGMs) is proposed. Human-infrapatellar-fat-pad-derived adipose stem cells (IPFP-ASCs) were used as a cellular model to examine the osteo-inductivity and biocompatibility of HaCGMs, which were feasibly obtained with potency for multi-potential differentiations. Furthermore, a subchondral bone lesion model was developed to mimic the necrotic region removing performed by surgeons before sequestrectomy. HaCGMs were injected into the model to induce regeneration of subchondral bone. HaCGMs exhibited desirable swelling ratios, porosity, stiffness, and bioactivity and allowed cellular infiltration. Eight weeks after treatment, assessment via X-ray imaging, micro-CT imaging, and histological analysis revealed that rabbits treated with HaCGMs had better subchondral bone regeneration than those not treated. Interestingly, rabbits in the HaCGM treatment group also exhibited improved reservation of upper cartilage compared to those in other groups, as shown by safranin O-fast green staining. Present study provides an in-depth demonstration of injectable HaCGM-based regenerative therapy, which may provide an attractive alternative strategy for treating KOA.
Collapse
|
15
|
Ozaki M, Takayama T, Yamamoto T, Ozawa Y, Nagao M, Tanabe N, Nakajima A, Suzuki N, Maeno M, Yamano S, Sato S. A collagen membrane containing osteogenic protein-1 facilitates bone regeneration in a rat mandibular bone defect. Arch Oral Biol 2017; 84:19-28. [PMID: 28938197 DOI: 10.1016/j.archoralbio.2017.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 02/03/2023]
Abstract
OBJECTIVES Osteogenic protein-1 (OP-1) has shown osteoinductive activities and is useful for clinical treatments, including bone regeneration. Regenerative procedures using a bioabsorbable collagen membrane (BCM) are well established in periodontal and implant dentistry. We evaluated the subsequent effects of the BCM in combination with OP-1 on bone regeneration in a rat mandibular circular critical-sized bone defect in vivo. DESIGN We used 8 rats that received surgery in both sides of the mandible, and created the total 16 defects which were divided into 4 groups: Group 1; no treatment, as a control, Group 2; BCM alone, Group 3; BCM containing low dose 0.5μg of OP-1 (L-OP-1), and Group 4; BCM containing high dose 2.0μg of OP-1 (H-OP-1). Newly formed bone was evaluated by micro computed tomography (micro-CT) and histological analyses at 8 weeks postoperatively. In quantitative and qualitative micro-CT analyses of the volume of new bone formation, bone density, and percentage of new bone area was evaluated. RESULTS BCM with rhOP-1 significantly increased and accelerated bone volume, bone mineral density, and percentage of new bone area compared to control and BCM alone at 8 weeks after surgery; these enhancements in bone regeneration in the OP-1-treated groups were dose-dependent. CONCLUSIONS OP-1 delivered with a BCM may have effective osteoinductive potency and be a good combination for bone regeneration. The use of such a combination device for osteogenesis may result in safer and more predictable bone regenerative outcomes in the future.
Collapse
Affiliation(s)
- Manami Ozaki
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Tadahiro Takayama
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan.
| | - Takanobu Yamamoto
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Yasumasa Ozawa
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry, Tokyo, Japan
| | - Mayu Nagao
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan
| | - Natsuko Tanabe
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Akira Nakajima
- Department of Orthodontics, Nihon University School of Dentistry, Tokyo, Japan; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Masao Maeno
- Department of Oral Health Sciences, Nihon University School of Dentistry, Tokyo, Japan; Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| | - Seiichi Yamano
- Department of Prosthodontics, New York University College of Dentistry, NY, U.S.A
| | - Shuichi Sato
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan; Division of Advanced Dental Treatment, Dental Research Center, Nihon University School of Dentistry, Tokyo, Japan
| |
Collapse
|
16
|
Rogina A, Antunović M, Pribolšan L, Caput Mihalić K, Vukasović A, Ivković A, Marijanović I, Gallego Ferrer G, Ivanković M, Ivanković H. Human Mesenchymal Stem Cells Differentiation Regulated by Hydroxyapatite Content within Chitosan-Based Scaffolds under Perfusion Conditions. Polymers (Basel) 2017; 9:E387. [PMID: 30965692 PMCID: PMC6418638 DOI: 10.3390/polym9090387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 11/24/2022] Open
Abstract
The extensive need for hard tissue substituent greatly motivates development of suitable allogeneic grafts for therapeutic recreation. Different calcium phosphate phases have been accepted as scaffold's components with positive influence on osteoinduction and differentiation of human mesenchymal stem cells, in terms of their higher fraction within the graft. Nevertheless, the creation of unlimited nutrients diffusion through newly formed grafts is of great importance. The media flow accomplished by perfusion forces can provide physicochemical, and also, biomechanical stimuli for three-dimensional bone-construct growth. In the present study, the influence of a different scaffold's composition on the human mesenchymal stem cells (hMSCs) differentiation performed in a U-CUP bioreactor under perfusion conditioning was investigated. The histological and immunohistochemical analysis of cultured bony tissues, and the evaluation of osteogenic genes' expression indicate that the lower fraction of in situ formed hydroxyapatite in the range of 10⁻30% within chitosan scaffold could be preferable for bone-construct development.
Collapse
Affiliation(s)
- Anamarija Rogina
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001 Zagreb, Croatia.
| | - Maja Antunović
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001 Zagreb, Croatia.
| | - Lidija Pribolšan
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001 Zagreb, Croatia.
| | | | - Andreja Vukasović
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10001 Zagreb, Croatia.
| | - Alan Ivković
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10001 Zagreb, Croatia.
- Department of Orthopaedic Surgery, University Hospital, Sveti Duh, 10001 Zagreb, Croatia.
| | - Inga Marijanović
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001 Zagreb, Croatia.
| | - Gloria Gallego Ferrer
- Centro de Biomateriales e Ingeniería Tisular, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
- Biomedical Research Networking centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Mariano Esquillor s/n, 50018 Zaragoza, Spain.
| | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001 Zagreb, Croatia.
| | - Hrvoje Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001 Zagreb, Croatia.
| |
Collapse
|
17
|
Qasim SB, Najeeb S, Delaine-Smith RM, Rawlinson A, Ur Rehman I. Potential of electrospun chitosan fibers as a surface layer in functionally graded GTR membrane for periodontal regeneration. Dent Mater 2016; 33:71-83. [PMID: 27842886 DOI: 10.1016/j.dental.2016.10.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/02/2016] [Accepted: 10/24/2016] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The regeneration of periodontal tissues lost as a consequence of destructive periodontal disease remains a challenge for clinicians. Guided tissue regeneration (GTR) has emerged as the most widely practiced regenerative procedure. Aim of this study was to electrospin chitosan (CH) membranes with a low or high degree of fiber orientation and examines their suitability for use as a surface layer in GTR membranes, which can ease integration with the periodontal tissue by controlling the direction of cell growth. METHODS A solution of CH-doped with polyethylene oxide (PEO) (ratio 95:5) was prepared for electrospinning. Characterization was performed for biophysiochemical and mechanical properties by means of scanning electron microscopy (SEM), Fourier Transform Infrared (FTIR) spectroscopy, swelling ratio, tensile testing and monitoring degradation using pH analysis, weight profile, ultraviolet-visible (UV-vis) spectroscopy and FTIR analysis. Obtained fibers were also assessed for viability and matrix deposition using human osteosarcoma (MG63) and human embryonic stem cell-derived mesenchymal progenitor (hES-MP) cells. RESULTS Random and aligned CH fibers were obtained. FTIR analysis showed neat CH spectral profile before and after electrospinning. Electropsun mats were conducive to cellular attachment and viability increased with time. The fibers supported matrix deposition by hES-MPs. Histological sections showed cellular infiltration as well. SIGNIFICANCE The surface layer would act as seal to prevent junctional epithelium from falling into the defect site and hence maintain space for bone regeneration.
Collapse
Affiliation(s)
- Saad B Qasim
- Materials Science and Engineering Department, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
| | - Shariq Najeeb
- School of Clinical Dentistry, University of Sheffield, University of Sheffield, Sheffield S10 2SZ, United Kingdom
| | - Robin M Delaine-Smith
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, Mile End Road E1 4NS, London, United Kingdom
| | - Andrew Rawlinson
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2SZ, United Kingdom
| | - Ihtesham Ur Rehman
- Materials Science and Engineering Department, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom.
| |
Collapse
|
18
|
Biomimetic composite scaffolds containing bioceramics and collagen/gelatin for bone tissue engineering - A mini review. Int J Biol Macromol 2016; 93:1390-1401. [PMID: 27316767 DOI: 10.1016/j.ijbiomac.2016.06.043] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/03/2016] [Accepted: 06/13/2016] [Indexed: 12/13/2022]
Abstract
Bone is a natural composite material consisting of an organic phase (collagen) and a mineral phase (calcium phosphate, especially hydroxyapatite). The strength of bone is attributed to the apatite, while the collagen fibrils are responsible for the toughness and visco-elasticity. The challenge in bone tissue engineering is to develop such biomimetic composite scaffolds, having a balance between biological and biomechanical properties. This review summarizes the current state of the field by outlining composite scaffolds made of gelatin/collagen in combination with bioactive ceramics for bone tissue engineering application.
Collapse
|
19
|
Gonçalves F, de Moraes MS, Ferreira LB, Carreira ACO, Kossugue PM, Boaro LCC, Bentini R, Garcia CRDS, Sogayar MC, Arana-Chavez VE, Catalani LH. Combination of Bioactive Polymeric Membranes and Stem Cells for Periodontal Regeneration: In Vitro and In Vivo Analyses. PLoS One 2016; 11:e0152412. [PMID: 27031990 PMCID: PMC4816539 DOI: 10.1371/journal.pone.0152412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/14/2016] [Indexed: 11/18/2022] Open
Abstract
Regeneration of periodontal tissues requires a concerted effort to obtain consistent and predictable results in vivo. The aim of the present study was to test a new family of bioactive polymeric membranes in combination with stem cell therapy for periodontal regeneration. In particular, the novel polyester poly(isosorbide succinate-co-L-lactide) (PisPLLA) was compared with poly(L-lactide) (PLLA). Both polymers were combined with collagen (COL), hydroxyapatite (HA) and the growth factor bone morphogenetic protein-7 (BMP7), and their osteoinductive capacity was evaluated via in vitro and in vivo experiments. Membranes composed of PLLA/COL/HA or PisPLLA/COL/HA were able to promote periodontal regeneration and new bone formation in fenestration defects in rat jaws. According to quantitative real-time polymerase chain reaction (qRT-PCR) and Alizarin Red assays, better osteoconductive capacity and increased extracellular mineralization were observed for PLLA/COL/HA, whereas better osteoinductive properties were associated with PisPLLA/COL/HA. We concluded that membranes composed of either PisPLLA/COL/HA or PLLA/COL/HA present promising results in vitro as well as in vivo and that these materials could be potentially applied in periodontal regeneration.
Collapse
Affiliation(s)
- Flávia Gonçalves
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Míriam Santos de Moraes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–090
| | - Lorraine Braga Ferreira
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Ana Cláudia Oliveira Carreira
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
| | - Patrícia Mayumi Kossugue
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
| | - Letícia Cristina Cidreira Boaro
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Ricardo Bentini
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Célia Regina da Silva Garcia
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–090
| | - Mari Cleide Sogayar
- NUCEL/NETCEM—Núcleo de Terapia Celular e Molecular, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil, 05360–130
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Victor Elias Arana-Chavez
- Departamento de Biomateriais e Biologia Oral, Faculdade de Odontologia, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
| | - Luiz Henrique Catalani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil, 05508–000
- * E-mail:
| |
Collapse
|
20
|
Wang J, Wang L, Zhou Z, Lai H, Xu P, Liao L, Wei J. Biodegradable Polymer Membranes Applied in Guided Bone/Tissue Regeneration: A Review. Polymers (Basel) 2016; 8:E115. [PMID: 30979206 PMCID: PMC6431950 DOI: 10.3390/polym8040115] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 03/20/2016] [Accepted: 03/24/2016] [Indexed: 12/14/2022] Open
Abstract
Polymer membranes have been widely used in guided tissue regeneration (GTR) and guided bone regeneration (GBR). In this review, various commercially available membranes are described. Much attention is paid to the recent development of biodegradable polymers applied in GTR and GBR, and the important issues of biodegradable polymeric membranes, including their classification, latest experimental research and clinical applications, as well as their main challenges are addressed. Herein, natural polymers, synthetic polymers and their blends are all introduced. Pure polymer membranes are biodegradable and biocompatible, but they lack special properties such as antibacterial properties, osteoconductivity, and thus polymer membranes loaded with functional materials such as antibacterial agents and growth factors show many more advantages and have also been introduced in this review. Despite there still being complaints about polymer membranes, such as their low mechanical properties, uncontrollable degradation speed and some other drawbacks, these problems will undoubtedly be conquered and biodegradable polymers will have more applications in GTR and GBR.
Collapse
Affiliation(s)
- Jiaolong Wang
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Lina Wang
- College of Chemistry, Nanchang University, Nanchang 330031, China.
- College of Science, Nanchang Institute of Technology, Nanchang 330029, China.
| | - Ziyu Zhou
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
| | - Hanjian Lai
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Pan Xu
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Lan Liao
- Department of Prosthodontics, Affiliated Stomatological Hospital of Nanchang University, Nanchang 330006, China.
| | - Junchao Wei
- College of Chemistry, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
21
|
Yang L, Lu W, Pang Y, Huang X, Wang Z, Qin A, Hu Q. Fabrication of a novel chitosan scaffold with asymmetric structure for guided tissue regeneration. RSC Adv 2016. [DOI: 10.1039/c6ra12370h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Asymmetric chitosan scaffold with a loose layer and a dense layer exhibited outstanding bone regenerative ability and appropriate degradability.
Collapse
Affiliation(s)
- Ling Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Wentao Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yichuan Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Xiaofei Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - An Qin
- Department of Orthopedics
- Shanghai Key Laboratory of Orthopedic Implants
- Shanghai Ninth People's Hospital
- Shanghai Jiaotong University School of Medicine
- Shanghai
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
22
|
Nivedhitha Sundaram M, Deepthi S, Jayakumar R. Chitosan-Gelatin Composite Scaffolds in Bone Tissue Engineering. SPRINGER SERIES ON POLYMER AND COMPOSITE MATERIALS 2016. [DOI: 10.1007/978-81-322-2511-9_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
23
|
Ji J, Tong X, Huang X, Wang T, Lin Z, Cao Y, Zhang J, Dong L, Qin H, Hu Q. Sphere-shaped nano-hydroxyapatite/chitosan/gelatin 3D porous scaffolds increase proliferation and osteogenic differentiation of human induced pluripotent stem cells from gingival fibroblasts. ACTA ACUST UNITED AC 2015; 10:045005. [PMID: 26154827 DOI: 10.1088/1748-6041/10/4/045005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydroxyapatite (HA) is an important component of human bone and bone tissue engineering scaffolds. A plethora of bone tissue engineering scaffolds have been synthesized so far, including nano-HA/chitosan/gelatin (nHA/CG) scaffolds; and for seeding cells, stem cells, especially induced pluripotent stem cells (iPSCs), have been a promising cell source for bone tissue engineering recently. However, the influence of different HA nano-particle morphologies on the osteogenic differentiation of human iPSCs (hiPSCs) from human gingival fibroblasts (hGFs) is unknown. The purpose of this study was to investigate the osteogenic differentiation of hiPSCs from hGFs seeded on nHA/CG scaffolds with 2 shapes (rod and sphere) of nHA particles. Firstly, hGFs isolated from discarded normal gingival tissues were reprogrammed into hiPSCs. Secondly, hiPSCs were seeded on rod-like nHA/CG (rod-nHA/CG) and sphere-shaped nHA/CG (sphere-nHA/CG) scaffolds respectively and then cell/scaffold complexes were cultured in vitro. Scanning electron microscope, hematoxyline and eosin (HE) staining, Masson's staining, and quantitative real-time polymerase chain reaction techniques were used to examine hiPSC morphology, proliferation, and differentiation on rod-nHA/CG and sphere-nHA/CG scaffolds. Finally, hiPSCs composited with 2 kinds of nHA/CG were transplanted in vivo in a subcutaneous implantation model for 12 weeks; pure scaffolds were also transplanted as a blank control. HE, Masson's, and immunohistochemistry staining were applied to detect new bone regeneration ability. The results showed that sphere-nHA/CG significantly increased hiPSCs from hGF proliferation and osteogenic differentiation in vitro. hiPSCs and sphere-nHA/CG composities generated large bone, whereas hiPSCs and rod-nHA/CG composities produced tiny bone in vivo. Moreover, pure scaffolds without cells almost produced no bone. In conclusion, our work provided a potential innovative bone tissue engineering approach using clinically discarded gingival tissues and sphere-nHA/CG scaffolds.
Collapse
Affiliation(s)
- Jun Ji
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China. Nanjing Key Laboratory, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pina S, Oliveira JM, Reis RL. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:1143-1169. [PMID: 25580589 DOI: 10.1002/adma.201403354] [Citation(s) in RCA: 536] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/14/2014] [Indexed: 06/04/2023]
Abstract
Tissue engineering and regenerative medicine has been providing exciting technologies for the development of functional substitutes aimed to repair and regenerate damaged tissues and organs. Inspired by the hierarchical nature of bone, nanostructured biomaterials are gaining a singular attention for tissue engineering, owing their ability to promote cell adhesion and proliferation, and hence new bone growth, compared with conventional microsized materials. Of particular interest are nanocomposites involving biopolymeric matrices and bioactive nanosized fillers. Biodegradability, high mechanical strength, and osteointegration and formation of ligamentous tissue are properties required for such materials. Biopolymers are advantageous due to their similarities with extracellular matrices, specific degradation rates, and good biological performance. By its turn, calcium phosphates possess favorable osteoconductivity, resorbability, and biocompatibility. Herein, an overview on the available natural polymer/calcium phosphate nanocomposite materials, their design, and properties is presented. Scaffolds, hydrogels, and fibers as biomimetic strategies for tissue engineering, and processing methodologies are described. The specific biological properties of the nanocomposites, as well as their interaction with cells, including the use of bioactive molecules, are highlighted. Nanocomposites in vivo studies using animal models are also reviewed and discussed.
Collapse
Affiliation(s)
- Sandra Pina
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4806-909, Caldas das Taipas, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | |
Collapse
|
25
|
Camponeschi F, Atrei A, Rocchigiani G, Mencuccini L, Uva M, Barbucci R. New Formulations of Polysaccharide-Based Hydrogels for Drug Release and Tissue Engineering. Gels 2015; 1:3-23. [PMID: 30674162 PMCID: PMC6318688 DOI: 10.3390/gels1010003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/10/2014] [Accepted: 12/24/2014] [Indexed: 11/16/2022] Open
Abstract
Polysaccharide-based hydrogels are very promising materials for a wide range of medical applications, ranging from tissue engineering to controlled drug delivery for local therapy. The most interesting property of this class of materials is the ability to be injected without any alteration of their chemical, mechanical and biological properties, by taking advantage of their thixotropic behavior. It is possible to modulate the rheological and chemical-physical properties of polysaccharide hydrogels by varying the cross-linking agents and exploiting their thixotropic behavior. We present here an overview of our synthetic strategies and applications of innovative polysaccharide-based hydrogels: hyaluronan-based hydrogel and new derivatives of carboxymethylcellulose have been used as matrices in the field of tissue engineering; while guar gum-based hydrogel and hybrid magnetic hydrogels, have been used as promising systems for targeted controlled drug release. Moreover, a new class of materials, interpenetrating hydrogels (IPH), have been obtained by mixing various native thixotropic hydrogels.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Andrea Atrei
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
- Interuniversity Research Centre for Advanced Medical Systems (C.R.I.S.M.A.), Viale Giacomo Matteotti 15/16, 53034 Colle di Val d'Elsa, Italy.
| | - Giulia Rocchigiani
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Lorenzo Mencuccini
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Marianna Uva
- Department of Biotechnology, Chemistry and Pharmacy of University of Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Rolando Barbucci
- Interuniversity Research Centre for Advanced Medical Systems (C.R.I.S.M.A.), Viale Giacomo Matteotti 15/16, 53034 Colle di Val d'Elsa, Italy.
| |
Collapse
|
26
|
Sellgren KL, Ma T. Effects of flow configuration on bone tissue engineering using human mesenchymal stem cells in 3D chitosan composite scaffolds. J Biomed Mater Res A 2014; 103:2509-20. [DOI: 10.1002/jbm.a.35386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/20/2014] [Accepted: 12/04/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Katelyn L. Sellgren
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering, Florida State University; Tallahassee Florida 32310
| | - Teng Ma
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering, Florida State University; Tallahassee Florida 32310
| |
Collapse
|
27
|
Zhou Y, Wu C, Xiao Y. Silicate-based bioceramics for periodontal regeneration. J Mater Chem B 2014; 2:3907-3910. [PMID: 32261640 DOI: 10.1039/c4tb00377b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Periodontal disease is characterized by the destruction of the tissues that attach the tooth to the alveolar bone. Various methods for regenerative periodontal therapy including the use of barrier membranes, bone replacement grafts, and growth factor delivery have been investigated; however, true regeneration of periodontal tissue is still a significant challenge to scientists and clinicians. The focus on periodontal tissue engineering has shifted from attempting to recreate tissue replacements/constructs to the development of biomaterials that incorporate and release regulatory signals to achieve in situ periodontal regeneration. The release of ions and molecular cues from biomaterials may help to unlock latent regenerative potential in the body by regulating cell proliferation and differentiation towards different lineages (e.g. osteoblasts and cementoblasts). Silicate-based bioactive materials, including bioactive silicate glasses and ceramics, have become the materials of choice for periodontal regeneration, due to their favourable osteoconductivity and bioactivity. This article will focus on the most recent advances in the in vitro and in vivo biological application of silicate-based ceramics, specifically as it relates to periodontal tissue engineering.
Collapse
Affiliation(s)
- Yinghong Zhou
- Institute of Health & Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| | | | | |
Collapse
|
28
|
Ma T. Acellular biomaterials in mesenchymal stem cell-mediated endogenous tissue regeneration. J Mater Chem B 2014; 2:31-35. [DOI: 10.1039/c3tb21369b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
29
|
Pasqui D, Torricelli P, De Cagna M, Fini M, Barbucci R. Carboxymethyl cellulose-hydroxyapatite hybrid hydrogel as a composite material for bone tissue engineering applications. J Biomed Mater Res A 2013; 102:1568-79. [PMID: 23720392 DOI: 10.1002/jbm.a.34810] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/07/2013] [Accepted: 05/16/2013] [Indexed: 11/11/2022]
Abstract
Natural bone is a complex inorganic-organic nanocomposite material, in which hydroxyapatite (HA) nanocrystals and collagen fibrils are well organized into hierarchical architecture over several length scales. In this work, we reported a new hybrid material (CMC-HA) containing HA drown in a carboxymethylcellulose (CMC)-based hydrogel. The strategy for inserting HA nanocrystals within the hydrogel matrix consists of making the freeze-dried hydrogel to swell in a solution containing HA microcrystals. The composite CMC-HA hydrogel has been characterized from a physicochemical and morphological point of view by means of FTIR spectroscopy, rheological measurements, and field emission scanning electron microscopy (FESEM). No release of HA was measured in water or NaCl solution. The distribution of HA crystal on the surface and inside the hydrogel was determined by time of flight secondary ion mass spectrometry (ToF-SIMS) and FESEM. The biological performance of CMC-HA hydrogel were tested by using osteoblast MG63 line and compared with a CMC-based hydrogel without HA. The evaluation of osteoblast markers and gene expression showed that the addition of HA to CMC hydrogel enhanced cell proliferation and metabolic activity and promoted the production of mineralized extracellular matrix.
Collapse
Affiliation(s)
- Daniela Pasqui
- C.R.I.S.M.A. University of Siena, 53034, Colle di Val d'Elsa, (SI), Italy; Prior at Department of Clinical and Molecular Science, Università Politecnica delle Marche, 60121, Ancona, Italy
| | | | | | | | | |
Collapse
|
30
|
Busilacchi A, Gigante A, Mattioli-Belmonte M, Manzotti S, Muzzarelli RAA. Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr Polym 2013; 98:665-76. [PMID: 23987397 DOI: 10.1016/j.carbpol.2013.06.044] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/17/2013] [Accepted: 06/19/2013] [Indexed: 12/31/2022]
Abstract
The idea of using chitosan as a functional delivery aid to support simultaneously PRP, stem cells and growth factors (GF) is associated with the intention to use morphogenic biomaterials to modulate the natural healing sequence in bone and other tissues. For example, chitosan-chondroitin sulfate loaded with platelet lysate was included in a poly(D,L-lactate) foam that was then seeded with human adipose-derived stem cells and cultured in vitro under osteogenic stimulus: the platelet lysate provided to the bone tissue the most suitable assortment of GF which induces the osteogenic differentiation of the mesenchymal stem cells. PDGF, FGF, IGF and TGF-β were protagonists in the repair of callus fractures. The release of GF from the composites of chitosan-PRP and either nano-hydroxyapatite or tricalcium phosphate was highly beneficial for enhancing MSC proliferation and differentiation, thus qualifying chitosan as an excellent vehicle. A number of biochemical characteristics of chitosan exert synergism with stem cells in the regeneration of soft tissues.
Collapse
Affiliation(s)
- Alberto Busilacchi
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10-A, IT-60126 Ancona, Italy
| | | | | | | | | |
Collapse
|
31
|
Cheng AY, García AJ. Engineering the matrix microenvironment for cell delivery and engraftment for tissue repair. Curr Opin Biotechnol 2013; 24:864-71. [PMID: 23647972 DOI: 10.1016/j.copbio.2013.04.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022]
Abstract
Cell-based therapies represent promising strategies for tissue repair, particularly in cases in which host cells, due to disease, age, or excessive trauma, are unable to repair the defect or deficiency alone, even with additional delivered therapeutics. Current cell therapies fail to address long-term engraftment or delivery timing and location and result in modest improvements with long term engraftment rates of less than 1%. In many cell therapy applications, an appropriate carrier must be used to deliver transplanted cells and promote cell engraftment and function for a successful outcome by providing the appropriate microenvironment for the interactions between transplanted and host cells. This review highlights important considerations for engineering the microenvironment for cell delivery and engraftment in tissue repair.
Collapse
Affiliation(s)
- Amy Y Cheng
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA 30332, USA
| | | |
Collapse
|