1
|
Kondaveeti S, Mondal AK, Varghese S, Sathish CI, Akter F, Kuzhiumparambil U, Ralph P. Ulvan-based composite aerogels for efficient methylene blue adsorption. Int J Biol Macromol 2025; 309:142687. [PMID: 40169060 DOI: 10.1016/j.ijbiomac.2025.142687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/03/2025]
Abstract
Developing polymer composite aerogels from macroalgae biomass efficiently eliminates water contaminants and mitigates the environmental issues associated with their disposal. We synthesized Ulvan and Ulvan/polyvinyl alcohol (Ulvan/PVA) composite aerogels employing a chemical crosslinking method utilizing borate ions and freeze-drying to enhance porosity. Ulvan/PVA composite aerogels were characterized through water solubility, SEM, FTIR, XRD, TGA and Brunauer, Emmett and Teller (BET) surface area measurements. The resultant Ulvan/PVA composite aerogels possess a resilient chemically cross-linked network with strong hydrogen bonds, significantly improving their mechanical and thermal properties. They exhibit a low density of 0.053 g/cm3, a surface area (BET) of 1.398 m2/g, and demonstrate exceptional mechanical properties with a strength of 4.7 MPa at 80 % strain. The synergistic effects of critical independent variables, including contact time and initial methylene blue (MB) concentration (1-20 mg/L), on MB adsorption capacity (mg/g) and removal efficiency (%) were optimized. The porous Ulvan/PVA composite aerogels demonstrated a strong affinity for methylene blue (MB), with a maximum adsorption capacity of 526.5 mg/g. The adsorption process was found to follow pseudo-second-order kinetics and was well described by the Langmuir isotherm model. Moreover, the adsorption capacity was investigated for three consecutive cycles, with 510, 496.54 and 483.26 mg/g in the first, second, and third cycles, respectively. The higher adsorption capacity of the adsorbent may be due to the synergistic interplay of electrostatic interactions, π-π conjugation, hydrogen bonding, and physicochemical properties. This synthesis strategy can provide an effective and facile pathway to prepare stable and porous polysaccharide-based composite aerogel with methylene blue (MB) uptake, reusability, and eco-friendliness as potential systems for pollutant treatment fields.
Collapse
Affiliation(s)
- Stalin Kondaveeti
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Anjon Kumar Mondal
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Shintu Varghese
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - C I Sathish
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Farjana Akter
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | | | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
2
|
Flórez-Fernández N, Rodríguez-Coello A, Latire T, Bourgougnon N, Torres MD, Buján M, Muíños A, Muiños A, Meijide-Faílde R, Blanco FJ, Vaamonde-García C, Domínguez H. Anti-inflammatory potential of ulvan. Int J Biol Macromol 2023; 253:126936. [PMID: 37722645 DOI: 10.1016/j.ijbiomac.2023.126936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/30/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Green seaweeds are a widespread group of marine macroalgae that could be regarded as biorenewable source of valuable compounds, in particular sulfated polysaccharides like ulvans with interesting biological properties. Among them, anti-inflammatory activity represents an interesting target, since ulvans could potentially avoid side effects of conventional therapies. However, a great variability in ulvan content, composition, structure and properties occurs depending on seaweed specie and growth and processing conditions. All these aspects should be carefully considered in order to have reproducible and well characterized products. This review presents some concise ideas on ulvan composition and general concepts on inflammation mechanisms. Then, the main focus is on the importance of adequate selection of extraction, depolymerization and purification technologies followed by an updated survey on anti-inflammatory properties of ulvans through modulation of different signaling pathways. The potential application in a number of diseases, with special emphasis on inflammaging, gut microbiota dysbiosis, wound repair, and metabolic diseases is also discussed. This multidisciplinary overview tries to present the potential of ulvans considering not only mechanistic, but also processing and applications aspects, trusting that it can aid in the development and application of this widely available and renewable resource as an efficient and versatile anti-inflammatory agent.
Collapse
Affiliation(s)
- Noelia Flórez-Fernández
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - Arianna Rodríguez-Coello
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain.
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines, EMR CNRS 6076, UBS, IUEM, F-56000 Vannes, France; Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France.
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, EMR CNRS 6076, UBS, IUEM, F-56000 Vannes, France.
| | - M Dolores Torres
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| | - Manuela Buján
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, 15185 Cerceda, A Coruña, Spain.
| | - Alexandra Muíños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, 15185 Cerceda, A Coruña, Spain.
| | - Antonio Muiños
- Portomuíños, Polígono Industrial, Rúa Acebedo, Parcela 14, 15185 Cerceda, A Coruña, Spain.
| | - Rosa Meijide-Faílde
- Grupo de Terapia Celular y Medicina Regenerativa, Universidade da Coruña, CICA-Centro Interdisciplinar de Química y Biología, Complexo Hospitalario Universitario A Coruña, Campus Oza, 15006 A Coruña, Spain.
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Facultad de Fisioterapia, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus de Oza, 15006 A Coruña, Spain.
| | - Carlos Vaamonde-García
- Grupo de Investigación de Reumatología y Salud (GIR-S), Departamento de Biología, Facultad de Ciencias, CICA-Centro Interdisciplinar de Química y Biología, INIBIC-Sergas, Universidade da Coruña, Campus da Zapateira, 15011 A Coruña, Spain.
| | - Herminia Domínguez
- CINBIO, Universidade de Vigo, Departamento de Ingeniería Química, Campus Ourense, 32004 Ourense, Spain.
| |
Collapse
|
3
|
Wang H, Cao Z, Yao L, Feng T, Song S, Sun M. Insights into the Edible and Biodegradable Ulvan-Based Films and Coatings for Food Packaging. Foods 2023; 12:foods12081622. [PMID: 37107417 PMCID: PMC10137591 DOI: 10.3390/foods12081622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Recently, edible films or coatings that are made from algal polysaccharides have become promising candidates for replacing plastic-based packaging materials for food storage due to their non-toxic, biodegradable, biocompatible, and bioactive characteristics. Ulvan, a significant biopolymer with unique functional properties derived from marine green algae, has been extensively used in various sectors. However, there are fewer commercial applications of this sugar in the food packaging industry compared to many other algae-derived polysaccharides, such as alginates, carrageenan, and agar. This article aims to review the unparalleled chemical composition/structure and physiochemical properties of ulvan and the latest developments in ulvan-based edible films and coatings, thus highlighting their potential applications in the food packaging industry.
Collapse
Affiliation(s)
- Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhen Cao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
4
|
Zaitseva OO, Sergushkina MI, Khudyakov AN, Polezhaeva TV, Solomina ON. Seaweed sulfated polysaccharides and their medicinal properties. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Tziveleka LA, Pippa N, Ioannou E, Demetzos C, Roussis V. Development of Ulvan-Containing Liposomes as Antibacterial Drug Delivery Platforms. J Funct Biomater 2022; 13:jfb13040186. [PMID: 36278655 PMCID: PMC9589965 DOI: 10.3390/jfb13040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Liposomes, due to their safety profile and targeting ability, are among the most studied nanocarriers as antimicrobial delivery systems. However, due to lack of stability and the non-specific interaction of liposomes with cells and proteins, their use is relatively limited. Aiming to overcome these drawbacks, it was envisaged that incorporation of ulvan, a bioactive marine sulfated polysaccharide isolated from green algae, in liposomes could improve their physicochemical properties and overall stability. Thus, we initially studied the interactions of ulvan with neutral, negatively, and positively charged lipids using Differential Scanning Calorimetry and subsequently, based on the obtained results, we prepared the respective ulvan–containing neutral and charged liposomes, where ulvan interacts with both lipid chains and polar groups in the liposomal bilayer. In a further step, we entrapped in the liposomes fusidic acid, used as a model antibacterial drug, and proceeded with the evaluation of their antibacterial activity against Staphylococcus aureus. The physicochemical properties (size and ζ-potential), stability, morphology, and entrapment efficiency of the prepared liposomal formulations were determined.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Correspondence: (C.D.); (V.R.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
- Correspondence: (C.D.); (V.R.)
| |
Collapse
|
6
|
Ulvan-Based Nanofibrous Patches Enhance Wound Healing of Skin Trauma Resulting from Cryosurgical Treatment of Keloids. Mar Drugs 2022; 20:md20090551. [PMID: 36135740 PMCID: PMC9505379 DOI: 10.3390/md20090551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Keloids are skin fibroproliferative disorders, resulting from abnormal healing of deep cutaneous injuries. Cryosurgery, the most common treatment for keloids, causes skin traumas. Even though the clinical practice of cryosurgery has increased, effective wound healing therapy is still lacking. In this investigation, nonwoven nanofibrous patches composed of ulvan, a marine sulfated polysaccharide exhibiting anti-inflammatory and antioxidant activities, and polyethylene oxide (PEO) were fabricated through electrospinning and characterized. Their wound healing efficacy on skin traumas resulting from cryosurgical treatment of keloids was clinically tested and evaluated in comparison to a reference product. Twenty-four volunteer patients undergoing cryosurgery as a treatment of keloids were selected to apply either the ulvan/PEO patch or the reference product for 21 days. The ulvan/PEO patch, 21 days after cryosurgery, showed significant wound healing, elimination of skin inflammation, restoration of biophysical parameters similar to normal values and significant decrease in haemoglobin concentration, skin texture and volume, while no discomfort or adverse reaction was observed. In contrast, the reference product showed inferior performance in all evaluated parameters. The designed ulvan/PEO patch represents the first wound dressing to effectively heal skin trauma after cryosurgical treatment of keloids.
Collapse
|
7
|
Negreanu-Pirjol BS, Negreanu-Pirjol T, Popoviciu DR, Anton RE, Prelipcean AM. Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14091781. [PMID: 36145528 PMCID: PMC9505595 DOI: 10.3390/pharmaceutics14091781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The marine algal ecosystem is characterized by a rich ecological biodiversity and can be considered as an unexploited resource for the discovery and isolation of novel bioactive compounds. In recent years, marine macroalgae have begun to be explored for their valuable composition in bioactive compounds and opportunity to obtain different nutraceuticals. In comparison with their terrestrial counterparts, Black Sea macroalgae are potentially good sources of bioactive compounds with specific and unique biological activities, insufficiently used. Macroalgae present in different marine environments contain several biologically active metabolites, including polysaccharides, oligosaccharides, polyunsaturated fatty acids, sterols, proteins polyphenols, carotenoids, vitamins, and minerals. As a result, they have received huge interest given their promising potentialities in supporting antitumoral, antimicrobial, anti-inflammatory, immunomodulatory, antiangiogenic, antidiabetic, and neuroprotective properties. An additional advantage of ulvans, fucoidans and carrageenans is the biocompatibility and limited or no toxicity. This therapeutic potential is a great natural treasure to be exploited for the development of novel drug delivery systems in both preventive and therapeutic approaches. This overview aims to provide an insight into current knowledge focused on specific bioactive compounds, which represent each class of macroalgae e.g., ulvans, fucoidans and carrageenans, respectively, as valuable potential players in the development of innovative drug delivery systems.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
- Biological Sciences Section, Romanian Academy of Scientists, 3, Ilfov Street, 050044 Bucharest, Romania
- Correspondence:
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, 1, University Alley, Campus, Corp B, 900527 Constanta, Romania
| | - Ruxandra-Elena Anton
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| | - Ana-Maria Prelipcean
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| |
Collapse
|
8
|
Terezaki A, Kikionis S, Ioannou E, Sfiniadakis I, Tziveleka LA, Vitsos A, Roussis V, Rallis M. Ulvan/gelatin-based nanofibrous patches as a promising treatment for burn wounds. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Qu Y, Lu K, Zheng Y, Huang C, Wang G, Zhang Y, Yu Q. Photothermal scaffolds/surfaces for regulation of cell behaviors. Bioact Mater 2022; 8:449-477. [PMID: 34541413 PMCID: PMC8429475 DOI: 10.1016/j.bioactmat.2021.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of cell behaviors and even cell fates is of great significance in diverse biomedical applications such as cancer treatment, cell-based therapy, and tissue engineering. During the past decades, diverse methods have been developed to regulate cell behaviors such as applying external stimuli, delivering exogenous molecules into cell interior and changing the physicochemical properties of the substrates where cells adhere. Photothermal scaffolds/surfaces refer to a kind of materials embedded or coated with photothermal agents that can absorb light with proper wavelength (usually in near infrared region) and convert light energy to heat; the generated heat shows great potential for regulation of cell behaviors in different ways. In the current review, we summarize the recent research progress, especially over the past decade, of using photothermal scaffolds/surfaces to regulate cell behaviors, which could be further categorized into three types: (i) killing the tumor cells via hyperthermia or thermal ablation, (ii) engineering cells by intracellular delivery of exogenous molecules via photothermal poration of cell membranes, and (iii) releasing a single cell or an intact cell sheet via modulation of surface physicochemical properties in response to heat. In the end, challenges and perspectives in these areas are commented.
Collapse
Affiliation(s)
- Yangcui Qu
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Kunyan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Guannan Wang
- College of Biomedical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining, 272067, PR China
| | - Yanxia Zhang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou, 215006, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| |
Collapse
|
10
|
Drira M, Hentati F, Babich O, Sukhikh S, Larina V, Sharifian S, Homai A, Fendri I, Lemos MFL, Félix C, Félix R, Abdelkafi S, Michaud P. Bioactive Carbohydrate Polymers-Between Myth and Reality. Molecules 2021; 26:7068. [PMID: 34885655 PMCID: PMC8659292 DOI: 10.3390/molecules26237068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/27/2022] Open
Abstract
Polysaccharides are complex macromolecules long regarded as energetic storage resources or as components of plant and fungal cell walls. They have also been described as plant mucilages or microbial exopolysaccharides. The development of glycosciences has led to a partial and difficult deciphering of their other biological functions in living organisms. The objectives of glycobiochemistry and glycobiology are currently to correlate some structural features of polysaccharides with some biological responses in the producing organisms or in another one. In this context, the literature focusing on bioactive polysaccharides has increased exponentially during the last two decades, being sometimes very optimistic for some new applications of bioactive polysaccharides, notably in the medical field. Therefore, this review aims to examine bioactive polysaccharide, taking a critical look of the different biological activities reported by authors and the reality of the market. It focuses also on the chemical, biochemical, enzymatic, and physical modifications of these biopolymers to optimize their potential as bioactive agents.
Collapse
Affiliation(s)
- Maroua Drira
- Laboratoire de Biotechnologies des Plantes Appliquées à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.D.); (I.F.)
| | - Faiez Hentati
- INRAE, URAFPA, Université de Lorraine, F-54000 Nancy, France;
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Stanislas Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Viktoria Larina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, 236016 Kaliningrad, Russia; (O.B.); (S.S.); (V.L.)
| | - Sana Sharifian
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran; (S.S.); (A.H.)
| | - Ahmad Homai
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas 74576, Iran; (S.S.); (A.H.)
| | - Imen Fendri
- Laboratoire de Biotechnologies des Plantes Appliquées à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisia; (M.D.); (I.F.)
| | - Marco F. L. Lemos
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Carina Félix
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Rafael Félix
- MARE–Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (M.F.L.L.); (C.F.); (R.F.)
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisia;
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
| |
Collapse
|
11
|
Sulastri E, Zubair MS, Lesmana R, Mohammed AFA, Wathoni N. Development and Characterization of Ulvan Polysaccharides-Based Hydrogel Films for Potential Wound Dressing Applications. Drug Des Devel Ther 2021; 15:4213-4226. [PMID: 34675484 PMCID: PMC8502111 DOI: 10.2147/dddt.s331120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/22/2021] [Indexed: 01/06/2023] Open
Abstract
Background Ulvan is a natural polymer and type of sulfated polysaccharides from green seaweed that could have potential as a candidate for wound dressing material based on the support of its biopolymer characteristics such as antioxidant and antimicrobial activities. Objective In this study, we developed and prepared three different hydrogel films to explore the potency of ulvan for wound dressing application. Methods Ulvan hydrogel films were prepared by the facile method through ionic crosslinking with boric acid and added glycerol as a plasticizer. The films were evaluated in regard to swelling degree, water vapor transmission (WVTR), Fourier transform infrared (FTIR), powder x-ray diffractometry (P-XRD), scanning electron microscopy (SEM), mechanical properties, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), antimicrobial, and antioxidant activity. Results The hydrogel films showed that the different concentration of ulvan in the formula affects the characteristics of the hydrogel film. The higher the concentration of ulvan in UHF, the higher the value of viscosity (201±13.45 to 689±62.23 cps for UHF5 to UHF10), swelling degree (82% to 130% for UHF5 to UHF10 at 1 h), moisture content (24%±1.94% to 18.4%±0.51 for UHF5 to UHF10), and the WVTR were obtained in the range 1856–2590g/m2/24h. Meanwhile, the SEM showed porous hydrogel film. Besides, all hydrogel films can reduce hydroxyl radicals and inhibit gram-positive and negative bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Streptococcus epidermidis). Conclusion The swelling behavior and WVTR of these films are great and could have potential as a wound dressing biomaterial, supported by their antimicrobial and antioxidant properties.
Collapse
Affiliation(s)
- Evi Sulastri
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia.,Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Tadulako, Palu, 94119, Indonesia
| | - Muhammad Sulaiman Zubair
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Tadulako, Palu, 94119, Indonesia
| | - Ronny Lesmana
- Department of Biomedical Science, Faculty of Medicine, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
12
|
Crosslinked complex films based on chitosan and ulvan with antioxidant and whitening activities. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Colodi FG, Ducatti DRB, Noseda MD, de Carvalho MM, Winnischofer SMB, Duarte MER. Semi-synthesis of hybrid ulvan-kappa-carrabiose polysaccharides and evaluation of their cytotoxic and anticoagulant effects. Carbohydr Polym 2021; 267:118161. [PMID: 34119135 DOI: 10.1016/j.carbpol.2021.118161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/15/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022]
Abstract
In this study we described the synthesis of a hybrid polysaccharide harboring moieties of ulvan and kappa-carrabiose. Alkylamines (1,3-diaminopropane and 1,6-diaminohexane) were selectively inserted into β-D-GlcAp and α-L-IdoAp units in the ulvan structure via an amide bond formation producing ulvan-amide derivatives F-DAP (N% = 1.77; Mw = 208 kg mol-1) and F-DAH (N% = 1.77; Mw = 202 kg mol-1), which were reacted with kappa-carrabiose via reductive amination to produce hybrid ulvan-kappa-carrabiose polysaccharides F-DAP-Kb (N% = 1.56; Mw = 206 kg mol-1) and F-DAH-Kb (N% = 1.16; Mw = 200 kg mol-1). All the ulvan derivatives were characterized by 1H and 13C NMR spectroscopy and did not show cytotoxicity against human dermal fibroblasts (HDFa) at the concentrations of 25, 100, and 500 μg mL-1, neither anticoagulant properties at the range of 10-150 μg mL-1. Therefore, the ulvan-amide derivatives and the hybrid ulvan-kappa-carrabiose polysaccharides showed good biocompatibility in vitro, presenting as worthy candidates for tailoring scaffolds for biomedical applications.
Collapse
Affiliation(s)
- Franciely G Colodi
- Programa de Pós-Graduação em Ciências (Bioquímica), Universidade Federal do Paraná, Centro Politécnico, Curitiba, PR, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Centro Politécnico, CEP 81531-990, PO Box 19046, Curitiba, PR, Brazil
| | - Diogo R B Ducatti
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Centro Politécnico, CEP 81531-990, PO Box 19046, Curitiba, PR, Brazil.
| | - Miguel D Noseda
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Centro Politécnico, CEP 81531-990, PO Box 19046, Curitiba, PR, Brazil.
| | - Mariana M de Carvalho
- Programa de Pós-Graduação em Ciências (Bioquímica), Universidade Federal do Paraná, Centro Politécnico, Curitiba, PR, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Centro Politécnico, CEP 81531-990, PO Box 19046, Curitiba, PR, Brazil
| | - Sheila M B Winnischofer
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Centro Politécnico, CEP 81531-990, PO Box 19046, Curitiba, PR, Brazil.
| | - Maria Eugênia R Duarte
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Centro Politécnico, CEP 81531-990, PO Box 19046, Curitiba, PR, Brazil.
| |
Collapse
|
14
|
Delis-Hechavarria EA, Guevara-Gonzalez RG, Ocampo-Velazquez R, Gomez-Soto JG, Vargas-Hernandez M, Parola-Contreras I, Torres-Pacheco I. Functional Food for Rabbits. Current Approaches and Trends to Increase Functionality. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1939711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - R. G. Guevara-Gonzalez
- Autonomus University of Queretaro. Engeneering Faculty, Campus Amazcala, Queretaro, Mexico
| | - R.V. Ocampo-Velazquez
- Autonomus University of Queretaro. Engeneering Faculty, Campus Amazcala, Queretaro, Mexico
| | - J. G. Gomez-Soto
- Autonomus University of Queretaro. Natural Science College, Queretaro, Mexico
| | - M. Vargas-Hernandez
- Autonomus University of Queretaro. Engeneering Faculty, Campus Amazcala, Queretaro, Mexico
| | - I. Parola-Contreras
- Autonomus University of Queretaro. Engeneering Faculty, Campus Amazcala, Queretaro, Mexico
| | - I. Torres-Pacheco
- Autonomus University of Queretaro. Engeneering Faculty, Campus Amazcala, Queretaro, Mexico
| |
Collapse
|
15
|
Sulastri E, Lesmana R, Zubair MS, Elamin KM, Wathoni N. A Comprehensive Review on Ulvan Based Hydrogel and Its Biomedical Applications. Chem Pharm Bull (Tokyo) 2021; 69:432-443. [PMID: 33952853 DOI: 10.1248/cpb.c20-00763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ulvan is a natural sulfated polysaccharide obtained from marine green algae composed of 3-sulfated rhamnoglucuronan as the main component. It has a unique chemical structure that rich of L-rhamnosa, D-glucuronic acid, and L-iduronic acid. Ulvan has a similar structure to glycosaminoglycans (GAGs) in mammals including chondroitin sulfate, dermatan sulfate, and heparan sulfate that has broad range applications for many years. Here, we provide an overview of ulvan based hydrogels for biomedical applications. Hydrogels are one of ulvan advances in polymer science for application in drug delivery, tissue engineering, and wound healing. This review presented an overview about functional information of ulvan based hydrogels and the promising potential in biomedicals collected from published papers in Scopus, PubMed, and Google Scholar. Other important aspects concerning properties, hydrogel-forming mechanisms, and ulvan based hydrogel developments were reported as well. As conclusion, ulvan showed interesting properties in forming hydrogels and promising advances in biomedical applications.
Collapse
Affiliation(s)
- Evi Sulastri
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran.,Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Tadulako
| | - Ronny Lesmana
- Department of Anatomy, Physiology and Biology Cell, Faculty of Medicine, Universitas Padjadjaran
| | | | - Khaled M Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran
| |
Collapse
|
16
|
The Marine Polysaccharide Ulvan Confers Potent Osteoinductive Capacity to PCL-Based Scaffolds for Bone Tissue Engineering Applications. Int J Mol Sci 2021; 22:ijms22063086. [PMID: 33802984 PMCID: PMC8002638 DOI: 10.3390/ijms22063086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Hybrid composites of synthetic and natural polymers represent materials of choice for bone tissue engineering. Ulvan, a biologically active marine sulfated polysaccharide, is attracting great interest in the development of novel biomedical scaffolds due to recent reports on its osteoinductive properties. Herein, a series of hybrid polycaprolactone scaffolds containing ulvan either alone or in blends with κ-carrageenan and chondroitin sulfate was prepared and characterized. The impact of the preparation methodology and the polysaccharide composition on their morphology, as well as on their mechanical, thermal, water uptake and porosity properties was determined, while their osteoinductive potential was investigated through the evaluation of cell adhesion, viability, and osteogenic differentiation of seeded human adipose-derived mesenchymal stem cells. The results verified the osteoinductive ability of ulvan, showing that its incorporation into the polycaprolactone matrix efficiently promoted cell attachment and viability, thus confirming its potential in the development of biomedical scaffolds for bone tissue regeneration applications.
Collapse
|
17
|
Ulvan, a Polysaccharide from Macroalga Ulva sp.: A Review of Chemistry, Biological Activities and Potential for Food and Biomedical Applications. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165488] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The species of green macroalga belonging to the genus Ulva (family: Ulvaceae) are utilized in various fields, from food supplements to biomedical applications. Ulvan, a polysaccharide obtained from various Ulva species, has shown various biological activities, including antioxidant, anti-inflammatory, anticancer, antibacterial, and antiviral activities. To obtain the polysaccharide ulvan that can be utilized in various fields, it is necessary to understand the critical points that affect its physicochemical nature, the extraction procedures, and the mechanism of action for biological activities. This article discusses the physicochemical properties, extraction, isolation and characterization procedures and benefits in food and biomedical applications of ulvan. In conclusion, ulvan from Ulva sp. has the potential to be used as a therapeutic agent and also as an additional ingredient in the development of tissue engineering procedures.
Collapse
|
18
|
Gajaria TK, Bhatt H, Khandelwal A, Vasu VT, Reddy CRK, Shanthana Lakshmi D. A facile chemical cross-linking approach toward the fabrication of a sustainable porous ulvan scaffold. J BIOACT COMPAT POL 2020. [DOI: 10.1177/0883911520939986] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ulvans represent one of the most abundant marine-derived macromolecular sulfated polysaccharides accounting for numerous biological applications including in one of the fastest growing field of biomedical sciences. Tissue engineering based on biologically inspired and naturally derived polymers has been one of the prime focuses of regenerative medicine. The present investigation is intended to explore an ionic cross-linking approach at higher pH lead by the calcium ions for casting cell growth promoting scaffolds out of the raw ulvan. The characterization studies using attenuated total reflectance infrared spectroscopy represent specific absorptions at 2950, 980, and 600 cm−1, whereas the x-ray diffraction showed a total absence of major crystalline peaks presenting significant shift to an amorphous state. The 1H nuclear magnetic resonance study revealed functional group modifications in the backbone that might be potentially derived from calcium interactions with glucurorhamnose 3-sulfate and iduronorhamnose 3-sulfate. The atomic force microscopy together with field emission scanning electron microscopy and energy dispersive x-ray spectroscopy mapping revealed the resultant surface changes, whereas confocal microscopy z-stacking showed the cell proliferative activity as evident by the attainment of complete morphology. The combined chemical and biological response of the scaffold makes it a well suitable support for its cell culture and tissue engineering applications.
Collapse
Affiliation(s)
- Tejal K Gajaria
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Himadri Bhatt
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - Ankit Khandelwal
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Navrachana University, Vadodara, India
| | - Vihas T Vasu
- Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, India
- Institute of Interdisciplinary Studies, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | - CRK Reddy
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Present address-DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Mumbai, India
| | - D Shanthana Lakshmi
- CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
19
|
A Short Review on the Valorization of Green Seaweeds and Ulvan: FEEDSTOCK for Chemicals and Biomaterials. Biomolecules 2020; 10:biom10070991. [PMID: 32630631 PMCID: PMC7407860 DOI: 10.3390/biom10070991] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022] Open
Abstract
This short review analyzed the recent trend towards, progresses towards the preparation of chemicals of, and value-added biomaterials from marine macroalgae resources, especially green seaweeds and their derived ulvan polysaccharides for various applications. In recent years, ulvan both in pristine and modified forms has gained a large amount of attention for its effective utilization in various areas due to its unique physiochemical properties, lack of exploration, and higher green seaweed production. The pristine form of ulvan (sulfated polysaccharides) is used as a bio-component; food ingredient; or a raw material for the production of numerous chemicals such as fuels, cosmetics, and pharmaceuticals, whereas its modified form is used in the sector of composites, membranes, and scaffolds, among others, because of its physicochemical properties. This review highlights the utilization of green seaweed and its derived ulvan polysaccharides for the preparation of numerous chemicals (e.g., solvents, fuel, and gas) and also value-added biomaterials with various morphologies (e.g., gels, fibers, films, scaffolds, nanomaterials, and composites).
Collapse
|
20
|
Marine Algae Polysaccharides as Basis for Wound Dressings, Drug Delivery, and Tissue Engineering: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8070481] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.
Collapse
|
21
|
Tziveleka LA, Sapalidis A, Kikionis S, Aggelidou E, Demiri E, Kritis A, Ioannou E, Roussis V. Hybrid Sponge-Like Scaffolds Based on Ulvan and Gelatin: Design, Characterization and Evaluation of Their Potential Use in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1763. [PMID: 32283814 PMCID: PMC7178717 DOI: 10.3390/ma13071763] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
Ulvan, a bioactive natural sulfated polysaccharide, and gelatin, a collagen-derived biopolymer, have attracted interest for the preparation of biomaterials for different biomedical applications, due to their demonstrated compatibility for cell attachment and proliferation. Both ulvan and gelatin have exhibited osteoinductive potential, either alone or in combination with other materials. In the current work, a series of novel hybrid scaffolds based on crosslinked ulvan and gelatin was designed, prepared and characterized. Their mechanical performance, thermal stability, porosity, water-uptake and in vitro degradation ability were assessed, while their morphology was analyzed through scanning electron microscopy. The prepared hybrid ulvan/gelatin scaffolds were characterized by a highly porous and interconnected structure. Human adipose-derived mesenchymal stem cells (hADMSCs) were seeded in selected ulvan/gelatin hybrid scaffolds and their adhesion, survival, proliferation, and osteogenic differentiation efficiency was evaluated. Overall, it was found that the prepared hybrid sponge-like scaffolds could efficiently support mesenchymal stem cells' adhesion and proliferation, suggesting that such scaffolds could have potential uses in bone tissue engineering.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Andreas Sapalidis
- Institute of Nanosciences and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Attiki, Greece;
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Eleni Aggelidou
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efterpi Demiri
- Department of Plastic Surgery, School of Medicine, Faculty of Health Sciences, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aristeidis Kritis
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| |
Collapse
|
22
|
|
23
|
Tziveleka LA, Ioannou E, Roussis V. Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydr Polym 2019; 218:355-370. [PMID: 31221340 DOI: 10.1016/j.carbpol.2019.04.074] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
Abstract
Ulvan, a sulphated polysaccharide located in the cell walls of green algae that possesses unique structural properties albeit its repeating unit shares chemical affinity with glycosoaminoglycans, such as hyaluronan and chondroitin sulphate, has been increasingly studied over the years for applications in the pharmaceutical field. The increasing knowledge on ulvan's chemical properties and biological activities has triggered its utilization in hybrid materials, given its potential efficacy in biomedical applications. In the present review, the use of ulvan in the design of different biomaterials, including membranes, particles, hydrogels, 3D porous structures and nanofibers, is presented. The applications of these structures may vary from drug delivery to wound dressing or bone tissue engineering. In this context, general information regarding the structure and chemical variability, extraction processes, physicochemical properties, and biological activities of ulvan is reported.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| |
Collapse
|
24
|
Geskovski N, Sazdovska SD, Goracinova K. Macroalgal Polysaccharides in Biomimetic Nanodelivery Systems. Curr Pharm Des 2019; 25:1265-1289. [PMID: 31020934 DOI: 10.2174/1381612825666190423155116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Imitating nature in the design of bio-inspired drug delivery systems resulted in several success stories. However, the practical application of biomimicry is still largely unrealized owing to the fact that we tend to copy the shape more often than the whole biology. Interesting chemistry of polysaccharides provides endless possibilities for drug complex formation and creation of delivery systems with diverse morphological and surface properties. However, the type of biological response, which may be induced by these systems, remains largely unexploited. METHODS Considering the most current research for the given topic, in this review, we will try to present the integrative approaches for the design of biomimetic DDS's with improved therapeutic or theranostic effects based on different algal polysaccharides that exert multiple biological functions. RESULTS Algal polysaccharides may provide building blocks for bioinspired drug delivery systems capable of supporting the mechanical properties of nanomedicines and mimicking various biological processes by molecular interactions at the nanoscale. Numerous research studies demonstrate the efficacy and safety of multifunctional nanoparticles integrating several functions in one delivery system, composed of alginate, carrageenan, ulvan, fucoidan and their derivatives, intended to be used as bioartificial microenvironment or for diagnosis and therapy of different diseases. CONCLUSION Nanodimensional structure of polysaccharide DDS's shows substantial influence on the bioactive motifs potential availability for interaction with a variety of biomolecules and cells. Evaluation of the nano dimensional structure-activity relationship is crucial for unlocking the full potential of the future application of polysaccharide bio-mimicking DDS in modern diagnostic and therapeutic procedures.
Collapse
Affiliation(s)
- Nikola Geskovski
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of North Macedonia
| | - Simona Dimchevska Sazdovska
- Institute of Pharmaceutical Technology, Faculty of Pharmacy, University of Ss Cyril and Methodius, Skopje, Republic of North Macedonia
| | | |
Collapse
|
25
|
Rahmati M, Alipanahi Z, Mozafari M. Emerging Biomedical Applications of Algal Polysaccharides. Curr Pharm Des 2019; 25:1335-1344. [PMID: 31020932 DOI: 10.2174/1381612825666190423160357] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Over the past two decades, there have been substantial progress and a growing body of research on using natural polymeric biomaterials in emerging biomedical applications. Among different natural biopolymers, polysaccharides have gained considerable attraction among biomedical scientists and surgeons due to their biocompatibility, biodegradability, anti-inflammatory, and antimicrobial properties. In recent years, algalbased polysaccharides including agar, alginate, and carrageenan, have been broadly suggested for different biomedical applications. METHODS The aim of this paper is discussing various possible applications of algal-based polysaccharides in biomedical engineering particularly in controlled drug delivery systems. The main properties of each algal polysaccharide will be discussed, and particular drug delivery applications will be presented. RESULTS Algal polysaccharides can be detected in a group of photosynthetic unite as their key biomass constituents. They provide a range of variety in their size, shape, liquefaction, chemical stability, and crosslinking ability. In addition, algal polysaccharides have shown exceptional gelling properties including stimuli-responsive behavior, softness, and swelling properties. CONCLUSION All the mentioned properties of alga polysaccharides lead to their successful usage in biomedical applications specially targeted and controlled drug delivery systems such as particles, capsules, and gels.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Zahra Alipanahi
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Kumar S, Marrero-Berrios I, Kabat M, Berthiaume F. Recent Advances in the Use of Algal Polysaccharides for Skin Wound Healing. Curr Pharm Des 2019; 25:1236-1248. [PMID: 31109271 PMCID: PMC7746437 DOI: 10.2174/1381612825666190521120051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/30/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Chronic skin wounds and pressure ulcers represent major health care problems in diabetic individuals, as well as patients who suffered a spinal cord injury. Current treatment methods are only partially effective and such wounds exhibit a high recurrence rate. Open wounds are at high risk of invasive wound infections, which can lead to amputation and further disability. An interdisciplinary approach is needed to develop new and more effective therapies. METHODS The purpose of this work is to review recent studies focusing on the use of algal polysaccharides in commercially available as well as experimental wound dressings. Studies that discuss wound dressings based on algal polysaccharides, some of which also contain growth factors and even living cells, were identified and included in this review. RESULTS AND CONCLUSION Algal polysaccharides possess mechanical and physical properties, along with excellent biocompatibility and biodegradability that make them suitable for a variety of applications as wound dressings. Furthermore, algal polysaccharides have been used for a dual purpose, namely as wound covering, but also as a vehicle for drug delivery to the wound site.
Collapse
Affiliation(s)
| | | | - Maciej Kabat
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, New Jersey 08854, USA
| |
Collapse
|
27
|
Tziveleka LA, Pippa N, Georgantea P, Ioannou E, Demetzos C, Roussis V. Marine sulfated polysaccharides as versatile polyelectrolytes for the development of drug delivery nanoplatforms: Complexation of ulvan with lysozyme. Int J Biol Macromol 2018; 118:69-75. [PMID: 29906535 DOI: 10.1016/j.ijbiomac.2018.06.050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 06/11/2018] [Indexed: 11/26/2022]
Abstract
Ulvan, a marine sulfated polysaccharide isolated from green algae, has been recently recognized as a natural biopolymer of biomedical interest. A series of lysozyme/ulvan complexes prepared under various charge ratios at physiological pH were studied. The resulting complexes were examined with light scattering techniques in order to characterize the size, the distribution and the ζ-potential of the nanocarriers, which were found to depend on the charge ratio employed. Increased complexation efficiency of lysozyme was observed for certain charge ratios, while ATR-FTIR data suggested that the protein structure after complexation was retained. Bacterial growth studies showed that lysozyme once complexed with ulvan not only retains its antibacterial activity against the Gram positive strain Staphylococcus aureus, but actually exhibits increased levels of activity. In this model study, the results highlight the potential of ulvan as a promising nanocarrier for positively charged bioactive molecules.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Panagiota Georgantea
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| |
Collapse
|
28
|
Ulaganathan T, Helbert W, Kopel M, Banin E, Cygler M. Structure-function analyses of a PL24 family ulvan lyase reveal key features and suggest its catalytic mechanism. J Biol Chem 2018; 293:4026-4036. [PMID: 29382716 DOI: 10.1074/jbc.ra117.001642] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/17/2018] [Indexed: 11/06/2022] Open
Abstract
Ulvan is a major cell wall component of green algae of the genus Ulva, and some marine bacteria encode enzymes that can degrade this polysaccharide. The first ulvan-degrading lyases have been recently characterized, and several putative ulvan lyases have been recombinantly expressed, confirmed as ulvan lyases, and partially characterized. Two families of ulvan-degrading lyases, PL24 and PL25, have recently been established. The PL24 lyase LOR_107 from the bacterial Alteromonadales sp. strain LOR degrades ulvan endolytically, cleaving the bond at the C4 of a glucuronic acid. However, the mechanism and LOR_107 structural features involved are unknown. We present here the crystal structure of LOR_107, representing the first PL24 family structure. We found that LOR_107 adopts a seven-bladed β-propeller fold with a deep canyon on one side of the protein. Comparative sequence analysis revealed a cluster of conserved residues within this canyon, and site-directed mutagenesis disclosed several residues essential for catalysis. We also found that LOR_107 uses the His/Tyr catalytic mechanism, common to several PL families. We captured a tetrasaccharide substrate in the structures of two inactive mutants, which indicated a two-step binding event, with the first substrate interaction near the top of the canyon coordinated by Arg320, followed by sliding of the substrate into the canyon toward the active-site residues. Surprisingly, the LOR_107 structure was very similar to that of the PL25 family PLSV_3936, despite only ∼14% sequence identity between the two enzymes. On the basis of our structural and mutational analyses, we propose a catalytic mechanism for LOR_107 that differs from the typical His/Tyr mechanism.
Collapse
Affiliation(s)
| | - William Helbert
- the Université Grenoble Alpes and CNRS, CERMAV UPR 5301 601, rue de la chimie, 38000 Grenoble (France) and Institut de Chimie Moléculaire de Grenoble, ICMG, FR-CNRS 2607, Grenoble, France
| | - Moran Kopel
- the Institute for Nanotechnology and Advanced Materials, and Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel, and
| | - Ehud Banin
- the Institute for Nanotechnology and Advanced Materials, and Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel, and
| | - Miroslaw Cygler
- From the Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada, .,the Department of Biochemistry, McGill University, Montreal, Quebec H3G 0B1, Canada
| |
Collapse
|
29
|
Pankiewicz R, Łęska B, Messyasz B, Fabrowska J, Sołoducha M, Pikosz M. First isolation of polysaccharidic ulvans from the cell walls of freshwater algae. ALGAL RES 2016. [DOI: 10.1016/j.algal.2016.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Cunha L, Grenha A. Sulfated Seaweed Polysaccharides as Multifunctional Materials in Drug Delivery Applications. Mar Drugs 2016; 14:E42. [PMID: 26927134 PMCID: PMC4820297 DOI: 10.3390/md14030042] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/10/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023] Open
Abstract
In the last decades, the discovery of metabolites from marine resources showing biological activity has increased significantly. Among marine resources, seaweed is a valuable source of structurally diverse bioactive compounds. The cell walls of marine algae are rich in sulfated polysaccharides, including carrageenan in red algae, ulvan in green algae and fucoidan in brown algae. Sulfated polysaccharides have been increasingly studied over the years in the pharmaceutical field, given their potential usefulness in applications such as the design of drug delivery systems. The purpose of this review is to discuss potential applications of these polymers in drug delivery systems, with a focus on carrageenan, ulvan and fucoidan. General information regarding structure, extraction process and physicochemical properties is presented, along with a brief reference to reported biological activities. For each material, specific applications under the scope of drug delivery are described, addressing in privileged manner particulate carriers, as well as hydrogels and beads. A final section approaches the application of sulfated polysaccharides in targeted drug delivery, focusing with particular interest the capacity for macrophage targeting.
Collapse
Affiliation(s)
- Ludmylla Cunha
- Centre for Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.
| | - Ana Grenha
- Centre for Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
- Drug Delivery Laboratory, Centre for Biomedical Research (CBMR), Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal.
| |
Collapse
|
31
|
Morelli A, Betti M, Puppi D, Chiellini F. Design, preparation and characterization of ulvan based thermosensitive hydrogels. Carbohydr Polym 2016; 136:1108-17. [DOI: 10.1016/j.carbpol.2015.09.068] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/02/2015] [Accepted: 09/21/2015] [Indexed: 11/28/2022]
|
32
|
Morelli A, Betti M, Puppi D, Bartoli C, Gazzarri M, Chiellini F. Enzymatically Crosslinked Ulvan Hydrogels as Injectable Systems for Cell Delivery. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500353] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andrea Morelli
- BIOLab Research Group; Department of Chemistry and Industrial Chemistry; University of Pisa; UdR-INSTM PISA via Moruzzi 13 56124 Pisa Italy
| | - Margherita Betti
- BIOLab Research Group; Department of Chemistry and Industrial Chemistry; University of Pisa; UdR-INSTM PISA via Moruzzi 13 56124 Pisa Italy
| | - Dario Puppi
- BIOLab Research Group; Department of Chemistry and Industrial Chemistry; University of Pisa; UdR-INSTM PISA via Moruzzi 13 56124 Pisa Italy
| | - Cristina Bartoli
- BIOLab Research Group; Department of Chemistry and Industrial Chemistry; University of Pisa; UdR-INSTM PISA via Moruzzi 13 56124 Pisa Italy
| | - Matteo Gazzarri
- BIOLab Research Group; Department of Chemistry and Industrial Chemistry; University of Pisa; UdR-INSTM PISA via Moruzzi 13 56124 Pisa Italy
| | - Federica Chiellini
- BIOLab Research Group; Department of Chemistry and Industrial Chemistry; University of Pisa; UdR-INSTM PISA via Moruzzi 13 56124 Pisa Italy
| |
Collapse
|
33
|
de Jesus Raposo MF, de Morais AMB, de Morais RMSC. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 2015; 13:2967-3028. [PMID: 25988519 PMCID: PMC4446615 DOI: 10.3390/md13052967] [Citation(s) in RCA: 336] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/26/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
There is a current tendency towards bioactive natural products with applications in various industries, such as pharmaceutical, biomedical, cosmetics and food. This has put some emphasis in research on marine organisms, including macroalgae and microalgae, among others. Polysaccharides with marine origin constitute one type of these biochemical compounds that have already proved to have several important properties, such as anticoagulant and/or antithrombotic, immunomodulatory ability, antitumor and cancer preventive, antilipidaemic and hypoglycaemic, antibiotics and anti-inflammatory and antioxidant, making them promising bioactive products and biomaterials with a wide range of applications. Their properties are mainly due to their structure and physicochemical characteristics, which depend on the organism they are produced by. In the biomedical field, the polysaccharides from algae can be used in controlled drug delivery, wound management, and regenerative medicine. This review will focus on the biomedical applications of marine polysaccharides from algae.
Collapse
Affiliation(s)
- Maria Filomena de Jesus Raposo
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Alcina Maria Bernardo de Morais
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Rui Manuel Santos Costa de Morais
- CBQF-Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| |
Collapse
|
34
|
Venkatesan J, Lowe B, Anil S, Manivasagan P, Kheraif AAA, Kang K, Kim S. Seaweed polysaccharides and their potential biomedical applications. STARCH-STARKE 2015; 67:381-390. [DOI: 10.1002/star.201400127] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 12/30/2014] [Indexed: 12/16/2024]
Abstract
Over the past two decades numerous studies have been reported on seaweeds‐derived polysaccharides for biomedical and biological applications (tissue engineering, drug delivery, wound healing, and biosensor). Alginate, carrageenan, fucoidan, and ulvan are widely used marine derived polysaccharides for biological and biomedical applications due to their biocompatibility and availability. The gel forming property of alginate has increased its applications in tissue engineering and drug delivery as an extracellular matrix and delivery vehicle, respectively. Other sulfated polysaccharides such as carrageenan and fucoidan show promising application in tissue engineering due to their capacity of inducing important osteogenic, adipogenic, and chondrogenic differentiation in stem cells. In this review, we explained the extraction/isolation methods and applications of these seaweed derived polysaccharides as well as their roles in therapeutics, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
| | - Baboucarr Lowe
- Department of Marine Bio Convergence Science Pukyong National University Busan South Korea
| | - Sukumaran Anil
- Dental Biomaterials Research, Department of Periodontics and Community Dentistry College of Dentistry King Saud University Riyadh Saudi Arabia
| | | | - Abdulaziz A Al Kheraif
- Dental Biomaterials Research, Dental Health Department College of Applied Medical Sciences King Saud University Riyadh Saudi Arabia
| | - Kyong‐Hwa Kang
- Marine Bioprocess Research Center Pukyong National University Busan South Korea
| | - Se‐Kwon Kim
- Marine Bioprocess Research Center Pukyong National University Busan South Korea
- Department of Marine Bio Convergence Science Pukyong National University Busan South Korea
| |
Collapse
|
35
|
Silva TH, Alves A, Popa EG, Reys LL, Gomes ME, Sousa RA, Silva SS, Mano JF, Reis RL. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. BIOMATTER 2012; 2:278-89. [PMID: 23507892 PMCID: PMC3568112 DOI: 10.4161/biom.22947] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biomedical field is constantly requesting for new biomaterials, with innovative properties. Natural polymers appear as materials of election for this goal due to their biocompatibility and biodegradability. In particular, materials found in marine environment are of great interest since the chemical and biological diversity found in this environment is almost uncountable and continuously growing with the research in deeper waters. Moreover, there is also a slower risk of these materials to pose illnesses to humans. In particular, sulfated polysaccharides can be found in marine environment, in different algae species. These polysaccharides don't have equivalent in the terrestrial plants and resembles the chemical and biological properties of mammalian glycosaminoglycans. In this perspective, are receiving growing interest for application on health-related fields. On this review, we will focus on the biomedical applications of marine algae sulfated polymers, in particular on the development of innovative systems for tissue engineering and drug delivery approaches.
Collapse
Affiliation(s)
- Tiago H Silva
- 3B's Research Group, Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|