1
|
Agnes CJ, Karoichan A, Tabrizian M. The Diamond Concept Enigma: Recent Trends of Its Implementation in Cross-linked Chitosan-Based Scaffolds for Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2023. [PMID: 37310896 PMCID: PMC10354806 DOI: 10.1021/acsabm.3c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An increasing number of publications over the past ten years have focused on the development of chitosan-based cross-linked scaffolds to regenerate bone tissue. The design of biomaterials for bone tissue engineering applications relies heavily on the ideals set forth by a polytherapy approach called the "Diamond Concept". This methodology takes into consideration the mechanical environment, scaffold properties, osteogenic and angiogenic potential of cells, and benefits of osteoinductive mediator encapsulation. The following review presents a comprehensive summarization of recent trends in chitosan-based cross-linked scaffold development within the scope of the Diamond Concept, particularly for nonload-bearing bone repair. A standardized methodology for material characterization, along with assessment of in vitro and in vivo potential for bone regeneration, is presented based on approaches in the literature, and future directions of the field are discussed.
Collapse
Affiliation(s)
- Celine J Agnes
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
| | - Antoine Karoichan
- Shriner's Hospital for Children, Montreal, Quebec H4A 0A9 Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec H3A 1G1 Canada
| |
Collapse
|
2
|
Silvestro I, Francolini I, Di Lisio V, Martinelli A, Pietrelli L, Scotto d’Abusco A, Scoppio A, Piozzi A. Preparation and Characterization of TPP-Chitosan Crosslinked Scaffolds for Tissue Engineering. MATERIALS 2020; 13:ma13163577. [PMID: 32823636 PMCID: PMC7475966 DOI: 10.3390/ma13163577] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023]
Abstract
Scaffolds are three-dimensional porous structures that must have specific requirements to be applied in tissue engineering. Therefore, the study of factors affecting scaffold performance is of great importance. In this work, the optimal conditions for cross-linking preformed chitosan (CS) scaffolds by the tripolyphosphate polyanion (TPP) were investigated. The effect on scaffold physico-chemical properties of different concentrations of chitosan (1 and 2% w/v) and tripolyphosphate (1 and 2% w/v) as well as of cross-linking reaction times (2, 4, or 8 h) were studied. It was evidenced that a low CS concentration favored the formation of three-dimensional porous structures with a good pore interconnection while the use of more severe conditions in the cross-linking reaction (high TPP concentration and crosslinking reaction time) led to scaffolds with a suitable pore homogeneity, thermal stability, swelling behavior, and mechanical properties, but having a low pore interconnectivity. Preliminary biocompatibility tests showed a good osteoblasts’ viability when cultured on the scaffold obtained by CS 1%, TPP 1%, and an 8-h crosslinking time. These findings suggest how modulation of scaffold cross-linking conditions may permit to obtain chitosan scaffold with properly tuned morphological, mechanical and biological properties for application in the tissue regeneration field.
Collapse
Affiliation(s)
- Ilaria Silvestro
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy; (I.S.); (I.F.); (V.D.L.); (A.M.); (L.P.); (A.S.)
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy; (I.S.); (I.F.); (V.D.L.); (A.M.); (L.P.); (A.S.)
| | - Valerio Di Lisio
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy; (I.S.); (I.F.); (V.D.L.); (A.M.); (L.P.); (A.S.)
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy; (I.S.); (I.F.); (V.D.L.); (A.M.); (L.P.); (A.S.)
| | - Loris Pietrelli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy; (I.S.); (I.F.); (V.D.L.); (A.M.); (L.P.); (A.S.)
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy;
| | - Andromeda Scoppio
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy; (I.S.); (I.F.); (V.D.L.); (A.M.); (L.P.); (A.S.)
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy; (I.S.); (I.F.); (V.D.L.); (A.M.); (L.P.); (A.S.)
- Correspondence: ; Tel.: +39-06-4991-3692
| |
Collapse
|
3
|
Kumar P, Saini M, Dehiya BS, Umar A, Sindhu A, Mohammed H, Al-Hadeethi Y, Guo Z. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications. Int J Biol Macromol 2020; 149:1-10. [PMID: 31923516 DOI: 10.1016/j.ijbiomac.2020.01.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/12/2022]
Abstract
The thought of biodegradable organic-inorganic composites composed of natural polymer chitosan and ceramic nanoparticles (hydroxyapatite and bioglass) can be considered as a solution for hard tissue engineering. In this paper, we described a comparative assessment of chitosan-nanohydroxyapatite (CTS-nHA) and chitosan-nano-bioglass (CTS-nBG) scaffolds. The dispersion of nanoscaled hydroxyapatite (nHA) and bioglass (nBG) in chitosan remained satisfactory. The freeze-dried composite based CTS-nHA and CTS-nBG scaffolds shown porous structure. The physiochemical and morphological analysis of all samples has been performed through X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The SEM image confirmed the presence of spherically shaped nHA particles of 4.20 μm and irregularly shaped nBG particles of 6.89 μm. The TEM analysis revealed the existence of 165.52 to 255.17 nm sized nHA particles and 167.35 to 334.69 nm sized nBG particles. TEM analysis also showed the interconnected structure of CTS-nHA and CTS-nBG nanocomposites. After seven days' incubation period, the CTS-nHA and CTS-nBG scaffolds shown good mineralization behavior in simulated body fluid (SBF). The CTS-nHA scaffolds exhibited enhanced compressive strength and elastic modulus compared with the CTS-nBG sample. The cell culture experiment revealed that fabricated scaffolds had good compatibility with fibroblast cells (L929, ATCC) and MG-63 which are able to adhere, proliferate, and migrate through the porous structure. All the obtained results clearly recommend that pre-loaded hydroxyapatite and bioglass nanoparticles can enhance the apatite formation. The scaffolds with chitosan, bioglass, and hydroxyapatite have better biomechanical characteristics and allow cell growth. Therefore, these scaffolds can be perfect candidates for various hard tissue engineering applications such as bone regeneration.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Haryana, India
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Haryana, India
| | - Brijnandan S Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Haryana, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran 11001, Saudi Arabia.
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, 131039, Haryana, India
| | - Hiba Mohammed
- Department of Health Sciences, Università del Piemonte Orientale UPO, 28100 Novara, Italy; Fondazione Novara Sviluppo, 28100 Novara, Italy
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
4
|
Singh BN, Pramanik K. Fabrication and evaluation of non-mulberry silk fibroin fiber reinforced chitosan based porous composite scaffold for cartilage tissue engineering. Tissue Cell 2018; 55:83-90. [PMID: 30503064 DOI: 10.1016/j.tice.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Lack of potential regenerative medicine to reconstruct damaged cartilage tissue has accelerated investigation and development of potential biomaterial for cartilage tissue engineering. In this study, we fabricated micron-sized non-mulberry silk fibroin fiber (SFF) using N,N-Dimethylacetamide (DMAC)/10% LiBr solution and further used to develop SFF reinforced chitosan(CH) based porous scaffold with desired pore size, porosity, swelling and structural stability. The developed scaffold was characterized for its various physico-chemical, mechanical and biological properties. The developed CH/SFF composite scaffold facilitates human mesenchymal stem cell (hMSCs) attachment, colonization and extracellular matrix deposition. Furthermore, hMSCs shows significantly higher sulfated glycosaminoglycan deposition over CH/SFF in comparison to pure chitosan scaffold (control). Immunocytochemistry studies have shown enhanced expression of collagen type II and aggrecan by hMSCs over composite scaffold than chitosan scaffold. Thus, non-mulberry silk fibroin fiber reinforced chitosan based scaffold might be suitable scaffold that can act as a potential artificial matrix for cartilage tissue engineering.
Collapse
Affiliation(s)
- B N Singh
- Center of Excellence in Tissue Engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - K Pramanik
- Center of Excellence in Tissue Engineering, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India.
| |
Collapse
|
5
|
Enhanced osteogenic activity of phosphorylated polyetheretherketone via surface-initiated grafting polymerization of vinylphosphonic acid. Colloids Surf B Biointerfaces 2018; 173:591-598. [PMID: 30352380 DOI: 10.1016/j.colsurfb.2018.10.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/27/2018] [Accepted: 10/12/2018] [Indexed: 11/22/2022]
Abstract
Polyetheretherketone (PEEK) is considered to be a prime candidate with the potential to replace biomedical metallic materials as an orthopedic and dental implant on account of its elastic modulus similar to that of human cortical bone. Unfortunately, its biomedical application is impeded by the bioinert surface property and inferior osteogenic activity. In this work, phosphate groups were incorporated onto the PEEK surface through a single-step UV-initiated graft polymerization of vinylphosphonic acid. Diffuse reflectance Fourier transform infrared spectroscopy (DRFTIR), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) revealed that phosphate groups were successfully introduced onto the PEEK surface without apparently altering its surface topographical feature and roughness. Water contact angle measurements diclosed the increasing hydrophilia after surface phosphonation. In vitro cell adhesion, spreading, proliferation, alkaline phosphatase activity, extracellular matrix mineralization, and real-time PCR analyses showed enhanced adhesion, spreading, proliferation and osteogenic differentiation of MC3T3-E1 osteoblast on the surface-phosphorylated PEEK. An in vivo biological evaluation in the rabbit tibiae proximal defect model by means of a histological analysis confirmed that the surface-phosphorylated PEEK had improved bone-implant contact. The obtained results indicate that enhanced osteogenic activity to surface-phosphorylated PEEK, which gives positive information of its potential applications in orthopedic and dental implants.
Collapse
|
6
|
Nano-TiO 2 Doped Chitosan Scaffold for the Bone Tissue Engineering Applications. Int J Biomater 2018; 2018:6576157. [PMID: 30250486 PMCID: PMC6140002 DOI: 10.1155/2018/6576157] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/18/2018] [Indexed: 12/03/2022] Open
Abstract
The present focus is on the synthesis of highly effective, porous, biocompatible, and inert scaffold by using ceramic nanoparticles and natural polymer for the application in tissue engineering. Freeze-drying method was used to fabricate nano-TiO2 doped chitosan sample scaffold. Nano-TiO2/chitosan scaffold can considered as an effective solution for damaged tissue regeneration. The interaction between chitosan (polysaccharide) and nano-TiO2 makes it highly porous and brittle that could be an effective substitute for bone tissue engineering. The TiO2 nanoparticles have a great surface area and inert properties while chitosan is highly biocompatible and antibacterial. The physiochemical properties of TiO2 nanoparticles and scaffold are evaluated by XRD and FTIR. The nanoparticles doped scaffold has given improved density (1.2870g/cm3) that is comparatively relevant to the dry bone (0.8 - 1.2 gm/cm3). The open and closed porosity of sample scaffold were measured by using Brunauer–Emmett–Teller analyzer (BET) and scanning electron microscopy (SEM). The mechanical properties are examined by stable microsystem (Texture Analyzer). The in vitro degradation of scaffold is calculated in PBS containing lysozyme at pH 7.4. Electron and fluorescence microscopy are used to study morphological characteristics of the scaffolds and TiO2 nanoparticles. The growth factor and drug-loaded composites can improve osteogenesis and vascularization.
Collapse
|
7
|
Comparative study of chitosan and chitosan–gelatin scaffold for tissue engineering. INTERNATIONAL NANO LETTERS 2017. [DOI: 10.1007/s40089-017-0222-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Development of a novel glucosamine/silk fibroin–chitosan blend porous scaffold for cartilage tissue engineering applications. IRANIAN POLYMER JOURNAL 2016. [DOI: 10.1007/s13726-016-0492-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:1175-1191. [PMID: 27987674 DOI: 10.1016/j.msec.2016.10.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/18/2016] [Accepted: 10/13/2016] [Indexed: 01/11/2023]
Abstract
The present work focuses on the state-of-the-art of biodegradable ceramic-polymer composites with particular emphasis on influence of various types of ceramic fillers on properties of the composites. First, the general needs to create composite materials for medical applications are briefly introduced. Second, various types of polymeric materials used as matrices of ceramic-containing composites and their properties are reviewed. Third, silica nanocomposites and their material as well as biological characteristics are presented. Fourth, different types of glass fillers including silicate, borate and phosphate glasses and their effect on a number of properties of the composites are described. Fifth, wollastonite as a composite modifier and its effect on composite characteristics are discussed. Sixth, composites containing calcium phosphate ceramics, namely hydroxyapatite, tricalcium phosphate and biphasic calcium phosphate are presented. Finally, general possibilities for control of properties of composite materials are highlighted.
Collapse
Affiliation(s)
- Michal Dziadek
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| | - Ewa Stodolak-Zych
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Biomaterials, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| | - Katarzyna Cholewa-Kowalska
- AGH University of Science and Technology, Faculty of Materials Science and Ceramics, Department of Glass Technology and Amorphous Coatings, 30 Mickiewicza Ave., 30-059 Krakow, Poland.
| |
Collapse
|
10
|
Kaur T, Thirugnanam A. Tailoring in vitro biological and mechanical properties of polyvinyl alcohol reinforced with threshold carbon nanotube concentration for improved cellular response. RSC Adv 2016. [DOI: 10.1039/c6ra08006e] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The development of living bone tissue constructs with structural, mechanical and functional similarities to natural bone are the major challenges in bone tissue engineering.
Collapse
Affiliation(s)
- Tejinder Kaur
- Department of Biotechnology and Medical Engineering
- National Institute of Technology
- Rourkela
- India
| | - Arunachalam Thirugnanam
- Department of Biotechnology and Medical Engineering
- National Institute of Technology
- Rourkela
- India
| |
Collapse
|
11
|
Siddiqui N, Pramanik K, Jabbari E. Osteogenic differentiation of human mesenchymal stem cells in freeze-gelled chitosan/nano β-tricalcium phosphate porous scaffolds crosslinked with genipin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:76-83. [PMID: 26046270 DOI: 10.1016/j.msec.2015.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/28/2015] [Accepted: 05/02/2015] [Indexed: 11/16/2022]
Abstract
The objective of this work was to investigate material properties and osteogenic differentiation of human mesenchymal stem cells (hMSCs) in genipin (GN) crosslinked chitosan/nano β-tricalcium phosphate (CS/nano β-TCP) scaffolds, and compare the results with tripolyphosphate (TPP) crosslinked scaffolds. Porous crosslinked CS/nano β-TCP scaffolds were produced by freeze-gelation using GN (CBG scaffold) and TPP (CBT scaffold) as crosslinkers. The prepared CBT and CBG scaffolds were characterized with respect to porosity, pore size, water content, wettability, compressive strength, mass loss, and osteogenic differentiation of hMSCs. All scaffolds displayed interconnected honeycomb-like microstructures. There was a significant difference between the average pore size, porosity, contact angle, and percent swelling of CBT and CBG scaffolds. The average pore size of CBG scaffolds was higher than CBT, the porosity of CBG was lower than CBT, the water contact angle of CBG was higher than CBT, and the percent swelling of CBG was lower than CBT. At a given crosslinker concentration, there was not a significant difference in compressive modulus and mass loss of CBG and CBT scaffolds. Metabolic activity of hMSCs seeded in CBG scaffolds was slightly higher than CBT. Furthermore, CBG scaffolds displayed slightly higher extent of mineralization after 21 days of incubation in osteogenic medium compared to CBT.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Esmaiel Jabbari
- Biomimetic Materials and Tissue Engineering Laboratory, Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
12
|
Nie J, Wang Z, Zhang K, Hu Q. Biomimetic multi-layered hollow chitosan–tripolyphosphate rod with excellent mechanical performance. RSC Adv 2015. [DOI: 10.1039/c5ra00936g] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Design of hollow and multi-layered features in chitosan–tripolyphosphate rod and the resulting excellent mechanical performance.
Collapse
Affiliation(s)
- Jingyi Nie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Kai Zhang
- Affiliated Stomatology Hospital of Medicine College
- Zhejiang University
- Hangzhou 310006
- China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization
- Department of Polymer Science and Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|
13
|
Ghosh P, Rameshbabu AP, Dhara S. Citrate cross-linked gels with strain reversibility and viscoelastic behavior accelerate healing of osteochondral defects in a rabbit model. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8442-8451. [PMID: 24971647 DOI: 10.1021/la500698v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Most living tissues are viscoelastic in nature. Self-repair due to the dissipation of energy by reversible bonds prevents the rupture of the molecular backbone in these tissues. Recent studies, therefore, have aimed to synthesize biomaterials that approximate the mechanical performance of biological materials with self-recovery properties. We report an environmentally friendly method for the development of ionotropically cross-linked viscoelastic chitosan gels with a modulus comparable to that of living tissues. The strain recovery property was found to be highest for the gels with the lowest cross-linking density. The force-displacement curve showed significant hysteresis due to the presence of reversible bonds in the cross-linked gels. Nanoindentation studies demonstrated the creep phenomenon for the cross-linked chitosan gels. Creep, hysteresis, and plasticity index confirmed the viscoelastic behavior of the cross-linked gels. The viscoelastic gels were implanted at osteochondral defect sites to assess the tissue regeneration ability. In vivo results demonstrated early cartilage formation and woven bone deposition for defects filled with the gels compared to nontreated defects.
Collapse
Affiliation(s)
- Paulomi Ghosh
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur , Kharagpur 721302, India
| | | | | |
Collapse
|
14
|
Siddiqui N, Pramanik K. Effects of micro and nano β-TCP fillers in freeze-gelled chitosan scaffolds for bone tissue engineering. J Appl Polym Sci 2014. [DOI: 10.1002/app.41025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nadeem Siddiqui
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela Odisha 769008 India
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering; National Institute of Technology; Rourkela Odisha 769008 India
| |
Collapse
|
15
|
Abstract
Bone defects requiring grafts to promote healing are frequently occurring and costly problems in health care. Chitosan, a biodegradable, naturally occurring polymer, has drawn considerable attention in recent years as scaffolding material in tissue engineering and regenerative medicine. Chitosan is especially attractive as a bone scaffold material because it supports the attachment and proliferation of osteoblast cells as well as formation of mineralized bone matrix. In this review, we discuss the fundamentals of bone tissue engineering and the unique properties of chitosan as a scaffolding material to treat bone defects for hard tissue regeneration. We present the common methods for fabrication and characterization of chitosan scaffolds, and discuss the influence of material preparation and addition of polymeric or ceramic components or biomolecules on chitosan scaffold properties such as mechanical strength, structural integrity, and functional bone regeneration. Finally, we highlight recent advances in development of chitosan-based scaffolds with enhanced bone regeneration capability.
Collapse
Affiliation(s)
- Sheeny Lan Levengood
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195 USA
| | - Miqin Zhang
- Department of Materials Science & Engineering, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
16
|
Ghosh P, Rameshbabu AP, Dogra N, Dhara S. 2,5-Dimethoxy 2,5-dihydrofuran crosslinked chitosan fibers enhance bone regeneration in rabbit femur defects. RSC Adv 2014. [DOI: 10.1039/c4ra01971g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Chitosan fibers were fabricated via pH induced neutralization and precipitation in a 5 w/v% NaOH bath.
Collapse
Affiliation(s)
- Paulomi Ghosh
- Biomaterials and Tissue Engineering Laboratory
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302, India
| | - Arun Prabhu Rameshbabu
- Biomaterials and Tissue Engineering Laboratory
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302, India
| | - Nantu Dogra
- Biomaterials and Tissue Engineering Laboratory
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory
- School of Medical Science and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302, India
| |
Collapse
|