1
|
Qiu W, Zhang K, Wu M, Fu M, Wu H, Tang R, Chen Z, Guo J, Fang F. Tri-Layer Citrate-Based Hydroxyapatite Composite Scaffold Promoting Osteogenesis and Gingival Tissue Regeneration for Periodontal Bone Defect Repair. Adv Healthc Mater 2025; 14:e2501002. [PMID: 40171748 DOI: 10.1002/adhm.202501002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Indexed: 04/04/2025]
Abstract
Periodontal bone defect (PBD) treatment involving oral soft and hard tissues is complicated and high requirements for regenerated materials. Besides osteogenic effects, the materials are also required to have the function of barrier soft tissues and promote wound healing. Citrate is reported to promote bone formation through enhanced osteoinductivity and facilitate wound healing by enabling phased angiogenesis. Herein, a novel tri-layered citrate-based hydroxyapatite (Ci-HA) composite scaffold that serves as a bone substitute is developed by "one-pot" method for PBD treatment. It is found that Ci-HA degradation products can promote the osteoblastic differentiation of rat bone mesenchymal stem cells and human periodontal ligament stem cells and upregulate angiogenesis-related gene expression in human gingival fibroblasts. Moreover, 3D remodeling in vitro shows that an intermediate layer of tri-layered Ci-HA composite scaffold acts as an optimal barrier. In vivo evaluation of Ci-HA in a rat periodontal intrabony three-wall defect model shows significantly increased bone formation with markedly enhanced osseointegration and better wound healing properties similarly with commercial Bio-Oss bone powder and Bio-Gide membrane. Thus, the novel tri-layered Ci-HA composite scaffold with high biocompatibility may represent a promising biomaterial with multi-effective bone regeneration, barrier effect, and wound healing capacity in the treatment of PBD.
Collapse
Affiliation(s)
- Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Kaiying Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Min Wu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Meimei Fu
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Hongle Wu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, P. R. China
| | - Ruoshu Tang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zehao Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Jinshan Guo
- Department of Histology and Embryology, NMPA Key Laboratory for Safety Evaluation of Cosmetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
2
|
Thirumaran A, Doulgkeroglou MN, Sankar M, Easley JT, Gadomski B, Poudel A, Biggs M. A functional analysis of a resorbable citrate-based composite tendon anchor. Bioact Mater 2024; 41:207-220. [PMID: 39149596 PMCID: PMC11325281 DOI: 10.1016/j.bioactmat.2024.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 08/17/2024] Open
Abstract
Rapid and efficient tendon fixation to a bone following trauma or in response to degenerative processes can be facilitated using a tendon anchoring device. Osteomimetic biomaterials, and in particular, bio-resorbable polymer composites designed to match the mineral phase content of native bone, have been shown to exhibit osteoinductive and osteoconductive properties in vivo and have been used in bone fixation for the past 2 decades. In this study, a resorbable, bioactive, and mechanically robust citrate-based composite formulated from poly(octamethylene citrate) (POC) and hydroxyapatite (HA) (POC-HA) was investigated as a potential tendon-fixation biomaterial. In vitro analysis with human Mesenchymal Stem Cells (hMSCs) indicated that POC-HA composite materials supported cell adhesion, growth, and proliferation and increased calcium deposition, alkaline phosphatase production, the expression of osteogenic specific genes, and activation of canonical pathways leading to osteoinduction and osteoconduction. Further, in vivo evaluation of a POC-HA tendon fixation device in a sheep metaphyseal model indicates the regenerative and remodeling potential of this citrate-based composite material. Together, this study presents a comprehensive in vitro and in vivo analysis of the functional response to a citrate-derived composite tendon anchor and indicates that citrate-based HA composites offer improved mechanical and osteogenic properties relative to commonly used resorbable tendon anchor devices formulated from poly(L-co-D, l-lactic acid) and tricalcium phosphate PLDLA-TCP.
Collapse
Affiliation(s)
- Arun Thirumaran
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Ireland
| | | | - Magesh Sankar
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Ireland
| | - Jeremiah T Easley
- Department of Mechanical Engineering, Colorado State University, USA
| | - Ben Gadomski
- Department of Mechanical Engineering, Colorado State University, USA
| | - Anup Poudel
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Ireland
| | - Manus Biggs
- Centre for Research in Medical Devices (CÚRAM), University of Galway, Ireland
| |
Collapse
|
3
|
Moskalewski S, Hyc A, Niderla-Bielińska J, Osiecka-Iwan A, Jaroszewicz J, Szlązak K, Święszkowski W. The Role of Citrate in Formation of Mineral Structure of Bone. Ortop Traumatol Rehabil 2024; 26:189-201. [PMID: 40035206 DOI: 10.5604/01.3001.0054.9875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Ceramic materials produced by various methods from calcium phosphates have long been used in orthopaedic and dental surgery. Until recently, it was generally believed that at least some of them faithfully reproduce bone minerals. Newer studies, however, have shown that hydroxyapatite in bone is closely associated with citrate molecules. This raises the yet unanswered question whether the materials used in clinical practice are optimal in relation to the tasks which they are supposed to fulfil. The description of the function of citrate in bone mineralization requires appropriate background information, which is presented in this review.
Collapse
Affiliation(s)
- Stanisław Moskalewski
- Katedra i Zakład Histologii i Embriologii, Warszawski Uniwersytet Medyczny, Warszawa, Polska / Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Hyc
- Katedra i Zakład Histologii i Embriologii, Warszawski Uniwersytet Medyczny, Warszawa, Polska / Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Justyna Niderla-Bielińska
- Katedra i Zakład Histologii i Embriologii, Warszawski Uniwersytet Medyczny, Warszawa, Polska / Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Osiecka-Iwan
- Katedra i Zakład Histologii i Embriologii, Warszawski Uniwersytet Medyczny, Warszawa, Polska / Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Jakub Jaroszewicz
- Wydział Inżynierii Materiałowej, Politechnika Warszawska, Warszawa, Polska / Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Karol Szlązak
- Wydział Inżynierii Materiałowej, Politechnika Warszawska, Warszawa, Polska / Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| | - Wojciech Święszkowski
- Wydział Inżynierii Materiałowej, Politechnika Warszawska, Warszawa, Polska / Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
4
|
Wang Y, Yokoi T, Shimabukuro M, Kawashita M. Calcium Citrate Amount and Gelatine Source Impact on Hydroxyapatite Formation in Bone Regeneration Material in Simulated Body Fluid. Molecules 2024; 29:3925. [PMID: 39203002 PMCID: PMC11357162 DOI: 10.3390/molecules29163925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Bone grafting is crucial for bone regeneration. Recent studies have proposed the use of calcium citrate (CC) as a potential graft material. Notably, citrate does not inhibit hydroxyapatite (HAp) formation at specific calcium-to-citrate molar ratios. Octacalcium phosphate (OCP)/gelatine (Gel) composites, which are commonly produced from porcine Gel, are valued for their biodegradability and bone replacement capability. This study introduces fish Gel as an alternative to porcine Gel because of its wide acceptance and eco-friendliness. This is the first study to examine the interaction effects between two osteogenic materials, OCP/CC, and the influence of different gelatine matrix components on HAp formation in an SBF. Samples with varying CC contents were immersed in an SBF for 7 d and analysed using various techniques, confirming that high CC doses prevent HAp formation, whereas lower doses facilitate it. Notably, small-sized OCP/CC/porcine Gel composites exhibit a high HAp generation rate. Porcine Gel composites form denser HAp clusters, whereas fish Gel composites form larger spherical HAps. This suggests that lower CC doses not only avoid inhibiting HAp formation but also enhance it with the OCP/Gel composite. Compared with porcine Gel, fish Gel composites show less nucleation but an increased crystal growth for HAp.
Collapse
Affiliation(s)
- Yuejun Wang
- Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Taishi Yokoi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (M.S.); (M.K.)
| | - Masaya Shimabukuro
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (M.S.); (M.K.)
| | - Masakazu Kawashita
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan; (M.S.); (M.K.)
| |
Collapse
|
5
|
Xu H, Yan S, Gerhard E, Xie D, Liu X, Zhang B, Shi D, Ameer GA, Yang J. Citric Acid: A Nexus Between Cellular Mechanisms and Biomaterial Innovations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402871. [PMID: 38801111 PMCID: PMC11309907 DOI: 10.1002/adma.202402871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/07/2024] [Indexed: 05/29/2024]
Abstract
Citrate-based biodegradable polymers have emerged as a distinctive biomaterial platform with tremendous potential for diverse medical applications. By harnessing their versatile chemistry, these polymers exhibit a wide range of material and bioactive properties, enabling them to regulate cell metabolism and stem cell differentiation through energy metabolism, metabonegenesis, angiogenesis, and immunomodulation. Moreover, the recent US Food and Drug Administration (FDA) clearance of the biodegradable poly(octamethylene citrate) (POC)/hydroxyapatite-based orthopedic fixation devices represents a translational research milestone for biomaterial science. POC joins a short list of biodegradable synthetic polymers that have ever been authorized by the FDA for use in humans. The clinical success of POC has sparked enthusiasm and accelerated the development of next-generation citrate-based biomaterials. This review presents a comprehensive, forward-thinking discussion on the pivotal role of citrate chemistry and metabolism in various tissue regeneration and on the development of functional citrate-based metabotissugenic biomaterials for regenerative engineering applications.
Collapse
Affiliation(s)
- Hui Xu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Denghui Xie
- Department of Histology and Embryology, School of Basic Medical Sciences, Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, 510515, P. R. China
- Academy of Orthopedics of Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, P. R. China
| | - Xiaodong Liu
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Bing Zhang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, 310030, P. R. China
- Westlake Institute for Advanced Study, Hangzhou, Zhejiang, 310030, P. R. China
| | - Dongquan Shi
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian Yang
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
- Biomedical Engineering Program, School of Engineering, Westlake University, Hangzhou, Zhejiang, 310030, P. R. China
| |
Collapse
|
6
|
Shirkoohi FJ, Ghollasi M, Halabian R, Eftekhari E, Ghiasi M. Oxaloacetate as new inducer for osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol Biol Rep 2024; 51:451. [PMID: 38536507 DOI: 10.1007/s11033-024-09389-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/26/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Mitochondrial organelles play a crucial role in cellular metabolism so different cell types exhibit diverse metabolic and energy demands. Therefore, alternations in the intracellular distribution, quantity, function, and structure of mitochondria are required for stem cell differentiation. Finding an effective inducer capable of modulating mitochondrial activity is critical for the differentiation of specific stem cells into osteo-like cells for addressing issues related to osteogenic disorders. This study aimed to investigate the effect of oxaloacetate (OAA) on the osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADSCs) in vitro. METHODS AND RESULTS First, the most favorable OAA concentration was measured through MTT assay and subsequently confirmed using acridine orange staining. Human ADSCs were cultured in osteogenic medium supplemented with OAA and analyzed on days 7 and 14 of differentiation. Various assays including alkaline phosphatase assay (ALP), cellular calcium content assay, mineralized matrix staining with alizarin red, catalase (CAT) and superoxide dismutase (SOD) activity, and real-time RT-PCR analysis of three bone-specific markers (ALP, osteocalcin, and collagen type I) were conducted to characterize the differentiated cells. Following viability assessment, OAA at a concentration of 1 µM was considered the optimal dosage for further studies. The results of osteogenic differentiation assays showed that OAA at a concentration of 1 × 10- 6 M significantly increased ALP enzyme activity, mineralization, CAT and SOD activity and the expression of bone-specific genes in differentiated cells compared to control groups in vitro. CONCLUSIONS In conclusion, the fundings from this study suggest that OAA possesses favorable properties that make it a potential candidate for application in medical bone regeneration.
Collapse
Affiliation(s)
- Fatemeh Jamali Shirkoohi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box 31979-37551, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, P. O. Box 31979-37551, Tehran, Iran.
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elahe Eftekhari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Wang B, Zhao Y, Li Y, Tang C, He P, Liu X, Yao J, Chu C, Xu B. NIR-responsive injectable magnesium phosphate bone cement loaded with icariin promotes osteogenesis. J Mech Behav Biomed Mater 2024; 150:106256. [PMID: 38048713 DOI: 10.1016/j.jmbbm.2023.106256] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
There were defects like limited osteogenesis and fast drug release in traditional magnesium phosphate bone cement (MPC). In this study, we loaded icariin in a mesoporous nano silica container modified by polydopamine and then added it and citric acid into MPC (IHP-CA MPCs). The results indicate that IHP-CA MPCs have a long curing time, almost neutral pH value, excellent injectability, and compressive strength. In vitro experiments have shown that IHP-CA MPCs have good biocompatibility and bone promoting ability. These improvements provide feasible solutions and references for the clinical application of MPCs as implants.
Collapse
Affiliation(s)
- Bin Wang
- Department of Orthopedics, Jingling Hospital, Medicine College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Yanbin Zhao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Yangyang Li
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chengliang Tang
- Huadong Medical Institute of Biotechniques, Nanjing, 210002, Jiangsu, China
| | - Peng He
- Department of Orthopedics, Jingling Hospital, Medicine College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Xiaowei Liu
- Department of Orthopedics, Jingling Hospital, Medicine College, Nanjing University, Nanjing, 210002, Jiangsu, China
| | - Junyan Yao
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Southeast University, Nanjing, 211189, China.
| | - Bin Xu
- Department of Orthopedics, Jingling Hospital, Medicine College, Nanjing University, Nanjing, 210002, Jiangsu, China.
| |
Collapse
|
8
|
Tzagiollari A, Redmond J, McCarthy HO, Levingstone TJ, Dunne NJ. Multi-objective property optimisation of a phosphoserine-modified calcium phosphate cement for orthopaedic and dental applications using design of experiments methodology. Acta Biomater 2024; 174:447-462. [PMID: 38000527 DOI: 10.1016/j.actbio.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Phosphoserine is a ubiquitous molecule found in numerous proteins and, when combined with alpha-tricalcium phosphate (α-TCP) powder, demonstrates the ability to generate an adhesive biomaterial capable of stabilising and repairing bone fractures. Design of Experiments (DoE) approach was able to optimise the composition of phosphoserine-modified calcium phosphate cement (PM-CPC) demonstrating that the liquid:powder ratio (LPR) and quantity of phosphoserine (wt%) significantly influenced the handling, mechanical, and adhesion properties. Subsequently, the DoE optimisation process identified the optimal PM-CPC formulation, exhibiting a compressive strength of 29.2 ± 4.9 MPa and bond/shear strength of 3.6 ± 0.9 MPa after a 24 h setting reaction. Moreover, the optimal PM-CPC composition necessitated a mixing time of 20 s and displayed an initial setting time between 3 and 4 min, thus enabling homogenous mixing and precise delivery within a surgical environment. Notably, the PM-CPC demonstrated a bone-to-bone bond strength of 1.05 ± 0.3 MPa under wet conditions, coupled with a slow degradation rate during the first five days. These findings highlight the ability of PM-CPC to effectively support and stabilise bone fragments during the initial stages of natural bone healing. The developed PM-CPC formulations fulfil the clinical requirements for working and setting times, static mechanical, degradation properties, and injectability, enabling surgeons to stabilise complex bone fractures. This innovative bioinspired adhesive represents a significant advancement in the treatment of challenging bone injuries, offering precise delivery within a surgical environment and the potential to enhance patient outcomes. STATEMENT OF SIGNIFICANCE: This manuscript presents a noteworthy contribution to the field of bone fracture healing and fixation by introducing a novel phosphoserine-modified calcium phosphate cement (PM-CPC) adhesive by incorporating phosphoserine and alpha-TCP. This study demonstrates the fabrication and extensive characterisation of this adhesive biomaterial that holds great promise for stabilising and repairing complex bone fractures. Design of Experiment (DoE) software was used to investigate the correlations between process, property, and structure of the adhesive, resulting in a cost-effective formulation with desirable physical and handling properties. The PM-CPC adhesive exhibited excellent adhesion and cohesion properties in wet-field conditions. This research offers significant potential for clinical translation and contributes to the ongoing advancements in bone tissue engineering.
Collapse
Affiliation(s)
- Antzela Tzagiollari
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland
| | - John Redmond
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland; School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom; Biodesign Europe, Dublin City University, Dublin 9, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland; Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland; Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
9
|
Maru V, Ismail B M, Langaliya A, Karthikeyan B, Habiba S. Evaluation of cytotoxicity of 3.8 % SDF and BioAKT solutions on the viability of dental pulp stem cells. J Oral Biol Craniofac Res 2024; 14:86-91. [PMID: 38293570 PMCID: PMC10825334 DOI: 10.1016/j.jobcr.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Introduction Nonsurgical endodontic therapies have evolved from classic endodontic therapies to regenerative endodontic treatments (RETs) in recent years. In context of the cytotoxic activity of the most commonly used endodontic irrigant, NaOCl, newer endodontic irrigating solutions should be tested for its effective use in RETs. The aim of this trial was to examine and assess the cytotoxic response of 3.8 % SDF and BioAKT irrigating solutions on the viability of DPSCs. Methods The viability of DPSCs cultivated in 5.25 % NaOCl, 3.8 % SDF & BioAKT at dilutions of 1:100,1:20 &1:10 were evaluated through MTT assay after 10 min, 60 min and 24 h incubation, detection of apoptosis and ALP activity after 7,14 & 21-days incubation. A two-way analysis of variance (ANOVA) with post hoc Turkey HSD was performed to determine significant differences between the specimens tested. Results When compared to the control at all time periods, all test specimens at varied dilutions (1:100, 1:20, and 1:10) caused no cytotoxic effects. The maximum number of live cells and ALP activity was observed with DPSCs cultivated in BioAKT followed by 3.8 % SDF and 5.25 % NaOCl at all time intervals. Conclusion Different doses of 3.8 % SDF and BioAKT solution revealed encouraging outcomes when compared to 5.25 % NaOCl in terms of viability, proliferation and long-term ALP functioning potential when cultivated in DPSCs.
Collapse
Affiliation(s)
- Viral Maru
- Dept. Pediatric & Preventive Dentistry, Government Dental College & Hospital, Mumbai, India
| | - Mohammed Ismail B
- Dept of Periodontology, Guardian College of Dental Sciences, Ambernath, India
| | - Akshayraj Langaliya
- Department of Conservative Dentistry and Endodontics, AMC Dental College and Hospital, Ahmedabad, India
| | | | - Syeda Habiba
- Department of Pedodontics and Preventive Dentistry, Rajasthan Dental College, Jaipur, India
| |
Collapse
|
10
|
Cheng S, Zhao C, Liu S, Chen B, Chen H, Luo X, Wei L, Du C, Xiao P, Lei Y, Yan Y, Huang W. Injectable Self-Setting Ternary Calcium-Based Bone Cement Promotes Bone Repair. ACS OMEGA 2023; 8:16809-16823. [PMID: 37214722 PMCID: PMC10193540 DOI: 10.1021/acsomega.3c00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
Bone defects, especially large ones, are clinically difficult to treat. The development of new bone repair materials exhibits broad application prospects in the clinical treatment of trauma. Bioceramics are considered to be one of the most promising biomaterials owing to their good biocompatibility and bone conductivity. In this study, a self-curing bone repair material having a controlled degradation rate was prepared by mixing calcium citrate, calcium hydrogen phosphate, and semi-hydrated calcium sulfate in varying proportions, and its properties were comprehensively evaluated. In vitro cell experiments and RNA sequencing showed that the composite cement activated PI3K/Akt and MAPK/Erk signaling pathways to promote osteogenesis by promoting the proliferation and osteoblastic differentiation of mesenchymal stem cells. In a rat model with femoral condyle defects, the composite bone cement showed excellent bone repair effect and promoted bone regeneration. The injectable properties of the composite cement further improved its practical applicability, and it can be applied in bone repair, especially in the repair of irregular bone defects, to achieve superior healing.
Collapse
Affiliation(s)
- Shengwen Cheng
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chen Zhao
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Senrui Liu
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Bowen Chen
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hong Chen
- College
of Physics, Sichuan University, Chengdu 610064, China
| | - Xuefeng Luo
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chengcheng Du
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Pengcheng Xiao
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yiting Lei
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yonggang Yan
- College
of Physics, Sichuan University, Chengdu 610064, China
| | - Wei Huang
- The
First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
11
|
Wang M, Xu P, Lei B. Engineering multifunctional bioactive citrate-based biomaterials for tissue engineering. Bioact Mater 2023; 19:511-537. [PMID: 35600971 PMCID: PMC9096270 DOI: 10.1016/j.bioactmat.2022.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 12/21/2022] Open
Abstract
Developing bioactive biomaterials with highly controlled functions is crucial to enhancing their applications in regenerative medicine. Citrate-based polymers are the few bioactive polymer biomaterials used in biomedicine because of their facile synthesis, controllable structure, biocompatibility, biomimetic viscoelastic mechanical behavior, and functional groups available for modification. In recent years, various multifunctional designs and biomedical applications, including cardiovascular, orthopedic, muscle tissue, skin tissue, nerve and spinal cord, bioimaging, and drug or gene delivery based on citrate-based polymers, have been extensively studied, and many of them have good clinical application potential. In this review, we summarize recent progress in the multifunctional design and biomedical applications of citrate-based polymers. We also discuss the further development of multifunctional citrate-based polymers with tailored properties to meet the requirements of various biomedical applications.
Collapse
Affiliation(s)
- Min Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Peng Xu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
- State-Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710000, China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
12
|
Liu XH, Pan JP, Bauman WA, Cardozo C. Myostatin inhibits insulin-like growth factor 1-dependent citrate secretion and osteogenesis via nicotinamide adenine dinucleotide phosphate oxidase-4 in a mouse mesenchymal stem cell line. Ann N Y Acad Sci 2022; 1517:203-212. [PMID: 36072988 DOI: 10.1111/nyas.14894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Citrate is an indispensable component of bone. Reduced levels of citrate in bone and serum are reported in the elderly and in osteoporosis patients. Myostatin (Mstn) is implicated in skeletal homeostasis, but its effects on osteogenesis remain incompletely understood. Nox4 has critical roles in bone homeostasis. TGF-β/Mstn-associated Smad2/3 signaling has been linked to Nox4 expression. Insulin-like growth factor (IGF-1) has been shown to counteract many regulatory effects of Mstn. However, the crosstalk among Mstn, IGF-1, and Nox4 is not well understood; the interactive effects of those factors on citrate secretion, osteogenic differentiation, and bone remodeling remain unclear. In this study, we demonstrated that osteogenic differentiation induced an IGF-1-dependent upregulation of citrate secretion that was suppressed by Mstn. Inhibition of Nox4 prevented Mstn-induced reduction of citrate secretion. In addition, Mstn reduced bone nodule formation; these changes were prevented by Nox4 inhibition. Moreover, Mstn increased the ratio of RANKL to OPG mRNAs to favor osteoclast activation. These results indicate that Mstn negatively regulates osteogenesis by increasing levels of Nox4, which reduced IGF-1 expression, citrate secretion, and bone mineralization while also altering the RANKL to OPG ratio. These findings provide new and highly relevant insights into the osseous effects of myostatin.
Collapse
Affiliation(s)
- Xin-Hua Liu
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jiang Ping Pan
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, New York, USA
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Medical Service, James J. Peter VA Medical Center, Bronx, New York, USA
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Bone Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peter VA Medical Center, Bronx, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Medical Service, James J. Peter VA Medical Center, Bronx, New York, USA
- Department of Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Bone Program, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
13
|
Johnson TA, Conzemius MG. Outcome of cranial cruciate ligament replacement with an enhanced polyethylene terephthalate implant in the dog: A pilot clinical trial. Vet Surg 2022; 51:1215-1222. [PMID: 36165283 PMCID: PMC9827950 DOI: 10.1111/vsu.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To assess the 6-month outcome and survival of enhanced polyethylene terephthalate (PET) implants as a replacement for the cranial cruciate ligament (CCL) in dogs with spontaneous CCL disease (CCLD). STUDY DESIGN Pilot, prospective case series. ANIMALS Ten client-owned large breed dogs with unilateral spontaneous CCLD. METHODS Dogs were evaluated before and 6 months after intra-articular placement of a PET implant with the Liverpool Osteoarthritis in Dogs questionnaire and force platform gait analysis. Arthroscopy was performed 6 months after surgery to visually assess implant integrity. RESULTS Scores on owner questionnaires and limb asymmetry improved in all dogs that reached the 6-month time point, by 51.7% (p = .008) and 86% (p = .002), respectively. The PET implant appeared intact and functioning in two stifles, partially intact and functioning in four stifles and completely torn in three stifles. One dog had an implant infection and was removed from the study. Evidence of deterioration and tearing occurred in the midbody of the implant. CONCLUSION Although function improved over the course of this study, only 2/10 implants appeared intact 6 months after placement. CLINICAL SIGNIFICANCE Implant survivability prohibits further clinical investigation using this implant.
Collapse
Affiliation(s)
- Tiffany A. Johnson
- Department of Veterinary Clinical SciencesUniversity of Minnesota, College of Veterinary MedicineSaint PaulMinnesotaUSA
| | - Michael G. Conzemius
- Department of Veterinary Clinical SciencesUniversity of Minnesota, College of Veterinary MedicineSaint PaulMinnesotaUSA
| |
Collapse
|
14
|
Zhang X, Li Q, Wang Z, Zhou W, Zhang L, Liu Y, Xu Z, Li Z, Zhu C, Zhang X. Bone regeneration materials and their application over 20 years: A bibliometric study and systematic review. Front Bioeng Biotechnol 2022; 10:921092. [PMID: 36277397 PMCID: PMC9581237 DOI: 10.3389/fbioe.2022.921092] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Bone regeneration materials (BRMs) bring us new sights into the clinical management bone defects. With advances in BRMs technologies, new strategies are emerging to promote bone regeneration. The aim of this study was to comprehensively assess the existing research and recent progress on BRMs, thus providing useful insights into contemporary research, as well as to explore potential future directions within the scope of bone regeneration therapy. A comprehensive literature review using formal data mining procedures was performed to explore the global trends of selected areas of research for the past 20 years. The study applied bibliometric methods and knowledge visualization techniques to identify and investigate publications based on the publication year (between 2002 and 2021), document type, language, country, institution, author, journal, keywords, and citation number. The most productive countries were China, United States, and Italy. The most prolific journal in the BRM field was Acta Biomaterialia, closely followed by Biomaterials. Moreover, recent investigations have been focused on extracellular matrices (ECMs) (370 publications), hydrogel materials (286 publications), and drug delivery systems (220 publications). Research hotspots related to BRMs and extracellular matrices from 2002 to 2011 were growth factor, bone morphogenetic protein (BMP)-2, and mesenchymal stem cell (MSC), whereas after 2012 were composite scaffolds. Between 2002 and 2011, studies related to BRMs and hydrogels were focused on BMP-2, in vivo, and in vitro investigations, whereas it turned to the exploration of MSCs, mechanical properties, and osteogenic differentiation after 2012. Research hotspots related to BRM and drug delivery were fibroblast growth factor, mesoporous materials, and controlled release during 2002–2011, and electrospinning, antibacterial activity, and in vitro bioactivity after 2012. Overall, composite scaffolds, 3D printing technology, and antibacterial activity were found to have an important intersection within BRM investigations, representing relevant research fields for the future. Taken together, this extensive analysis highlights the existing literature and findings that advance scientific insights into bone tissue engineering and its subsequent applications.
Collapse
Affiliation(s)
- Xudong Zhang
- Department of Orthopedics, The Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Qianming Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhengxi Wang
- Department of Orthopedics, Anhui Provincial Hospital, Wannan Medical College, Hefei, China
| | - Wei Zhou
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linlin Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingsheng Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ze Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zheng Li
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chen Zhu
- Department of Orthopedics, The Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xianzuo Zhang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Xianzuo Zhang,
| |
Collapse
|
15
|
Wan C, Hu M, Peng X, Lei N, Ding H, Luo Y, Yu X. Novel multifunctional dexamethasone carbon dots synthesized using the one-pot green method for anti-inflammatory, osteogenesis, and osteoimmunomodulatory in bone regeneration. Biomater Sci 2022; 10:6291-6306. [PMID: 36135326 DOI: 10.1039/d2bm01153k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone tissue regeneration is still a major orthopedic challenge. The process of bone regeneration is often disrupted by inflammation. Elevated levels of reactive oxygen species (ROS) can lead to aggravated inflammation and even hinder tissue repairs. Therefore, inhibiting the inflammatory response during the process of bone regeneration and promoting bone tissue regeneration under inflammatory conditions are the goals that need to be achieved urgently. In this work, dexamethasone carbon dots (DCDs) were developed by a one-pot facile hydrothermal method using citric acid, ammonium fluoride, and a trace amount of dexamethasone. The obtained DCDs exhibited good biocompatibility and could promote the differentiation of rBMSCs under both normal and inflammatory conditions. Owing to the abundant-reducing groups, DCDs could also scavenge ROS (˙OH) and retain the pharmacological activity of dexamethasone, thereby reducing the inflammatory response. Moreover, DCDs presented a good osteoimmunomodulatory activity to induce a bone immune microenvironment and further promote the differentiation of BMSCs. DCDs could promote macrophage phenotype switching (from M1-type macrophages to M2-type macrophages) under inflammatory conditions, which was beneficial to the anti-inflammatory response. All in all, DCDs could reduce the inflammatory response of bone tissue and accelerate bone regeneration in combination with the regulation of the bone immune. Undoubtedly, it also provided a new idea for developing a novel carbon nanomaterial for repairing bone tissue defects.
Collapse
Affiliation(s)
- Chang Wan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China. .,Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P.R. China
| | - Ningning Lei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Hongmei Ding
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.
| |
Collapse
|
16
|
Tan X, Gerhard E, Wang Y, Tran RT, Xu H, Yan S, Rizk EB, Armstrong AD, Zhou Y, Du J, Bai X, Yang J. Development of Biodegradable Osteopromotive Citrate-Based Bone Putty. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203003. [PMID: 35717669 PMCID: PMC9463100 DOI: 10.1002/smll.202203003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 05/30/2023]
Abstract
The burden of bone fractures demands development of effective biomaterial solutions, while additional acute events such as noncompressible bleeding further motivate the search for multi-functional implants to avoid complications including osseous hemorrhage, infection, and nonunion. Bone wax has been widely used in orthopedic bleeding control due to its simplicity of use and conformation to irregular defects; however, its nondegradability results in impaired bone healing, risk of infection, and significant inflammatory responses. Herein, a class of intrinsically fluorescent, osteopromotive citrate-based polymer/hydroxyapatite (HA) composites (BPLP-Ser/HA) as a highly malleable press-fit putty is designed. BPLP-Ser/HA putty displays mechanics replicating early nonmineralized bone (initial moduli from ≈2-500 kPa), hydration induced mechanical strengthening in physiological conditions, tunable degradation rates (over 2 months), low swelling ratios (<10%), clotting and hemostatic sealing potential (resistant to blood pressure for >24 h) and significant adhesion to bone (≈350-550 kPa). Simultaneously, citrate's bioactive properties result in antimicrobial (≈100% and 55% inhibition of S. aureus and E. coli) and osteopromotive effects. Finally, BPLP-Ser/HA putty demonstrates in vivo regeneration in a critical-sized rat calvaria model equivalent to gold standard autograft. BPLP-Ser/HA putty represents a simple, off-the-shelf solution to the combined challenges of acute wound management and subsequent bone regeneration.
Collapse
Affiliation(s)
- Xinyu Tan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510280, China
| | - Ethan Gerhard
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yuqi Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Richard T. Tran
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hui Xu
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Su Yan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Elias B. Rizk
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - April D. Armstrong
- Department of Orthopaedics and Rehabilitation, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Yuxiao Zhou
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jing Du
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
- Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, 510280, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
17
|
Huddleston SE, Duan C, Ameer GA. Azo polymerization of citrate‐based biomaterial‐ceramic composites at physiological temperatures. NANO SELECT 2022. [DOI: 10.1002/nano.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | - Chongwen Duan
- Department of Surgery Feinberg School of Medicine Northwestern University Chicago Illinois USA
| | - Guillermo A. Ameer
- Center for Advanced Regenerative Engineering (CARE) Evanston Illinois USA
| |
Collapse
|
18
|
Tzagiollari A, McCarthy HO, Levingstone TJ, Dunne NJ. Biodegradable and Biocompatible Adhesives for the Effective Stabilisation, Repair and Regeneration of Bone. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9060250. [PMID: 35735493 PMCID: PMC9219717 DOI: 10.3390/bioengineering9060250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/11/2022] [Accepted: 06/06/2022] [Indexed: 11/19/2022]
Abstract
Bone defects and complex fractures present significant challenges for orthopaedic surgeons. Current surgical procedures involve the reconstruction and mechanical stabilisation of complex fractures using metal hardware (i.e., wires, plates and screws). However, these procedures often result in poor healing. An injectable, biocompatible, biodegradable bone adhesive that could glue bone fragments back together would present a highly attractive solution. A bone adhesive that meets the many clinical requirements for such an application has yet to be developed. While synthetic and biological polymer-based adhesives (e.g., cyanoacrylates, PMMA, fibrin, etc.) have been used effectively as bone void fillers, these materials lack biomechanical integrity and demonstrate poor injectability, which limits the clinical effectiveness and potential for minimally invasive delivery. This systematic review summarises conventional approaches and recent developments in the area of bone adhesives for orthopaedic applications. The required properties for successful bone repair adhesives, which include suitable injectability, setting characteristics, mechanical properties, biocompatibility and an ability to promote new bone formation, are highlighted. Finally, the potential to achieve repair of challenging bone voids and fractures as well as the potential of new bioinspired adhesives and the future directions relating to their clinical development are discussed.
Collapse
Affiliation(s)
- Antzela Tzagiollari
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (A.T.); (T.J.L.)
- Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland
| | - Helen O. McCarthy
- School of Pharmacy, Queen’s University, Belfast BT9 7BL, UK;
- School of Chemical Sciences, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
| | - Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (A.T.); (T.J.L.)
- Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Tissue, Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland; (A.T.); (T.J.L.)
- Centre for Medical Engineering Research, Dublin City University, D09 NA55 Dublin, Ireland
- Biodesign Europe, Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, D09 NA55 Dublin, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, D09 NA55 Dublin, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, D02 PN40 Dublin, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Correspondence: ; Tel.: +353-(0)1-7005712
| |
Collapse
|
19
|
Lambros M, Tran T(H, Fei Q, Nicolaou M. Citric Acid: A Multifunctional Pharmaceutical Excipient. Pharmaceutics 2022; 14:972. [PMID: 35631557 PMCID: PMC9148065 DOI: 10.3390/pharmaceutics14050972] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 02/04/2023] Open
Abstract
Citric acid, a tricarboxylic acid, has found wide application in the chemical and pharmaceutical industry due to its biocompatibility, versatility, and green, environmentally friendly chemistry. This review emphasizes the pharmaceutical uses of citric acid as a strategic ingredient in drug formulation while focusing on the impact of its physicochemical properties. The functionality of citric acid is due to its three carboxylic groups and one hydroxyl group. These allow it to be used in many ways, including its ability to be used as a crosslinker to form biodegradable polymers and as a co-former in co-amorphous and co-crystal applications. This paper also analyzes the effect of citric acid in physiological processes and how this effect can be used to enhance the attributes of pharmaceutical preparations, as well as providing a critical discussion on the issues that may arise out of the presence of citric acid in formulations.
Collapse
Affiliation(s)
- Maria Lambros
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; (T.T.); (Q.F.)
| | - Thac (Henry) Tran
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; (T.T.); (Q.F.)
| | - Qinqin Fei
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, 309 E Second Street, Pomona, CA 91766, USA; (T.T.); (Q.F.)
| | - Mike Nicolaou
- Doric Pharma LLC, 5270 California Ave, Suite 300, Irvine, CA 92617, USA;
| |
Collapse
|
20
|
Zhang M, Liu J, Zhu T, Le H, Wang X, Guo J, Liu G, Ding J. Functional Macromolecular Adhesives for Bone Fracture Healing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1-19. [PMID: 34939784 DOI: 10.1021/acsami.1c17434] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Compared with traditional internal fixation devices, bone adhesives are expected to exhibit remarkable advantages, such as improved fixation of comminuted fractures and maintained spatial location of fractured scattered bone pieces in treating bone injuries. In this review, different bone adhesives are summarized from the aspects of bone tissue engineering, and the applications of bone adhesives are emphasized. The concepts of "liquid scaffold" and "liquid plate" are proposed to summarize two different research directions of bone adhesives. Furthermore, significant advances of bone adhesives in recent years in mechanical strength, osseointegration, osteoconductivity, and osteoinductivity are discussed. We conclude this topic by providing perspectives on the state-of-the-art research progress and future development trends of bone adhesives. We hope this review will provide a comprehensive summary of bone adhesives and inspire more extensive and in-depth research on this subject.
Collapse
Affiliation(s)
- Mingran Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jiaxue Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, 5 Jilin Street, Jilin 132000, People's Republic of China
| | - Tongtong Zhu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Hanxiang Le
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
- Orthopaedic Medical Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, People's Republic of China
| | - Xukai Wang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Jinshan Guo
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, 1023 Southern Shatai Road, Guangzhou 510515, People's Republic of China
| | - Guangyao Liu
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, People's Republic of China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| |
Collapse
|
21
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
22
|
Koper F, Swiergosz T, Żaba A, Flis A, Trávníčková M, Bačáková L, Pamuła E, Bogdał D, Kasprzyk WP. Advancements in structure-property correlation studies of cross-linked citric acid-based elastomers from the perspective of medical application. J Mater Chem B 2021; 9:6425-6440. [PMID: 34323912 DOI: 10.1039/d1tb01078f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, a renewed prominence towards the synthesis of poly(alkylene citrate) (PAC) biomaterials and their detailed chemical, structural and mechanical characterization has been reported. Based on the modifications to the PAC synthesis protocol introduced in this study, the fabrication process was significantly streamlined, the reaction yields were increased, and the homogeneity of the final materials was found to be substantially improved. Comprehensive nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) studies of the fabricated prepolymers shed light on the mechanism of the PAC cross-linking process and supported the design of materials with enhanced biocompatibility. Therefore, the initial molar ratio of the reagents involved in the synthesis of PAC materials was found to be pivotal to both the biological and mechanical properties of the final products. Moreover, cell viability and proliferation assays revealed enhanced biocompatibility of the materials formulated with a molar ratio of diol over citric acid (3 : 2 mol/mol) in comparison to the most commonly described 1 : 1 analogue without affecting the possibility of further functionalization. Furthermore, this work creates a new paradigm for prospective studies on the properties of modified PAC materials and their application in medicine and tissue engineering.
Collapse
Affiliation(s)
- Filip Koper
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tang Q, Li Q, Luo Y, Pan X, Xi Z, Zhao L. Development of an Innovative Biobased UV Coating Synthesized from Acrylated Epoxidized Soybean Oil and Poly(octamethylene maleate (anhydride) citrate). Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Qiuyu Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Li
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yunhan Luo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xun Pan
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia
| | - Zhenhao Xi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ling Zhao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, Xinjiang China
| |
Collapse
|
24
|
Salihu R, Abd Razak SI, Ahmad Zawawi N, Rafiq Abdul Kadir M, Izzah Ismail N, Jusoh N, Riduan Mohamad M, Hasraf Mat Nayan N. Citric acid: A green cross-linker of biomaterials for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110271] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Rabie AM. Four Three-winged Nitrogenous Heterocyclic Derivatives of Citric
Acid Scaffold: The First Synthesis and Characterization of These Newly Discovered
Fan-like Compounds. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021; 57:417-421. [DOI: 10.1134/s1070428021030131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 01/18/2023]
|
26
|
Wu X, Dai H, Yu S, Zhao Y, Long Y, Li W, Tu J. Magnesium Calcium Phosphate Cement Incorporating Citrate for Vascularized Bone Regeneration. ACS Biomater Sci Eng 2020; 6:6299-6308. [PMID: 33449642 DOI: 10.1021/acsbiomaterials.0c00929] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of bioactive bone cement is still a challenge for vascularized bone regeneration. Citrate participated in multiple biological processes, such as energy metabolism, osteogenesis, and angiogenesis. However, it is difficult to obtain a thorough and comprehensive understanding on osteogenic effects of exogenous citrate from different experimental conditions and treatment methods. In this study, by using a magnesium calcium phosphate cement (MCPC) matrix, we investigated the dual effect of exogenous citrate on osteogenesis and angiogenesis. Our studies show that citrate elevates the osteogenic function of osteoblasts under low doses and the angiogenic function of vascular endothelial cells under a broader dose range. These findings furnish a new strategy for regulating angiogenesis and osteogenic differentiation by administration of citrate in MCPC, driving the development of bioactive bone repair materials.
Collapse
Affiliation(s)
- Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China.,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China
| | - Suchun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yanan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yanpiao Long
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Wenqin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
27
|
Gelli R, Di Pompo G, Graziani G, Avnet S, Baldini N, Baglioni P, Ridi F. Unravelling the Effect of Citrate on the Features and Biocompatibility of Magnesium Phosphate-Based Bone Cements. ACS Biomater Sci Eng 2020; 6:5538-5548. [PMID: 33320576 PMCID: PMC8011797 DOI: 10.1021/acsbiomaterials.0c00983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
In
the framework of new materials for orthopedic applications,
Magnesium Phosphate-based Cements (MPCs) are currently the focus of
active research in biomedicine, given their promising features; in
this field, the loading of MPCs with active molecules to be released
in the proximity of newly forming bone could represent an innovative
approach to enhance the in vivo performances of the biomaterial. In
this work, we describe the preparation and characterization of MPCs
containing citrate, an ion naturally present in bone which presents
beneficial effects when released in the proximity of newly forming
bone tissue. The cements were characterized in terms of handling properties,
setting time, mechanical properties, crystallinity, and microstructure,
so as to unravel the effect of citrate concentration on the features
of the material. Upon incubation in aqueous media, we demonstrated
that citrate could be successfully released from the cements, while
contributing to the alkalinization of the surroundings. The cytotoxicity
of the materials toward human fibroblasts was also tested, revealing
the importance of a fine modulation of released citrate to guarantee
the biocompatibility of the material.
Collapse
Affiliation(s)
- Rita Gelli
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Gemma Di Pompo
- BST Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Gabriela Graziani
- Laboratory of Nanobiotechnology (NaBi), IRCSS Istituto Ortopedico Rizzoli, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Sofia Avnet
- BST Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Nicola Baldini
- BST Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Piero Baglioni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Francesca Ridi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
28
|
Wu X, Dai H, Yu S, Zhao Y, Long Y, Li W, Tu J. Citrate regulates extracellular matrix mineralization during osteoblast differentiation in vitro. J Inorg Biochem 2020; 214:111269. [PMID: 33129127 DOI: 10.1016/j.jinorgbio.2020.111269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/24/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
The extremely high levels of citrate in bone highlight its important role, which must be involved in some essential functional or structural role that is required for the development and maintenance of normal bone. However, biomineralization researches have emphasized the interaction between the citrate and inorganic minerals during crystallization in cell-free systems. It is difficult to obtain a thorough and comprehensive understanding from cell-free experimental conditions and treatment methods. In this study, by proposing an osteoblast mineralization experimental model, we explored the regulation of citrate on bone apatite crystal structure. Our studies show that citrate stabilizes two precursors and then inhibits their transformation into hydroxyapatite. Concomitantly, the smaller size and lower crystallinity mineral deposition emerge during citrate-mediated osteogenic mineralization. These findings may provide a new perspective for the mechanism of osteogenic mineralization and a basis for further understanding of bone metabolism.
Collapse
Affiliation(s)
- Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, China.
| | - Suchun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yanan Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yanpiao Long
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Wenqin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Tu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
29
|
Chaurasia PD, Chandrashekara Rao DP, Bhowmik E. Various Treatment Modalities in Aggressive Periodontitis. Contemp Clin Dent 2020; 10:672-675. [PMID: 32792829 PMCID: PMC7390414 DOI: 10.4103/ccd.ccd_156_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
This is a case report of an 18-year-old female diagnosed with localized aggressive periodontitis. Following basic scaling and root planing, flap surgery was performed in all the four quadrants using various regenerative materials. A follow-up of 2½ years shows improvement in clinical and radiographic parameters, with no recurrence of the disease process.
Collapse
Affiliation(s)
- Priya Dayashankar Chaurasia
- Department of Periodontology, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Deepika Pawar Chandrashekara Rao
- Department of Periodontology, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Eeshita Bhowmik
- Department of Periodontology, JSS Dental College and Hospital, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| |
Collapse
|
30
|
Tian Y, Liang K, Ji Y. Fabrication of poly (1, 8-octanediol-co-Pluronic F127 citrate)/chitin nanofibril/bioactive glass (POFC/ChiNF/BG) porous scaffold via directional-freeze-casting. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2019-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The citrate-based thermoset elastomer is a promising candidate for bone scaffold material, but the harsh curing condition made it difficult to fabricate porous structure. Recently, poly (1, 8-octanediol-co-Pluronic F127 citrate) (POFC) porous scaffold was creatively fabricated by chitin nanofibrils (ChiNFs) supported emulsion-freeze-casting. Thanks to the supporting role of ChiNFs, the lamellar pore structure formed by directional freeze-drying was maintained during the subsequent thermocuring. Herein, bioactive glass (BG) was introduced into the POFC porous scaffolds to improve bioactivity. It was found the complete replacement of ChiNF particles with BG particles could not form a stable porous structure; however, existing at least 15 wt% ChiNF could ensure the formation of lamellar pore, and the interlamellar distance increased with BG ratios. Thus, the BG granules did not contribute to the formation of pore structure like ChiNFs, however, they surely endowed the scaffolds with enhanced mechanical properties, improved osteogenesis bioactivity, better cytocompatibility as well as quick degradation rate. Reasonably adjusting BG ratios could balance the requirements of porous structure and bioactivity.
Collapse
Affiliation(s)
- Yaling Tian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , College of Materials Science and Engineering , Donghua University , 2999 North Renmin Road , Shanghai , 201620, PR China
| | - Kai Liang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , 2999 North Renmin Road , Shanghai , 201620, PR China
| | - Yali Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials , College of Materials Science and Engineering , Donghua University , 2999 North Renmin Road , Shanghai , 201620, PR China
| |
Collapse
|
31
|
Dasgupta N, Yilmaz DE, van Duin A. Simulations of the Biodegradation of Citrate-Based Polymers for Artificial Scaffolds Using Accelerated Reactive Molecular Dynamics. J Phys Chem B 2020; 124:5311-5322. [PMID: 32495628 DOI: 10.1021/acs.jpcb.0c03008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this study, we investigate the reactivity and mechanical properties of poly(1,6-hexanediol-co-citric acid) via ReaxFF molecular dynamics simulations. We implement an accelerated scheme within the ReaxFF framework to study the hydrolysis reaction of the polymer which is provided with a sufficient amount of energy known as the restrain energy after a suitable pretransition-state configuration is obtained to overcome the activation energy barrier and the desired product is obtained. The validity of the ReaxFF force field is established by comparing the ReaxFF energy barriers of ester and ether hydrolysis with benchmark DFT values in the literature. We perform chemical and mechanical degradation of polymer chain bundles at 300 K. We find that ester hydrolyzes faster than ether because of the lower activation energy barrier of the reaction. The selectivity of the bond-boost scheme has been demonstrated by lowering the boost parameters of the accelerated simulation, which almost stops the ether hydrolysis. Mechanical degradation of prehydrolyzed and intermittent hydrolyzed polymer bundles is performed along the longitudinal direction at two different strain rates. We find that the tensile modulus of the polymers increases with increase in strain rates, which shows that polymers show a strain-dependent behavior. The tensile modulus of the polyester-ether is higher than polyester but reaches yield stress faster than polyester. This makes polyester more ductile than polyester-ether.
Collapse
Affiliation(s)
- Nabankur Dasgupta
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dundar E Yilmaz
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri van Duin
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
32
|
Ge C, Chen F, Mao L, Liang Q, Su Y, Liu C. Strontium ranelate-loaded POFC/β-TCP porous scaffolds for osteoporotic bone repair. RSC Adv 2020; 10:9016-9025. [PMID: 35496515 PMCID: PMC9050029 DOI: 10.1039/c9ra08909h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/08/2020] [Indexed: 12/14/2022] Open
Abstract
It is of considerable significance to fabricate scaffolds with satisfactory osteogenic activities and high osteogenesis quality to accelerate osteoporotic repair. In this study, we initially fabricated the POFC/β-TCP porous scaffold in the light of composition and structure bionics, and then loaded the SR to the optimized POFC/β-TCP porous scaffold by 3D printing based on FFS-MDJ. The hydrophilicity, mechanical properties biodegradability and cell response of the composite scaffolds were systematically investigated. The result showed that modified POFC enhanced the hydrophilicity and ameliorated the brittleness of pure β-TCP. β-TCP buffered the acidity and improved the degradability and cell affinity of the scaffold, and the release of strontium ranelate significantly promote the proliferation and differentiation of osteoblasts and guided bone regeneration. The results indicated that POFC/β-TCP scaffolds had uniform macropores of 300-500 μm and a porosity of approximately 48%, adjustable biodegradability and a high compressive modulus of 30-60 MPa. The strontium ranelate-loaded POFC/β-TCP scaffold enhanced the osteogenic differentiation of rBMSCs, which might be a promising candidate for osteoporotic-related bone defect repair.
Collapse
Affiliation(s)
- Caicai Ge
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Fangping Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 P. R. China +86-21-64251358 +86-21-64251308
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Lijie Mao
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Qing Liang
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology Shanghai 200237 P. R. China
| | - Yan Su
- Department of Orthopedics, Affiliated Sixth People's Hospital, Shanghai Jiaotong University Shanghai 200032 China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology Shanghai 200237 P. R. China +86-21-64251358 +86-21-64251308
- Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
33
|
Wang R, Thayer P, Goldstein A, Wagner WD. Interaction of material stiffness and negative pressure to enhance differentiation of bone marrow-derived stem cells and osteoblast proliferation. J Tissue Eng Regen Med 2020; 14:295-305. [PMID: 31845531 DOI: 10.1002/term.2993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 01/03/2023]
Abstract
Negative pressure wound therapy (NPWT) results in improved wound repair and the combined use of NPWT with elastomeric materials may further stimulate and accelerate tissue repair. No firmly established treatment modalities using both NPWT and biomaterials exist for orthopedic application. The goal of this study was to investigate the response of osteoblasts and bone marrow-derived mesenchymal stem cells to negative pressure and to determine whether a newly developed elastic osteomimetic bone repair material (BRM), a blend of type I collagen, chondroitin 6-sulfate, and poly (octanediol citrate) could enhance the osteoblastic phenotype. The results indicate that proliferation and alkaline phosphatase activity of hFOB1.19 osteoblasts were significantly increased with exposure to 12 hr of negative pressure (-125 mmHg). Follow-on studies with rat and human mesenchymal stem cells confirmed that negative pressure enhanced osteoblastic maturation. In addition, a significant interaction of negative pressure and electrospun BRM resulted in increased mRNA expression of alkaline phosphatase, osteopontin, collagen1α2, and HIF1α, whereas little or no effect on these genes was observed on electrospun collagen or tissue culture plastic. Together, these results suggest that the use of this novel biomaterial, BRM, with NPWT may ultimately translate into a safe and cost-effective clinical application to accelerate bone repair.
Collapse
Affiliation(s)
- Rui Wang
- Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Biomedical Engineering and Science, Virginia Tech-Wake Forest University School of Biomedical Engineering and Science, Winston-Salem, North Carolina
| | - Patrick Thayer
- Biomedical Engineering and Science, Virginia Tech-Wake Forest University School of Biomedical Engineering and Science, Winston-Salem, North Carolina
| | - Aaron Goldstein
- Biomedical Engineering and Science, Virginia Tech-Wake Forest University School of Biomedical Engineering and Science, Winston-Salem, North Carolina.,Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia
| | - William D Wagner
- Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina.,Biomedical Engineering and Science, Virginia Tech-Wake Forest University School of Biomedical Engineering and Science, Winston-Salem, North Carolina
| |
Collapse
|
34
|
Ghosal K, Bhattacharjee U, Sarkar K. Facile green synthesis of bioresorbable polyester from soybean oil and recycled plastic waste for osteochondral tissue regeneration. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Belleghem SMV, Mahadik B, Snodderly KL, Fisher JP. Overview of Tissue Engineering Concepts and Applications. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00081-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Yuan Z, Tsou YH, Zhang XQ, Huang S, Yang Y, Gao M, Ho W, Zhao Q, Ye X, Xu X. Injectable Citrate-Based Hydrogel as an Angiogenic Biomaterial Improves Cardiac Repair after Myocardial Infarction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38429-38439. [PMID: 31573790 DOI: 10.1021/acsami.9b12043] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Implanted medical biomaterials are closely in contact with host biological systems via biomaterial-cell/tissue interactions, and these interactions play pivotal roles in regulating cell functions and tissue regeneration. However, many biomaterials degrade over time, and these degradation products also have been shown to interact with host cells/tissue. Therefore, it may prove useful to specifically design implanted biomaterials with degradation products which greatly improve the performance of the implant. Herein, we report an injectable, citrate-containing polyester hydrogel which can release citrate as a cell regulator via hydrogel degradation and simultaneously show sustained release of an encapsulated growth factor Mydgf. By coupling the therapeutic effect of the hydrogel degradation product (citrate) with encapsulated Mydgf, we observed improved postmyocardial infarction (MI) heart repair in a rat MI model. Intramyocardial injection of our Mydgf-loaded citrate-containing hydrogel was shown to significantly reduce scar formation and infarct size, increase wall thickness and neovascularization, and improve heart function. This bioactive injectable hydrogel-mediated combinatorial approach offers myriad advantages including potential adjustment of delivery rate and duration, improved therapeutic effect, and minimally invasive administration. Our rational design combining beneficial degradation product and controlled release of therapeutics provides inspiration toward the next generation of biomaterials aiming to revolutionize regenerative medicine.
Collapse
Affiliation(s)
- Zhize Yuan
- Department of Cardiovascular Surgery, Ruijin Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200025 , China
| | | | - Xue-Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | - Shixing Huang
- Department of Cardiovascular Surgery, Ruijin Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200025 , China
| | - Yang Yang
- Department of Cardiovascular Surgery, Ruijin Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200025 , China
| | - Mingzhu Gao
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , China
| | | | - Qiang Zhao
- Department of Cardiovascular Surgery, Ruijin Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200025 , China
| | - Xiaofeng Ye
- Department of Cardiovascular Surgery, Ruijin Hospital , Shanghai Jiaotong University School of Medicine , Shanghai 200025 , China
| | | |
Collapse
|
37
|
He Y, Li Q, Ma C, Xie D, Li L, Zhao Y, Shan D, Chomos SK, Dong C, Tierney JW, Sun L, Lu D, Gui L, Yang J. Development of osteopromotive poly (octamethylene citrate glycerophosphate) for enhanced bone regeneration. Acta Biomater 2019; 93:180-191. [PMID: 30926580 DOI: 10.1016/j.actbio.2019.03.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/05/2019] [Accepted: 03/23/2019] [Indexed: 10/27/2022]
Abstract
The design and development of bioactive materials that are inherently conducive for osteointegration and bone regeneration with tunable mechanical properties and degradation remains a challenge. Herein, we report the development of a new class of citrate-based materials with glycerophosphate salts, β-glycerophosphate disodium (β-GP-Na) and glycerophosphate calcium (GP-Ca), incorporated through a simple and convenient one-pot condensation reaction, which might address the above challenge in the search of suitable orthopedic biomaterials. Tensile strength of the resultant poly (octamethylene citrate glycerophosphate), POC-βGP-Na and POC-GP-Ca, was as high as 28.2 ± 2.44 MPa and 22.76 ± 1.06 MPa, respectively. The initial modulus ranged from 5.28 ± 0.56 MPa to 256.44 ± 22.88 MPa. The mechanical properties and degradation rate of POC-GP could be controlled by varying the type of salts, and the feeding ratio of salts introduced. Particularly, POC-GP-Ca demonstrated better cytocompatibility and the corresponding composite POC-GP-Ca/hydroxyapatite (HA) also elicited improved osteogenic differentiation of human mesenchymal stem cells (hMSCs) in vitro, as compared to POC-βGP-Na/HA and POC/HA. The superior in-vivo performance of POC-GP-Ca/HA microparticle scaffolds in promoting bone regeneration over POC-βGP-Na/HA and POC/HA was further confirmed in a rabbit femoral condyle defect model. Taken together, the tunability of mechanical properties and degradation rates, together with the osteopromotive nature of POC-GP polymers make these materials, especially POC-GP-Ca well suited for bone tissue engineering applications. STATEMENT OF SIGNIFICANCE: The design and development of bioactive materials that are inherently conducive for osteointegration and bone regeneration with tunable mechanical properties and degradation remains a challenge. Herein, we report the development of a new class of citrate-based materials with glycerophosphate salts, β-glycerophosphate disodium (β-GPNa) and glycerophosphate calcium (GPCa), incorporated through a simple and convenient one-pot condensation reaction. The resultant POC-GP polymers showed significantly improved mechanical property and tunable degradation rate. Within the formulation investigated, POC-GPCa/HA composite further demonstrated better bioactivity in favoring osteogenic differentiation of hMSCs in vitro and promoted bone regeneration in rabbit femoral condyle defects. The development of POC-GP expands the repertoire of the well-recognized citrate-based biomaterials to meet the ever-increasing needs for functional biomaterials in tissue engineering and other biomedical applications.
Collapse
|
38
|
Wang S, Xu C, Yu S, Wu X, Jie Z, Dai H. Citric acid enhances the physical properties, cytocompatibility and osteogenesis of magnesium calcium phosphate cement. J Mech Behav Biomed Mater 2019; 94:42-50. [DOI: 10.1016/j.jmbbm.2019.02.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 10/27/2022]
|
39
|
Abstract
Abstract
The endodontic treatment of immature permanent teeth with necrotic pulp is a serious clinical challenge. The chemical agents, used in regenerative procedures, should be selected not only based on their bactericidal/bacteriostatic properties, but also on their ability to ensure the survival of the patient’s stem cells. The aim of this study was to evaluate the effect of citric acid on the vitality of SCAP in a model of an immature tooth root. Models of immature roots were created from 12 freshly extracted teeth. The models were gas sterilized with ethylene oxide and they were separated into three groups, based on the used combinations of irrigants: 1) 1.5% sodium hypochlorite / 17% EDTA; 2) 1.5% sodium hypochlorite / 10% citric acid; 3) saline. SCAPs in a hyaluronic acid–based scaffold were seeded into the canals and cultured for 7 days. Viable cells were quantified using a colorimetric assay. There was no statistically significant difference between the groups, irrigated with NaOCl/EDTA and NaOCl/citric acid. The results from our experiment show that 10% citric acid can be used in combination with 1.5% NaOCl in a regenerative endodontic procedure.
Collapse
|
40
|
Citrate-based materials fuel human stem cells by metabonegenic regulation. Proc Natl Acad Sci U S A 2018; 115:E11741-E11750. [PMID: 30478052 DOI: 10.1073/pnas.1813000115] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A comprehensive understanding of the key microenvironmental signals regulating bone regeneration is pivotal for the effective design of bioinspired orthopedic materials. Here, we identified citrate as an osteopromotive factor and revealed its metabonegenic role in mediating citrate metabolism and its downstream effects on the osteogenic differentiation of human mesenchymal stem cells (hMSCs). Our studies show that extracellular citrate uptake through solute carrier family 13, member 5 (SLC13a5) supports osteogenic differentiation via regulation of energy-producing metabolic pathways, leading to elevated cell energy status that fuels the high metabolic demands of hMSC osteodifferentiation. We next identified citrate and phosphoserine (PSer) as a synergistic pair in polymeric design, exhibiting concerted action not only in metabonegenic potential for orthopedic regeneration but also in facile reactivity in a fluorescent system for materials tracking and imaging. We designed a citrate/phosphoserine-based photoluminescent biodegradable polymer (BPLP-PSer), which was fabricated into BPLP-PSer/hydroxyapatite composite microparticulate scaffolds that demonstrated significant improvements in bone regeneration and tissue response in rat femoral-condyle and cranial-defect models. We believe that the present study may inspire the development of new generations of biomimetic biomaterials that better recapitulate the metabolic microenvironments of stem cells to meet the dynamic needs of cellular growth, differentiation, and maturation for use in tissue engineering.
Collapse
|
41
|
Biodegradable nanocomposite of glycerol citrate polyester and ultralong hydroxyapatite nanowires with improved mechanical properties and low acidity. J Colloid Interface Sci 2018; 530:9-15. [DOI: 10.1016/j.jcis.2018.06.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 11/23/2022]
|
42
|
Zhou Y, Zhou X, Liang K, Ji Y. Degradable Bioelastomers Prepared by a Facile Melt Polycondensation of Citric Acid and Polycaprolactone-diol. J MACROMOL SCI B 2018. [DOI: 10.1080/00222348.2018.1511296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Yajing Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
| | - Xin Zhou
- Department of Pulmonary Medicine, The Third Clinical Medical College of Xinjiang Medical University, Urumqi, China
| | - Kai Liang
- Key Lab of Science & Technology of Eco-textile, Ministry of Education, Donghua University, Shanghai, China
| | - Yali Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
43
|
Gharibi H, Abdolmaleki A. Thermo-chemical modification of a natural biomembrane to induce mucoadhesion, pH sensitivity and anisotropic mechanical properties. J Mech Behav Biomed Mater 2018; 87:50-58. [PMID: 30032023 DOI: 10.1016/j.jmbbm.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 10/28/2022]
Abstract
In the present study due to the distinctive mechanochemical/biological characteristics of natural biomembranes, we state the preparation, characterization and cytocompatibility of modified eggshell membrane (ESM) by citric acid (CA) for biomedical and pharmaceutical applications. FTIR spectroscopy and CHNS analysis demonstrated the successful reaction of ESM with CA. Also, successful modification of the ESM was observed by the change in thermogravimetric analysis. SEM micrographs of neat ESM and ESM-CA gave further insight into membranes morphology and revealed that aligned oriented fibrous frameworks were prepared using thermo-chemical process. The ESM-CA displayed dense and orderly shapes with tailorable architectures to mimic the intended tissue. Moreover, mechanical analyzes for ESM-CA indicated anisotropic mechanical properties and proved that the ESM-CA could induce enhanced mucoadhesion, because of the existence of an enormous amounts of functional groups. It was found that by modification of ESM the swelling behavior was significantly changed. Indomethacin release from the ESM-CA showed enhanced pH sensitivity. The modified membranes have clearly presented adequate mucoadhesion, pH sensitivity and cell viability which can be tailored for potential use in controlled lipophilic drug delivery systems and tissue engineering.
Collapse
Affiliation(s)
- Hamidreza Gharibi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| | - Amir Abdolmaleki
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Islamic Republic of Iran.
| |
Collapse
|
44
|
Ma C, Gerhard E, Lu D, Yang J. Citrate chemistry and biology for biomaterials design. Biomaterials 2018; 178:383-400. [PMID: 29759730 DOI: 10.1016/j.biomaterials.2018.05.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/17/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Leveraging the multifunctional nature of citrate in chemistry and inspired by its important role in biological tissues, a class of highly versatile and functional citrate-based materials (CBBs) has been developed via facile and cost-effective polycondensation. CBBs exhibiting tunable mechanical properties and degradation rates, together with excellent biocompatibility and processability, have been successfully applied in vitro and in vivo for applications ranging from soft to hard tissue regeneration, as well as for nanomedicine designs. We summarize in the review, chemistry considerations for CBBs design to tune polymer properties and to introduce functionality with a focus on the most recent advances, biological functions of citrate in native tissues with the new notion of degradation products as cell modulator highlighted, and the applications of CBBs in wound healing, nanomedicine, orthopedic, cardiovascular, nerve and bladder tissue engineering. Given the expansive evidence for citrate's potential in biology and biomaterial science outlined in this review, it is expected that citrate based materials will continue to play an important role in regenerative engineering.
Collapse
Affiliation(s)
- Chuying Ma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16801, PA, USA
| | - Ethan Gerhard
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16801, PA, USA
| | - Di Lu
- Rehabilitation Engineering Research Laboratory, Biomedicine Engineering Research Centre Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, 16801, PA, USA.
| |
Collapse
|
45
|
Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds. Int J Biol Macromol 2018; 107:678-688. [DOI: 10.1016/j.ijbiomac.2017.08.184] [Citation(s) in RCA: 296] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/24/2017] [Accepted: 08/31/2017] [Indexed: 11/20/2022]
|
46
|
Marzec M, Kucińska-Lipka J, Kalaszczyńska I, Janik H. Development of polyurethanes for bone repair. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:736-747. [PMID: 28866223 DOI: 10.1016/j.msec.2017.07.047] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 01/23/2017] [Accepted: 07/29/2017] [Indexed: 12/12/2022]
Abstract
The purpose of this paper is to review recent developments on polyurethanes aimed at the design, synthesis, modifications, and biological properties in the field of bone tissue engineering. Different polyurethane systems are presented and discussed in terms of biodegradation, biocompatibility and bioactivity. A comprehensive discussion is provided of the influence of hard to soft segments ratio, catalysts, stiffness and hydrophilicity of polyurethanes. Interaction with various cells, behavior in vivo and current strategies in enhancing bioactivity of polyurethanes are described. The discussion on the incorporation of biomolecules and growth factors, surface modifications, and obtaining polyurethane-ceramics composites strategies is held. The main emphasis is placed on the progress of polyurethane applications in bone regeneration, including bone void fillers, shape memory scaffolds, and drug carrier.
Collapse
Affiliation(s)
- M Marzec
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| | - J Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
| | - I Kalaszczyńska
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Chalubinskiego 5, 02-004 Warsaw, Poland; Centre for Preclinical Research and Technology, Banacha 1b, 02-097 Warsaw, Poland
| | - H Janik
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
47
|
A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2180-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Dayashankar CP, Deepika PC, Siddaramaiah B. Clinical and Radiographic Evaluation of Citric Acid-Based Nano Hydroxyapatite Composite Graft in the Regeneration of Intrabony Defects - A Randomized Controlled Trial. Contemp Clin Dent 2017; 8:380-386. [PMID: 29042721 PMCID: PMC5643993 DOI: 10.4103/ccd.ccd_213_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Conventional periodontal therapy with various bone grafts has limited scope and the results are not predictable. To improve their utility, the hybridization of bioceramics and biodegradable polymers has been widely adopted to reform the mechanical properties of bone grafts. One such biodegradable polymer is POC (Poly 1,8 octanediol). Secondly, citric acid is considered as the key material in bone mineralization, which is related to the overall stability, strength and fracture resistance of bone. Hence citric acid is incorporated in a polymer and Nano hydroxyapatite to form a composite graft, for periodontal bone regeneration. This study attempts to evaluate the efficacy of citric acid based Nano-hydroxyapatite composite graft for the treatment of intrabony defects in chronic periodontitis patients over 12 months. Methods: A split mouth study, which consists of 10 systemically healthy patients, were randomly treated with Citric acid based Nano hydroxyapatite composite graft (test sites, n=18) or with Nano hydroxyapatite alone (control sites, n=15). Plaque index, gingival index, gingival bleeding index, probing pocket depth (PPD), clinical attachment level (CAL), bone probing depth (BPD) and hard tissue parameters such as amount of defect fill, percentage of defect fill, and changes in alveolar crest were assessed over a period of 12 months. Statistical analysis used was student's t-test and One-Way ANOVA. Results: Both test and control sites demonstrated statistically significant reduction of PD, BPD, gain in CAL and radiographic bone fill. Nevertheless the test sites showed Statistically significant improvements in all the parameters as compared to control sites at 12 months. Conclusion: Citric acid based Nano hydroxyapatite composite graft can be considered as a newer material for periodontal regeneration.
Collapse
Affiliation(s)
- Chaurasia Priya Dayashankar
- Department of Periodontology, JSS Dental College and Hospital, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India
| | - P C Deepika
- Department of Periodontology, JSS Dental College and Hospital, Jagadguru Sri Shivarathreeshwara University, Mysore, Karnataka, India
| | - Basavarajaiah Siddaramaiah
- Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, Mysore, Karnataka, India
| |
Collapse
|
49
|
Ji Y, Ji T, Liang K, Zhu L. Mussel-inspired soft-tissue adhesive based on poly(diol citrate) with catechol functionality. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:30. [PMID: 26704547 DOI: 10.1007/s10856-015-5649-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
Marine mussels tightly adhering to various underwater surfaces inspires human to design adhesives for wet tissue adhesion in surgeries. Characterization of mussel adhesive plaques describes a matrix of proteins containing 3,4-dihydroxyphenylalanine (DOPA), which provides strong adhesion in aquatic conditions. Several synthetic polymer systems have been developed based on this DOPA chemistry. Herein, a citrate-based tissue adhesives (POEC-d) was prepared by a facile one-pot melt polycondensation of two diols including 1,8-octanediol and poly(ethylene oxide) (PEO), citric acid (CA) and dopamine, and the effects of hydrophilic and soft PEO on the properties of adhesives were studied. It was found that the obtained adhesives exhibited water-soluble when the mole ratio of PEO to 1,8-octanediol was 70%, and the equilibrium swelling percentage of cured adhesive was about 144%, and degradation rate was in the range of 1-2 weeks. The cured adhesives demonstrated soft rubber-like behavior. The lap shear adhesion strength measured by bonding wet pig skin was in the range of 21.7-33.7 kPa, which was higher than that of commercial fibrin glue (9-15 kPa). The cytotoxicity tests showed the POEC-d adhesives had a low cytotoxicity. Our results supports that POEC-d adhesives, which combined strong wet adhesion with good biodegradability, acceptable swelling ratio, good elasticity and low cytotoxicity, have potentials in surgeries where surgical tissue adhesives, sealants, and hemostatic agents are used.
Collapse
Affiliation(s)
- Yali Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| | - Ting Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Kai Liang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, People's Republic of China
| | - Lei Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| |
Collapse
|
50
|
Yapor JP, Lutzke A, Pegalajar-Jurado A, Neufeld BH, Damodaran VB, Reynolds MM. Biodegradable citrate-based polyesters with S-nitrosothiol functional groups for nitric oxide release. J Mater Chem B 2015; 3:9233-9241. [PMID: 32262922 DOI: 10.1039/c5tb01625h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitric oxide (NO) is a biologically-active free radical involved in numerous physiological processes such as regulation of vasodilation, promotion of cell proliferation and angiogenesis, and modulation of the inflammatory and immune responses. Furthermore, NO has demonstrated the ability to mitigate the foreign body response that often results in the failure of implanted biomedical devices. Although NO has promising therapeutic value, the short physiological half-life of exogenous NO complicates its effective delivery. For this reason, the development of NO-releasing materials that permit the localized delivery of NO is an advantageous method of utilizing this molecule for biomedical applications. Herein, we report the synthesis and characterization of biodegradable NO-releasing polyesters prepared from citric acid, maleic acid, and 1,8-octanediol. NO release was achieved by incorporation of S-nitrosothiol donor groups through conjugation of cysteamine and ethyl cysteinate to the polyesters, followed by S-nitrosation with tert-butyl nitrite. The extent of NO loading and the release properties under physiological conditions (pH 7.4 PBS, 37 °C) were determined by chemiluminesence-based NO detection. The average total NO content of poly(citric-co-maleic acid-co-1,8-octanediol)-cysteamine was determined to be 0.45 ± 0.07 mol NO g-1 polymer, while the NO content for poly(citric-co-maleic acid-co-1,8-octanediol)-ethyl cysteinate was 0.16 ± 0.04 mol NO g-1 polymer. Continuous NO release under physiological conditions was observed for at least 6 days for the cysteamine analog and 4 days for the ethyl cysteinate analog. Cell viability assays and morphological studies with human dermal fibroblasts indicated an absence of toxic leachates at a cytotoxic level, and suggested that these citrate-based polyesters may be suitable for future biomedical applications.
Collapse
Affiliation(s)
- J P Yapor
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | |
Collapse
|