1
|
Han Y, Wang X, Wei P, Zhang D, Gao M, Yu Z, Wang Q, Tan L, Tian Y. Biodegradable Magnesium alloy Janus membrane with surface-selective osteoinduction and soft tissue healing properties in guided bone regeneration. Acta Biomater 2025; 195:582-598. [PMID: 39933642 DOI: 10.1016/j.actbio.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Given that the guided bone regeneration (GBR) membrane acts at the interface between the bone and connective tissue, the membrane imposes high demands on the organization of the material. Magnesium (Mg) alloys have emerged as promising candidates for GBR due to their biodegradability and favorable biocompatibility. However, challenges remain in the risk of soft tissue dehiscence and limited osteogenesis for Mg membranes in the clinical application. A dicalcium phosphate dihydrate (CaHPO4·2H2O, denoted as DCPD)/MgF2 Janus membrane was fabricated via chemical conversion and deposition, showcasing suitable degradability, surface-selective osteogenic property and soft tissue healing in vitro and vivo. The DCPD coating was designed to support osteogenesis, while the MgF2 coating was specifically engineered to facilitate soft tissue healing. Furthermore, the Janus membrane utilized its two-sided properties to show selectivity in adhesion, proliferation, and migration of the MC3T3-E1 and HGFs. In vivo results exhibited its capability to promote bone formation and optimal space maintenance ability. Notably, further RNA-seq analysis demonstrated that different functional cells may respond specifically to two coatings and exert functions. Taken together, these results provide an alternative method for designing surface-selective biomaterials, underlining effective potential applications in bone tissue engineering. STATEMENT OF SIGNIFICANCE: Traditional clinical treatment of bone defects with GBR membranes is frequently constrained to a single superimposed osteogenesis without structural-functional integration. Such a DCPD/MgF2 coated Janus membrane was fabricated by incorporating chemical deposition and transformation to satisfy optimal osteogenesis and soft tissue healing. Of particular interest, the Janus membrane allowed for chemotactic movement with specific cellular responses to stimuli from different coatings. In vivo, the membrane demonstrated promising effects and showcased space maintenance ability. The design concept exhibits a new avenue to regulate tissue regeneration between different tissue interface, presenting new horizons for the development of GBR membranes.
Collapse
Affiliation(s)
- Yujia Han
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Xiaoxia Wang
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China; Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Penggong Wei
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Dan Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China.
| | - Ming Gao
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zihang Yu
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China
| | - Lili Tan
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China; Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Yulou Tian
- School and Hospital of Stomatology, China Medical University, Shenyang 110002, China; Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang 110002, China.
| |
Collapse
|
2
|
Campagna R, Schiavoni V, Rao L, Bambini F, Frontini A, Sampalmieri F, Salvolini E, Memé L. Novel Ti6Al4V Surface Treatment for Subperiosteal Dental Implants: Evaluation of Osteoblast-like Cell Proliferation and Osteogenic Response. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1234. [PMID: 40141517 PMCID: PMC11943677 DOI: 10.3390/ma18061234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025]
Abstract
Nowadays, custom-made subperiosteal implants are emerging as a solution in all those cases where there is lack of healthy bone tissue to support endosseous implants. The development of innovative techniques has allowed the production of grids that precisely match the patient's anatomy. Elucidating the impact of laser-melted Ti6Al4V grids on both hard and soft tissues with which they come into contact is, therefore, mandatory. In this study, we analyzed the effects of five different surface treatments on a human osteoblast-like cell line (MG-63). In particular, the cell proliferation and osteogenic response were evaluated. Taken together, our data demonstrate that in our in vitro setting, the new surface treatment developed by Al Ti color could enhance osteogenesis and improve the stabilization of the implant to the residual bone by stimulating the best osteogenic response in MG-63 cells. Although further studies are required to validate our data in an in vivo model, our results provide the basis for future advances in implantology for the long-term maintenance of osseointegration.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (V.S.); (F.S.); (E.S.)
| | - Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (V.S.); (F.S.); (E.S.)
| | - Loredana Rao
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (L.R.); (A.F.)
| | - Fabrizio Bambini
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (V.S.); (F.S.); (E.S.)
| | - Andrea Frontini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (L.R.); (A.F.)
| | - Francesco Sampalmieri
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (V.S.); (F.S.); (E.S.)
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60121 Ancona, Italy; (V.S.); (F.S.); (E.S.)
| | - Lucia Memé
- Department of Life Sciences, Health and Health Professions, Link Campus University Città di Castello (Pg), 06012 Città di Castello, Italy;
| |
Collapse
|
3
|
Rocha de Oliveira LQ, de Souza Nicolau HC, Barbosa Martelli DR, Martelli-Júnior H, Scariot R, Ayroza Rangel ALC, de Almeida Reis SR, Coletta RD, Machado RA. Ethnic Differences in the Brazilian Population Influence the Impact of BMP4 Genetic Variants on Susceptibility of Nonsyndromic Orofacial Clefts. Cleft Palate Craniofac J 2024; 61:1701-1712. [PMID: 37272066 DOI: 10.1177/10556656231180086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
OBJECTIVE The study evaluated the association of BMP4 tag-SNPs and SNP-SNP interactions involving genes active by BMP4 pathway during craniofacial development in the susceptibility of nonsyndromic orofacial clefts (NSOC) in the Brazilian population. DESIGN Case-control study. SETTING Brazilian Oral Cleft Group. PARTICIPANTS The study included 881 healthy controls and 800 patients with different types of NSOC: 232 with cleft lip only (NSCLO), 568 with cleft lip and palate (NSCLP), and 274 with cleft palate only (NSCPO). INTERVENTIONS The genomic DNA was genotyped with allelic discrimination assays for five BMP4 tag-SNPs (rs11623717, rs17563, rs2071047, rs2761887 and rs4898820), and analyzed their allelic and genotypic associations using multiple logistic regression. The interactions of these variants with genes involved in the BMP4 signaling pathway, including FGFR1, GREM1, NOG, VAX1 and the 4p16.2 locus, were explored. MAIN OUTCOME MEASURES BMP4 variants in the NSOC risk. RESULTS Although only nominal p values were identified when the whole sample was considered, subgroup analysis including the patients with high African genomic ancestry showed significant associations of rs2761887 with risk for nonsyndromic cleft lip with or without cleft palate (NSCL ± P)[(ORhom: 2.16; 95% CI: 1.21-3.85; p = 0.01) and (ORrec: 2.05; 95% CI: 1.21-3.47; p = 0.006)]. Thirteen significant SNP-SNP interactions involving BMP4 and the SNPs at FGFR1, GREM1, NOG and VAX1 and at locus 4p16.2 for increased risk of NSCL ± P were identified. CONCLUSIONS Our results demonstrate an increased risk of NSCL ± P in Brazilian individuals with enrichment of African ancestry in the presence of the BMP4 rs2762887 polymorphism, and reveal relevant genetic contribution of SNP-SNP epistatic interactions involving BMP4 variants to NSCL ± P risk.
Collapse
Affiliation(s)
| | | | | | - Hercílio Martelli-Júnior
- Stomatology Clinic, Dental School, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
- Center for Rehabilitation of Craniofacial Anomalies, Dental School, University of Professor Edson Antônio Velano, Alfenas, Minas Gerais, Brazil
| | - Rafaela Scariot
- Department of Oral and Maxillofacial Surgery, School of Health Science, Federal University of Paraná, Curitiba, Brazil
| | - Ana Lúcia Carrinho Ayroza Rangel
- Center of Biological Sciences and of the Health, School of Dentistry, State University of Western Paraná, Cascavel, Paraná, Brazil
| | | | - Ricardo D Coletta
- Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Renato Assis Machado
- Graduate Program in Oral Biology, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
- Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|
4
|
Shibing X, Xugang L, Siqi Z, Yifan C, Jun C, Changsheng W, Simeng W, Bangcheng Y. Osteogenic properties of bioactive titanium in inflammatory environment. Dent Mater 2023; 39:929-937. [PMID: 37640634 DOI: 10.1016/j.dental.2023.08.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES It is very important that the effects of surface modified titanium on osteogenic differentiation of bone marrow mesenchymal stem cells in the process of bone regeneration. The bio-function of modified titanium could be affected by the inflammatory micro-environment. The aim of this study was to investigate the effects of modified titanium on osteogenic differentiation in the inflammatory conditions and the osteogenic properties of the modified titanium dental implant in vivo. METHODS The medical pure titanium metals (PT-Ti) subjected to Anodic Oxidation (AO-Ti), Sand Blasting/acid etching (SLA-Ti) and Plasma-sprayed HA coating (HA coating-Ti) were used for regulating the osteogenic properties of MSCs in the normal and inflammatory conditions. RESULTS The amount of the MSCs in the inflammatory environment were more similar to that in the non-inflammatory environment after cultured on AO-Ti samples for 7D. However, the proliferation of the MSCs was obviously inhibited on the other groups in the inflammatory condition. The morphology of MSC cells on the modified titanium surface was affected in the inflammatory conditions and the AO-Ti was more conducive to maintain the skeletal morphology of MSCs. The results of osteogenic related proteins expression showed that the amount of BMP-2 on AO-Ti group was the highest in the inflammatory conditions, and followed the order of AO-Ti > HA coating-Ti > SLA-Ti > PT-Ti. What's more, the AO-Ti samples were more beneficial to promote the expression of osteogenic genes ALP, OCN, COL-I and Runx2 in the inflammatory conditions. The results of osteogenic properties in vivo showed that the gingival depth of the AO-Ti group was smaller than that on the other groups. Some new bone could be observed around the AO-Ti implant at two weeks. The bone binding rates on AO-Ti group was the highest of 81.3% after implanted for one year. SIGNIFICANCE The AO-Ti was beneficial to osteogenic differentiation than other modified titanium metals in inflammatory condition. The anodic oxidation is an effective surface modification method on titanium to promote bone regeneration.
Collapse
Affiliation(s)
- Xiong Shibing
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Lu Xugang
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhang Siqi
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cui Yifan
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chen Jun
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wei Changsheng
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wang Simeng
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yang Bangcheng
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China; National Engineering Research Center for Biomaterials, Chengdu 610064, China; Sichuan Guojia Biomaterials Co., Ltd, Chengdu 610064, China; College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
5
|
Zhang R, Gong Y, Cai Z, Deng Y, Shi X, Pan H, Xu L, Zhang H. A composite membrane with microtopographical morphology to regulate cellular behavior for improved tissue regeneration. Acta Biomater 2023; 168:125-143. [PMID: 37414112 DOI: 10.1016/j.actbio.2023.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Tissue engineering scaffolds with specific surface topographical morphologies can regulate cellular behaviors and promote tissue repair. In this study, poly lactic(co-glycolic acid) (PLGA)/wool keratin composite guided tissue regeneration (GTR) membranes with three types of microtopographies (three groups each of pits, grooves and columns, thus nine groups in total) were prepared. Then, the effects of the nine groups of membranes on cell adhesion, proliferation and osteogenic differentiation were examined. The nine different membranes had clear, regular and uniform surface topographical morphologies. The 2 µm pit-structured membrane had the best effect on promoting the proliferation of bone marrow mesenchymal stem cells (BMSCs) and periodontal ligament stem cells (PDLSCs), while the 10 µm groove-structured membrane was the best for inducing osteogenic differentiation of BMSCs and PDLSCs. Then, we investigated the ectopic osteogenic, guided bone tissue regeneration and guided periodontal tissue regeneration effects of the 10 µm groove-structured membrane combined with cells or cell sheets. The 10 µm groove-structured membrane/cell complex had good compatibility and certain ectopic osteogenic effects, and the 10 µm groove-structured membrane/cell sheet complex promoted better bone repair and regeneration and periodontal tissue regeneration. Thus, the 10 µm groove-structured membrane shows potential to treat bone defects and periodontal disease. STATEMENT OF SIGNIFICANCE: PLGA/wool keratin composite GTR membranes with microcolumn, micropit and microgroove topographical morphologies were prepared by dry etching technology and the solvent casting method. The composite GTR membranes had different effects on cell behavior. The 2 µm pit-structured membrane had the best effect on promoting the proliferation of rabbit BMSCs and PDLSCs and the 10 µm groove-structured membrane was the best for inducing the osteogenic differentiation of BMSCs and PDLSCs. The combined application of a 10 µm groove-structured membrane and PDLSC sheet can promote better bone repair and regeneration as well as periodontal tissue regeneration. Our findings may have significant potential for guiding the design of future GTR membranes with topographical morphologies and clinical applications of the groove-structured membrane/cell sheet complex.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Prosthodontics, College of Stomatology, Ningxia Medical University, Yinchuan 750004, China; General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Yuwei Gong
- Department of Prosthodontics, College of Stomatology, Ningxia Medical University, Yinchuan 750004, China; Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, China
| | - Zhuoyan Cai
- Department of Prosthodontics, College of Stomatology, Ningxia Medical University, Yinchuan 750004, China; Sinopharm Chongqing Southwest Aluminum Hospital, Chongqing 401326, China
| | - Yan Deng
- Department of Prosthodontics, College of Stomatology, Ningxia Medical University, Yinchuan 750004, China; First People's Hospital of Yuhang District, Hangzhou 311100, China
| | - Xingyan Shi
- Department of Prosthodontics, College of Stomatology, Ningxia Medical University, Yinchuan 750004, China; Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, China
| | - Hongyue Pan
- Department of Prosthodontics, College of Stomatology, Ningxia Medical University, Yinchuan 750004, China
| | - Lihua Xu
- Department of General Medicine, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China.
| | - Hualin Zhang
- Department of Prosthodontics, College of Stomatology, Ningxia Medical University, Yinchuan 750004, China; Ningxia Province Key Laboratory of Oral Diseases Research, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
6
|
Patel NA, O’Bryant S, Rogers CD, Boyett CK, Chakravarti S, Gendreau J, Brown NJ, Pennington ZA, Hatcher NB, Kuo C, Diaz-Aguilar LD, Pham MH. Three-Dimensional-Printed Titanium Versus Polyetheretherketone Cages for Lumbar Interbody Fusion: A Systematic Review of Comparative In Vitro, Animal, and Human Studies. Neurospine 2023; 20:451-463. [PMID: 37401063 PMCID: PMC10323354 DOI: 10.14245/ns.2346244.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 07/05/2023] Open
Abstract
Interbody fusion is a workhorse technique in lumbar spine surgery that facilities indirect decompression, sagittal plane realignment, and successful bony fusion. The 2 most commonly employed cage materials are titanium (Ti) alloy and polyetheretherketone (PEEK). While Ti alloy implants have superior osteoinductive properties they more poorly match the biomechanical properties of cancellous bones. Newly developed 3-dimensional (3D)-printed porous titanium (3D-pTi) address this disadvantage and are proposed as a new standard for lumbar interbody fusion (LIF) devices. In the present study, the literature directly comparing 3D-pTi and PEEK interbody devices is systematically reviewed with a focus on fusion outcomes and subsidence rates reported in the in vitro, animal, and human literature. A systematic review directly comparing outcomes of PEEK and 3D-pTi interbody spinal cages was performed. PubMed, Embase, and Cochrane Library databases were searched according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines. Mean Newcastle-Ottawa Scale score for cohort studies was 6.4. A total of 7 eligible studies were included, comprising a combination of clinical series, ovine animal data, and in vitro biomechanical studies. There was a total population of 299 human and 59 ovine subjects, with 134 human (44.8%) and 38 (64.4%) ovine models implanted with 3D-pTi cages. Of the 7 studies, 6 reported overall outcomes in favor of 3D-pTi compared to PEEK, including subsidence and osseointegration, while 1 study reported neutral outcomes for device related revision and reoperation rate. Though limited data are available, the current literature supports 3D-pTi interbodies as offering superior fusion outcomes relative to PEEK interbodies for LIF without increasing subsidence or reoperation risk. Histologic evidence suggests 3D-Ti to have superior osteoinductive properties that may underlie these superior outcomes, but additional clinical investigation is merited.
Collapse
Affiliation(s)
- Neal A. Patel
- School of Medicine, Mercer University, Columbus, GA, USA
| | | | | | | | - Sachiv Chakravarti
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Julian Gendreau
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, MD, USA
| | - Nolan J. Brown
- Department of Neurosurgery, University of California Irvine, Orange, CA, USA
| | | | | | - Cathleen Kuo
- Department of Neurosurgery, University of Buffalo, Buffalo, NY, USA
| | | | - Martin H. Pham
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
7
|
Transforaminal Fusion Using Physiologically Integrated Titanium Cages with a Novel Design in Patients with Degenerative Spinal Disorders: A Pilot Study. SURGERIES 2022. [DOI: 10.3390/surgeries3030019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
More contemporary options have been presented in the last few years as surgical methods and materials have improved in patients with degenerative spine illnesses. The use of biologically integrated titanium cages of a unique design based on computer 3D modeling for the surgical treatment of patients with degenerative illnesses of the spine’s intervertebral discs has been proposed and experimentally tested. The goal of this study is to compare the radiographic and clinical outcomes of lumbar posterior interbody fusion with a 3D porous titanium alloy cage versus a titanium-coated polyetheretherketone (PEEK) cage, including fusion quality, time to fusion, preoperative and postoperative patient assessments, and the presence, severity, and other side effect characteristics. (1) Methods: According to the preceding technique, patients who were operated on with physiologically integrated titanium cages of a unique design based on 3D computer modeling were included in the study group. This post-surveillance study was conducted as a randomized, prospective, interventional, single-blind, center study to look at the difference in infusion rates and the difference compared to PEEK cages. The patients were evaluated using CT scans, Oswestry questionnaires (every 3, 6, and 12 months), and VAS scales. (2) Results: Six months following surgery, the symptoms of fusion and the degree of cage deflation in the group utilizing the porous titanium 3D cage were considerably lower than in the group using the PEEK cage (spinal fusion sign, p = 0.044; cage subsidence, p = 0.043). The control group had one case of cage migration into the spinal canal with screw instability, one case of screw instability without migration but with pseudoarthrosis formation and two surrounding segment syndromes with surgical revisions compared with the 3D porous titanium alloy cage group. (3) Conclusions: The technique for treating patients with degenerative disorders or lumbar spine instability with aspects of neural compression utilizing biologically integrated titanium cages of a unique design based on computer 3D printing from CT scans has been proven. This allows a new approach of spinal fusion to be used in practice, restoring the local sagittal equilibrium of the spinal motion segment and lowering the risk of pseudarthrosis and revision surgery.
Collapse
|
8
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Deng J, Cohen DJ, Redden J, McClure MJ, Boyan BD, Schwartz Z. Differential Effects of Neurectomy and Botox-induced Muscle Paralysis on Bone Phenotype and Titanium Implant Osseointegration. Bone 2021; 153:116145. [PMID: 34390886 PMCID: PMC8480339 DOI: 10.1016/j.bone.2021.116145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/29/2022]
Abstract
Metabolic bone is highly innervated by both sensory and sympathetic nerves. In addition to skeletal development, neural regulation participates in local bone remodeling, which is important for successful osseointegration of titanium implants. Neurectomy is a model used to investigate the lack of neural function on bone homeostasis, but the relative impacts of direct denervation to bone or denervation-induced muscle paralysis are less well defined. To investigate this difference, we used two nerve intervention models, sciatic and femoral neurectomy (SFN) v. botox-induced muscle paralysis (BTX) and assessed the resulting femoral bone phenotype and Ti implant osseointegration. Male Sprague Dawley rats (19) were randomly divided into three groups: implant control (n = 5), SFN (n = 7), and BTX (n = 7). Ti implants (microrough/hydrophilic [modSLA], Institut Straumann AG) were placed in the distal metaphysis of each femur on day 24 post-SFN or BTX. Bone and muscle were examined on day 28 after implant insertion. Both nerve intervention models impaired osseointegration. MicroCT and histology indicated that both models had reduced trabecular bone formation. Only BTX reduced cortical bone formation and increased cortical bone porosity. BTX resulted in more bone loss characterized by the least trabecular and cortical bone, as well as osseointegration. Osteoblasts isolated from the tibia exhibited a model-specific phenotype when they were grown on Ti substrates in vitro. Neurectomy caused more severe muscle atrophy than botox injection. These results indicate that neural regulation directly modulates bone formation and osseointegration. Muscle paralysis modulated the effects of loss of neural inputs into bone, supporting the hypothesis that mechanical loading of bone is a factor in achieving successful osseointegration. The different effects of botox and neurectomy on bone phenotype indicated that the sensory and sympathetic nerves had a role in the osseointegration process.
Collapse
Affiliation(s)
- Jingyao Deng
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David J Cohen
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - James Redden
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Michael J McClure
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
10
|
朱 行, 刁 树, 杨 东, 范 志. [The Mechanism of GREM1's Effect on Osteogenic/Odontogenic Differentiation of Stem Cells from Apical Papilla]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:409-415. [PMID: 34018358 PMCID: PMC10409195 DOI: 10.12182/20210560206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study the effect of bone morphogenetic protein (BMP) antagonist Gremlin 1 (GREM1) on the function of stem cells from apical papilla (SCAPs) and explore its mechanism. METHODS After isolation and culturing of stem cells from apical papilla in vitro, immunofluorescent staining was done to examine the subcellular localization of GREM1 in SCAPs. Transfection with lentiviral GREM1 shRNA was done to knock-down the GREM1. The SCAPs were subjected to osteogenic induction in both the GREM1 knockdown group and the control group, and the knockdown effect of GREM1 was examined using real time-PCR and Western blot. Two groups of cells were collected and the alkaline phosphatase (ALP) activity was measured 7 d after osteogenic induction. Alizarin red staining was done 3 weeks after osteogenic/odontogenic induction and real time-PCR was done after 0, 1, 2, 3 weeks of osteogenic induction to examine the expression of osteogenic/odontogenic marker genes, including osteocalcin ( OCN), osteopontin ( OPN), bone sialoprotein ( BSP), dentin matrix protein 1 ( DMP1), dentin sialophosphoprotein ( DSPP) and and the critical transcription factor osterix ( OSX), Runt-related transcription factor 2 ( RUNX2), and distal-less homebox 2 ( DLX2). Two groups of cells were collected, and CCK-8 and CFSE assay were used to evaluate changes in cell proliferation. In addition, real time-PCR was used to examine the expression of senescence-related genes p53 and wide-type activated factor 1 ( Waf1), a regulatory factor of the cell cycle, stemness associated gene krupple-like factor 4 ( KLF4), and SRY related HMG box-2 ( SOX2), and the expression of bone morphogenetic protein ( BMP) 2, 4, 5, 6, 7, 9 after GREM1 knockdown. RESULTS Immunofluorescence staining showed that the expression of GREM1 in the nucleus was higher than that in the cytoplasm. Real time-PCR and Western blot affirmed that GREM1 was knocked down steadily. The ALP activity of the GREM1 knockdown group was higher than that of the control group ( P<0.05), and the alizarin red staining was lighter than that of the control group. The expression of OCN and DMP1 increased in the first, second and third week, OPN was increased in the second week, BSP increased in the third week, DSPP increased in the first week, and the difference was statistically significant ( P<0.05). The key osteogenic transcription factors RUNX2, OSX, and DLX2 all increased at different stages, and the difference was statistically significant ( P<0.05). CCK-8 and CFSE assay showed that the proliferation ability of the GREM1 knockdown group decreased ( P<0.05). In the GREM1 knockdown group, the expression of BMP2, 6, and 7 increased, the expression of SOX2 and KLF4 increased, while the expression of p53 and Waf1 decreased ( P<0.05). CONCLUSIONS The knockdown of GREM1 enhanced the osteogenic/odontogenic differentiation and stemness of SCAPs and inhibited the proliferation and senescence of SCAPs. Effects of GREM1 on the function of SCAPs maybe achieved through regulating the gene expression of BMP2, BMP6, and BMP7 at the mRNA level.
Collapse
Affiliation(s)
- 行燕 朱
- 国家儿童医学中心 首都医科大学附属北京儿童医院 口腔科 (北京 100045)Department of Dentistry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - 树 刁
- 国家儿童医学中心 首都医科大学附属北京儿童医院 口腔科 (北京 100045)Department of Dentistry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - 东梅 杨
- 国家儿童医学中心 首都医科大学附属北京儿童医院 口腔科 (北京 100045)Department of Dentistry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - 志朋 范
- 国家儿童医学中心 首都医科大学附属北京儿童医院 口腔科 (北京 100045)Department of Dentistry, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| |
Collapse
|
11
|
Molecular Mechanisms of Topography Sensing by Osteoblasts: An Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bone is a specialized tissue formed by different cell types and a multiscale, complex mineralized matrix. The architecture and the surface chemistry of this microenvironment can be factors of considerable influence on cell biology, and can affect cell proliferation, commitment to differentiation, gene expression, matrix production and/or composition. It has been shown that osteoblasts encounter natural motifs in vivo, with various topographies (shapes, sizes, organization), and that cell cultures on flat surfaces do not reflect the total potential of the tissue. Therefore, studies investigating the role of topographies on cell behavior are important in order to better understand the interaction between cells and surfaces, to improve osseointegration processes in vivo between tissues and biomaterials, and to find a better topographic surface to enhance bone repair. In this review, we evaluate the main available data about surface topographies, techniques for topographies’ production, mechanical signal transduction from surfaces to cells and the impact of cell–surface interactions on osteoblasts or preosteoblasts’ behavior.
Collapse
|
12
|
Park PJ, Lehman RA. Optimizing the Spinal Interbody Implant: Current Advances in Material Modification and Surface Treatment Technologies. Curr Rev Musculoskelet Med 2020; 13:688-695. [PMID: 32816234 DOI: 10.1007/s12178-020-09673-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Interbody implants allow for fusion of the anterior column of the spine between vertebral body endplates. As rates of spinal fusion surgery have increased over the past several years, significant research has been devoted to optimizing both the mechanical and biologic properties of the interbody implant in order to promote bony fusion. The first interbody implants used decades ago were fashioned from cortical autograft. Currently, titanium alloy and polyetheretherketone (PEEK) are the most widely used and studied materials for this purpose. This review focuses on recent innovations in material modification and surface treatment techniques for both titanium and PEEK implants to maximize fusion rates in spinal surgery. RECENT FINDINGS Titanium has an elastic modulus much higher than native bone and however has better osseointegrative properties than PEEK. PEEK, however, has an elastic modulus closer to that of bone without any of the advantageous biologic properties that titanium has. Increasing porosity and surface roughness of titanium implants have been shown to improve the mechanical properties of titanium implants, while the biologic properties of PEEK have been enhanced using surface coating technology, either with titanium or with hydroxyapatite (HA). Techniques such as increasing porosity, surface roughening, and surface coating are just some of the recent innovations aimed at optimizing both mechanical and biologic properties of interbody implants to promote spinal fusion. The future of interbody implant design will rely on continued improvements of PEEK and titanium implants as well as exploring new implant materials altogether.
Collapse
Affiliation(s)
- Paul J Park
- The Spine Hospital, NewYork-Presbyterian/Columbia University Irving Medical Center, 5141 Broadway, 3 Field West-022, New York, NY, 10034, USA.
| | - Ronald A Lehman
- The Spine Hospital, NewYork-Presbyterian/Columbia University Irving Medical Center, 5141 Broadway, 3 Field West-022, New York, NY, 10034, USA
| |
Collapse
|
13
|
Ghosh M, Halperin-Sternfeld M, Grinberg I, Adler-Abramovich L. Injectable Alginate-Peptide Composite Hydrogel as a Scaffold for Bone Tissue Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E497. [PMID: 30939729 PMCID: PMC6523611 DOI: 10.3390/nano9040497] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/17/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
Abstract
The high demand for tissue engineering scaffolds capable of inducing bone regeneration using minimally invasive techniques prompts the need for the development of new biomaterials. Herein, we investigate the ability of Alginate incorporated with the fluorenylmethoxycarbonyl-diphenylalanine (FmocFF) peptide composite hydrogel to serve as a potential biomaterial for bone regeneration. We demonstrate that the incorporation of the self-assembling peptide, FmocFF, in sodium alginate leads to the production of a rigid, yet injectable, hydrogel without the addition of cross-linking agents. Scanning electron microscopy reveals a nanofibrous structure which mimics the natural bone extracellular matrix. The formed composite hydrogel exhibits thixotropic behavior and a high storage modulus of approximately 10 kPA, as observed in rheological measurements. The in vitro biocompatibility tests carried out with MC3T3-E1 preosteoblast cells demonstrate good cell viability and adhesion to the hydrogel fibers. This composite scaffold can induce osteogenic differentiation and facilitate calcium mineralization, as shown by Alizarin red staining, alkaline phosphatase activity and RT-PCR analysis. The high biocompatibility, excellent mechanical properties and similarity to the native extracellular matrix suggest the utilization of this hydrogel as a temporary three-dimensional cellular microenvironment promoting bone regeneration.
Collapse
Affiliation(s)
- Moumita Ghosh
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Michal Halperin-Sternfeld
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Itzhak Grinberg
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Lihi Adler-Abramovich
- Department of Oral Biology, The Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
14
|
Li P, Jiang W, Yan J, Hu K, Han Z, Wang B, Zhao Y, Cui G, Wang Z, Mao K, Wang Y, Cui F. A novel 3D printed cage with microporous structure and in vivo fusion function. J Biomed Mater Res A 2019; 107:1386-1392. [PMID: 30724479 DOI: 10.1002/jbm.a.36652] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/21/2019] [Accepted: 02/04/2019] [Indexed: 01/28/2023]
Affiliation(s)
- Peng Li
- Department of OrthopedicsChinese PLA General Hospital Beijing, 100853 China
| | - Wei Jiang
- Department of OrthopedicsChinese PLA General Hospital Beijing, 100853 China
| | - Jia Yan
- Institute of Printing and Packaging EngineeringBeijing Institute of Graphic Communication Beijing, 102600 China
| | - Kun Hu
- Institute of Printing and Packaging EngineeringBeijing Institute of Graphic Communication Beijing, 102600 China
| | - Zhenchuan Han
- Department of OrthopedicsChinese PLA General Hospital Beijing, 100853 China
| | - Bo Wang
- Department of OrthopedicsChinese PLA General Hospital Beijing, 100853 China
| | - Yongfei Zhao
- Department of OrthopedicsChinese PLA General Hospital Beijing, 100853 China
| | - Geng Cui
- Department of OrthopedicsChinese PLA General Hospital Beijing, 100853 China
| | - Zheng Wang
- Department of OrthopedicsChinese PLA General Hospital Beijing, 100853 China
| | - Keya Mao
- Department of OrthopedicsChinese PLA General Hospital Beijing, 100853 China
| | - Yan Wang
- Department of OrthopedicsChinese PLA General Hospital Beijing, 100853 China
| | - Fuzhai Cui
- Department of Materials Science and EngineeringTsinghua University Beijing, 100084 China
| |
Collapse
|
15
|
Boyan BD, Cheng A, Olivares-Navarrete R, Schwartz Z. Implant Surface Design Regulates Mesenchymal Stem Cell Differentiation and Maturation. Adv Dent Res 2017; 28:10-7. [PMID: 26927483 DOI: 10.1177/0022034515624444] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Changes in dental implant materials, structural design, and surface properties can all affect biological response. While bulk properties are important for mechanical stability of the implant, surface design ultimately contributes to osseointegration. This article reviews the surface parameters of dental implant materials that contribute to improved cell response and osseointegration. In particular, we focus on how surface design affects mesenchymal cell response and differentiation into the osteoblast lineage. Surface roughness has been largely studied at the microscale, but recent studies have highlighted the importance of hierarchical micron/submicron/nanosurface roughness, as well as surface roughness in combination with surface wettability. Integrins are transmembrane receptors that recognize changes in the surface and mediate downstream signaling pathways. Specifically, the noncanonical Wnt5a pathway has been implicated in osteoblastic differentiation of cells on titanium implant surfaces. However, much remains to be elucidated. Only recently have studies been conducted on the differences in biological response to implants based on sex, age, and clinical factors; these all point toward differences that advocate for patient-specific implant design. Finally, challenges in implant surface characterization must be addressed to optimize and compare data across studies. An understanding of both the science and the biology of the materials is crucial for developing novel dental implant materials and surface modifications for improved osseointegration.
Collapse
Affiliation(s)
- B D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - A Cheng
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA Department of Biomedical Engineering, Peking University, Beijing, China
| | - R Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Z Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
16
|
Hyzy SL, Olivares-Navarrete R, Ortman S, Boyan BD, Schwartz Z. Bone Morphogenetic Protein 2 Alters Osteogenesis and Anti-Inflammatory Profiles of Mesenchymal Stem Cells Induced by Microtextured Titanium In Vitro<sup/>. Tissue Eng Part A 2017; 23:1132-1141. [PMID: 28351289 DOI: 10.1089/ten.tea.2017.0003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Microtextured titanium (Ti) induces osteoblast differentiation of mesenchymal stem cells (MSCs) in the absence of exogenous osteogenic factors; and high-energy surface modifications speed healing of microrough Ti implants. Bone morphogenetic protein 2 (BMP2) is used clinically to improve peri-implant bone formation and osseointegration but can cause inflammation and bone-related complications. In this study, we determined whether BMP2 alters human MSC differentiation, apoptosis, and inflammatory factor production when grown on Ti implants with different surface properties. MATERIALS AND METHODS Human MSCs were cultured on Ti substrates (smooth [PT], sandblasted acid-etched [SLA], hydrophilic-SLA [modSLA]), or tissue culture polystyrene (TCPS). After 7 days, inflammatory mRNAs were measured by polymerase chain reaction array. In addition, 7-day cultures were treated with exogenous BMP2 and osteogenic differentiation and production of local factors, proinflammatory interleukins, and anti-inflammatory interleukins assessed. Finally, osteogenic markers and interleukins were measured in MSCs cultured for 48 h on BMP2 dip-coated SLA and modSLA surfaces. RESULTS Expression of interleukins, chemokines, cytokines, and growth factors was affected by surface properties, particularly on modSLA. MSCs on Ti produced fewer resorptive and more osteogenic/anti-inflammatory factors than cells on TCPS. Addition of 100 ng/mL BMP2 not only increased differentiation but also increased proinflammatory and decreased anti-inflammatory/antiresorptive factors. Two hundred nanograms per milliliter BMP2 abolished osteogenesis and dramatically increased pro-osteoclastogenic factors. MSCs cultured on BMP2-dip-coated disks produced similar proinflammatory profiles with inhibited osteogenic differentiation and had increased apoptotic markers at the highest doses. CONCLUSIONS MSCs underwent osteogenesis and regulated inflammatory cytokines on microtextured Ti. Exogenous BMP2 inhibited MSC differentiation and stimulated a dose-dependent proinflammatory and apoptotic response. Use of BMP2 with microtextured metal implants may increase inflammation and possibly delay bone formation dependent on dose, suggesting that application of BMP2 clinically during implant insertion may need to be reevaluated.
Collapse
Affiliation(s)
- Sharon L Hyzy
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Rene Olivares-Navarrete
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia
| | - Sarah Ortman
- 2 Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Barbara D Boyan
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia.,2 Department of Biomedical Engineering, Georgia Institute of Technology , Atlanta, Georgia
| | - Zvi Schwartz
- 1 Department of Biomedical Engineering, Virginia Commonwealth University , Richmond, Virginia.,3 Department of Periodontics, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
17
|
Yu M, Wang L, Ba P, Li L, Sun L, Duan X, Yang P, Yang C, Sun Q. Osteoblast Progenitors Enhance Osteogenic Differentiation of Periodontal Ligament Stem Cells. J Periodontol 2017; 88:e159-e168. [PMID: 28517970 DOI: 10.1902/jop.2017.170016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Osteoblasts and periodontal ligament stem cells (PDLSCs) play an important role in maintaining physiologic function of periodontal tissues and participating in periodontal regeneration. Elucidation of interactions between osteoblasts and PDLSCs will aid understanding of periodontal regeneration mechanisms. This study aims to determine whether preosteoblasts can promote osteoblastic/cementoblastic differentiation of PDLSCs. METHODS PDLSCs were cultured alone (control group), or cocultured indirectly with human gingival fibroblasts (HGFs) (HGFs group) or MC3T3-E1 cells (OB groups). Alkaline phosphatase (ALP) activity and gene/protein expressions levels of ALP, runt-related transcription factor-2, and osteopontin (OPN) were assessed. Cementum attachment protein and cementum protein 23 messenger RNA expressions were also evaluated. Bone morphogenetic protein (BMP)-2 secreted by HGFs/MC3T3-E1 cells was assessed by enzyme-linked immunosorbent assay. Extracellular matrix calcification was measured by staining to quantify calcium content. RESULTS ALP activity and gene/protein expression levels of osteogenic markers were significantly higher in the OB groups compared with the HGFs and control groups. Optimal enhancement of these parameters occurred at cell ratios of 2:1 to 1:1 (MC3T3-E1:PDLSCs). Mineralized nodule formation and calcium content were significantly increased in the OB groups compared with the HGF and control groups. The greatest improvement took place at the 2:1 (MC3T3-E1:PDLSCs) seeding ratio. BMP-2 from MC3T3-E1-conditioned medium was significantly and time-dependently increased compared with that from HGF-conditioned medium. CONCLUSION Preosteoblasts can indirectly enhance the osteoblastic/cementoblastic differentiation and mineralization of PDLSCs with an optimal preosteoblasts:PDLSCs ratio in the range of 2:1 to 1:1.
Collapse
Affiliation(s)
- Miao Yu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Stomatology, Weifang People's Hospital, Weifang, Shandong, China
| | - Limei Wang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Pengfei Ba
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, Weihai Stomatological Hospital, Weihai, Shandong, China
| | - Linxia Li
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Prosthodontology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China
| | - Long Sun
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Xiaoqi Duan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Pishan Yang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| | - Chengzhe Yang
- Department of Oral and Maxillofacial Surgery, Qilu Hospital, Shandong University.,Institute of Stomatology, Shandong University
| | - Qinfeng Sun
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong University, Jinan, Shandong, China.,Department of Periodontology, School of Stomatology, Shandong University
| |
Collapse
|
18
|
Lee EM, Smith K, Gall K, Boyan BD, Schwartz Z. Change in surface roughness by dynamic shape-memory acrylate networks enhances osteoblast differentiation. Biomaterials 2016; 110:34-44. [PMID: 27710831 DOI: 10.1016/j.biomaterials.2016.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/11/2016] [Accepted: 08/03/2016] [Indexed: 12/17/2022]
Abstract
Microscale surface roughness has been shown to enhance osseointegration of titanium implants through increased osteoblast differentiation while osteoblast proliferation remains greater on smooth titanium. Taking advantage of these phenomena, we developed a shape memory (meth)acrylate copolymer with thermomechanical properties that created a time-dependent dynamic surface change from smooth to rough under in vitro cell culture conditions and evaluated the effect of the shape recovery on osteoblast response. Rough topographies were created using soft lithography techniques to mimic those found on clinically-used Ti surfaces (machined smooth; acid-etched; grit-blasted). The surface roughness was then reduced to smooth via compression and shown to fully recover within 24 h in culture conditions. When grown under static conditions, osteoblast number, alkaline phosphatase specific activity (ALP), and osteoprotegerin (OPG) and vascular endothelial growth factor (VEGF) production were unaffected by polymer surface roughness, but osteocalcin (OCN) was increased on the grit-blasted polymer mimic. Under dynamic conditions, DNA was reduced but OCN and OPG were increased on the compressed grit-blasted polymer at 3 days compared to static surfaces. The present study indicates that responses to polymer surface are sensitive to time-dependent changes in topography. The use of a shape memory polymer with dynamic surface roughness may improve osseointegration.
Collapse
Affiliation(s)
- Erin M Lee
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Ken Gall
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Barbara D Boyan
- Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology, Atlanta, GA, USA; Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA.
| | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
19
|
Choi BD, Lee SY, Jeong SJ, Lim DS, Cha HJ, Chung WG, Jeong MJ. Secretory leukocyte protease inhibitor promotes differentiation and mineralization of MC3T3-E1 preosteoblasts on a titanium surface. Mol Med Rep 2016; 14:1241-6. [PMID: 27279420 DOI: 10.3892/mmr.2016.5381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 03/08/2016] [Indexed: 11/06/2022] Open
Abstract
Mineralized bone matrix constituted with collagenous and non-collagenous proteins was synthesized by osteoblasts differentiated from mesenchymal stem cells. Secretory leukocyte protease inhibitor (SLPI), a serine protease inhibitor, promotes cell migration and proliferation, and suppresses the inflammatory response. Recent studies reported that SLPI regulates the formation of dentin and mineralization by odontoblasts and increases the adhesion and viability of preosteoblasts on a titanium (Ti) surface. Ti and its alloys are widely used implant materials in artificial joints and dental implants owing to their biocompatibility with bone. Therefore, this study aimed to examine whether SLPI can be an effective molecule in promoting differentiation and mineralization of osteoblasts on a Ti surface. In order to investigate the effects of SLPI on osteoblasts, an MTT assay, PCR, western blotting and Alizarin Red S staining were performed. The results demonstrated that SLPI increased the viability of osteoblasts during differentiation on Ti discs compared with that of the control. The expression levels of SLPI mRNA and protein were higher than that of the control after treatment of osteoblasts with SLPI on Ti discs during differentiation. SLPI increased the formation of mineralized nodules and mRNA expression of alkaline phosphatase, dentin sialophosphoprotein, dentin matrix protein 1, bone sialoprotein, and collagen I in osteoblasts on Ti discs compared with that of the control. In conclusion, SLPI increases the viability and promotes the differentiation and mineralization of osteoblasts on Ti surfaces, suggesting that SLPI is an effective molecule for achieving successful osseointegration between osteoblasts and a Ti surface.
Collapse
Affiliation(s)
- Baik-Dong Choi
- Department of Oral Histology and Developmental Biology, School of Dentistry, Chosun University, Gwangju 501‑759, Republic of Korea
| | - Seung-Yeon Lee
- Department of Oral Histology and Developmental Biology, School of Dentistry, Chosun University, Gwangju 501‑759, Republic of Korea
| | - Soon-Jeong Jeong
- Department of Dental Hygiene, Youngsan University, Yangsan, Gyeongsangnam‑do 626‑790, Republic of Korea
| | - Do-Seon Lim
- Department of Dental Hygiene, Eulji University, Seongnam, Gyeonggi 461‑713, Republic of Korea
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 602‑072, Republic of Korea
| | - Won-Gyun Chung
- Department of Dental Hygiene, Wonju College of Medicine, Yonsei University, Wonju, Gangwon 220‑701, Republic of Korea
| | - Moon-Jin Jeong
- Department of Oral Histology and Developmental Biology, School of Dentistry, Chosun University, Gwangju 501‑759, Republic of Korea
| |
Collapse
|
20
|
Pan Q, O'Connor MI, Coutts RD, Hyzy SL, Olivares-Navarrete R, Schwartz Z, Boyan BD. Characterization of osteoarthritic human knees indicates potential sex differences. Biol Sex Differ 2016; 7:27. [PMID: 27257472 PMCID: PMC4890516 DOI: 10.1186/s13293-016-0080-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/12/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The prevalence of osteoarthritis is higher in women than in men in every age group, and overall prevalence increases with advancing age. Sex-specific differences in the properties of osteoarthritic joint tissues may permit the development of sex-specific therapies. Sex hormones regulate cartilage and bone development and homeostasis in a sex-dependent manner. Recent in vitro studies show that the vitamin D3 metabolite 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3] also has sex-specific effects on musculoskeletal cells, suggesting that vitamin D3 metabolites may play a role in osteoarthritis-related sex-specific differences. The purpose of this study was to determine if sex-specific differences exist in synovial fluid and knee tissues isolated from male and female patients with severe knee osteoarthritis. We determined the presence of vitamin D3 metabolites, inflammatory cytokines, growth factors, and matrix metalloproteinases (MMPs) in synovial fluid and assessed responses of articular chondrocytes and subchondral osteoblasts to 17β-estradiol, dihydrotestosterone, and 1α,25(OH)2D3. METHODS Samples from knee joints of 10 Caucasian male and 10 Caucasian female patients with advanced osteoarthritis aged 65 to 75 years were obtained from total knee arthroplasty. Vitamin D metabolites, cytokines, MMPs, and growth factors in the synovial fluid were measured. Primary cultures of chondrocytes were isolated from fibrillated articular cartilage adjacent to osteoarthritis lesions and minimally affected cartilage distal to the lesion. Osteoblasts were isolated from the subchondral bone. Expression of receptors for 17β-estradiol and 1α,25(OH)2D3 was assessed by real-time PCR. Chondrocytes and osteoblasts were treated with 10(-8) M 17β-estradiol, dihydrotestosterone, or 1α,25(OH)2D3 and effects on gene expression and protein synthesis determined. RESULTS Histology of the articular cartilage confirmed advanced osteoarthritis. Sex differences were found in synovial fluid levels of vitamin D metabolites, cytokines, and metalloproteinases as well as in the cellular expression of receptors for 17β-estradiol and 1α,25(OH)2D3. Male cells were more responsive to 1α,25(OH)2D3 and dihydrotestosterone, whereas 17β-estradiol-affected female cells. CONCLUSIONS These results demonstrate that there are underlying sex differences in knee tissues affected by osteoarthritis. Our findings do not address osteoarthritis etiology but have implications for different prevention methods and treatments for men and women. Further research is needed to better understand these sex-based differences.
Collapse
Affiliation(s)
- Qingfen Pan
- Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA USA
| | - Mary I O'Connor
- Center for Musculoskeletal Care, Yale University School of Medicine, New Haven, CT USA
| | - Richard D Coutts
- Department of Orthopaedics, University of California at San Diego, San Diego, CA USA
| | - Sharon L Hyzy
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA USA
| | | | - Zvi Schwartz
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA USA ; Department of Periodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA USA ; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA USA ; School of Engineering, Virginia Commonwealth University, 601 West Main Street, Suite 331, Richmond, VA 23284 USA
| |
Collapse
|
21
|
M.S. Castro-Raucci L, S. Francischini M, N. Teixeira L, P. Ferraz E, B. Lopes H, T. de Oliveira P, Hassan MQ, Rosa AL, Beloti MM. Titanium With Nanotopography Induces Osteoblast Differentiation by Regulating Endogenous Bone Morphogenetic Protein Expression and Signaling Pathway. J Cell Biochem 2016; 117:1718-26. [DOI: 10.1002/jcb.25469] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 12/14/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Larissa M.S. Castro-Raucci
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Marcelo S. Francischini
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Lucas N. Teixeira
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Emanuela P. Ferraz
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Helena B. Lopes
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Paulo T. de Oliveira
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Mohammad Q. Hassan
- Institute of Oral Health Research; University of Alabama at Birmingham; Birmingham Alabama
| | - Adalberto L. Rosa
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Marcio M. Beloti
- Cell Culture Laboratory; School of Dentistry of Ribeirão Preto; University of São Paulo; Ribeirão Preto São Paulo Brazil
| |
Collapse
|
22
|
Olivares-Navarrete R, Hyzy SL, Haithcock DA, Cundiff CA, Schwartz Z, Boyan BD. Coordinated regulation of mesenchymal stem cell differentiation on microstructured titanium surfaces by endogenous bone morphogenetic proteins. Bone 2015; 73:208-16. [PMID: 25554602 PMCID: PMC4336815 DOI: 10.1016/j.bone.2014.12.057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 01/03/2023]
Abstract
Human mesenchymal stem cells (MSCs) differentiate into osteoblasts on microstructured titanium (Ti) surfaces without addition of medium supplements, suggesting that surface-dependent endogenous mechanisms are involved. They produce bone morphogenetic proteins (BMPs), which regulate MSC differentiation and bone formation via autocrine/paracrine mechanisms that are modulated by changes in BMP mRNA and protein, receptors, and inhibitors (Noggin, Cerberus, Gremlin 1, and Chordin). We examined expression of BMPs, their receptors and their inhibitors over time and used BMP2-silenced cells to determine how modulating endogenous BMP signaling can affect the process. MSCs were cultured on tissue culture polystyrene or Ti [PT (Ra<0.4 μm); sandblasted/acid-etched Ti (SLA, Ra=3.2 μm); or hydrophilic-SLA (modSLA)]. BMP mRNAs and proteins increased by day 4 of culture. Exogenous BMP2 increased differentiation whereas differentiation was decreased in BMP2-silenced cells. Noggin was regulated by day 2 whereas Gremlin 1 and Cerberus were regulated after 6days. Osteoblastic differentiation increased in cells cultured with blocking antibodies against Noggin, Gremlin 1, and Cerberus. Endogenous BMPs enhance an osteogenic microenvironment whereas exogenous BMPs are inhibitory. Antibody blocking of the BMP2 inhibitor Cerberus resulted in IL-6 and IL-8 levels that were similar to those observed when treating cells with exogenous BMP2, while antibodies targeting the inhibitors Gremlin or Noggin did not. These results suggest that microstructured titanium implants supporting therapeutic stem cells may be treated with appropriately selected agents antagonistic to extracellular BMP inhibitors in order to enhance BMP2 mediated bone repair while avoiding undesirable inflammatory side effects observed with exogenous BMP2 treatment.
Collapse
Affiliation(s)
- Rene Olivares-Navarrete
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, USA
| | - Sharon L Hyzy
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, USA
| | - David A Haithcock
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Caitlin A Cundiff
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Zvi Schwartz
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, USA
| | - Barbara D Boyan
- Department of Biomedical Engineering, School of Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, VA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Drive NW, Atlanta, GA 30332, USA.
| |
Collapse
|