Shukla P, Gupta G, Singodia D, Shukla R, Verma AK, Dwivedi P, Kansal S, Mishra PR. Emerging trend in nano-engineered polyelectrolyte-based surrogate carriers for delivery of bioactives.
Expert Opin Drug Deliv 2010;
7:993-1011. [PMID:
20716016 DOI:
10.1517/17425247.2010.510830]
[Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IMPORTANCE OF THE FIELD
In recent decades a new colloidal drug delivery system based on layer-by-layer (LbL) technology has emerged, which offers promising means of delivering bioactive agents, specifically biological macromolecules including peptides and DNA. Nano-engineered capsules specifically fabricated from biocompatible and biodegradable polyelectrolytes (PEs) can provide a better option for encapsulation of cells thereby protecting cells from immunological molecules in the body, and their selective permeability can ensure the survival of encapsulated cells.
AREAS COVERED IN THIS REVIEW
This review encompasses a strategic approach to fabricate nano-engineered microcapsules through meticulous selection of polyelectrolytes and core materials based on LbL technology. The content of the article provides evidence for its wide array of applications in medical therapeutics, as indicated by the quantity of research and patents in this area. Recent developments and approaches for tuning drug release, biocompatibility and cellular interaction are discussed thoroughly.
WHAT THE READER WILL GAIN
This review aims to provide an overview on the development of LbL capsules with specific orientation towards drug and macromolecular delivery and its integration with other drug delivery systems, such as liposomes.
TAKE HOME MESSAGE
Selection of PEs for the fabrication of LbL microcapsules has a profound effect on stability, drug release, biocompatibility and encapsulation efficacy. The release can be easily modulated by varying different physicochemical as well as physiological conditions. Scale-up approaches for the fabrication of LbL microcapsules by means of automation must be considered to improve the possibility of application of LbL microcapsules on a large scale.
Collapse