1
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
2
|
Minisha S, Gopinath A, Mukherjee S, Srinivasan P, Madhan B, Shanmugam G. Impact of SiO 2 nanoparticles on the structure and property of type I collagen in three different forms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123520. [PMID: 37857074 DOI: 10.1016/j.saa.2023.123520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Silica-based nanoparticles have found application in the development of biocomposites involving reconstituted collagen in tissue engineering and wound healing, and leather modification, specifically targeting collagen fibers. However, a comprehensive investigation into the interaction between collagen-silica nanoparticles and different forms of collagen using biophysical methods remains unexplored. In this study, we examined the interaction between silica (SiO2) nanoparticles and collagen in its fiber, microfibril, and monomer forms through high-resolution scanning electron microscopy, circular dichroism, Fourier-transform infrared spectroscopy, fluorescence analysis, zeta potential measurements, and turbidity assays. Our results reveal that SiO2 nanoparticles exhibited a non-specific attraction towards collagen fibers without disrupting their structural integrity. Interestingly, SiO2 nanoparticles influenced the process of microfibrillation, resulting in heterogeneous fibril diameters while maintaining the natural D-periodicity. This finding is significant, as fibril size variations can impact the properties of collagen composites. Notably, the triple helical structure of collagen in its monomer form remained unaffected in the presence of SiO2 nanoparticles, indicating that the nanoparticles did not disrupt the electrostatic interactions that stabilize the triple helix. Additionally, the increased stability of SiO2 nanoparticles in the presence of collagen confirmed their interaction. These findings provide a promising avenue for the development of SiO2-based nanoparticles to enhance the stability of collagen fibers and control fiber sizes for biomaterial preparation. Moreover, this study advances the potential application of SiO2-based nanoparticles in leather tanning, an emerging field where nanoparticles can play a crucial role.
Collapse
Affiliation(s)
- Sivalingam Minisha
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | - Arun Gopinath
- CARE Division, CSIR-CLRI, Adyar, Chennai 600020, India
| | - Smriti Mukherjee
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | | | | | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India.
| |
Collapse
|
3
|
Saghati S, Avci ÇB, Hassani A, Nazifkerdar S, Amini H, Saghebasl S, Mahdipour M, Banimohamad-Shotorbani B, Namjoo AR, Abrbekoh FN, Rahbarghazi R, Nasrabadi HT, Khoshfetrat AB. Phenolated alginate hydrogel induced osteogenic properties of mesenchymal stem cells via Wnt signaling pathway. Int J Biol Macromol 2023; 253:127209. [PMID: 37804896 DOI: 10.1016/j.ijbiomac.2023.127209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/06/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Osteogenic properties of phenolated alginate (1.2 %) hydrogel containing collagen (0.5 %)/nano-hydroxyapatite (1 %) were studied on human mesenchymal stem cells in vitro. The phenolation rate and physical properties of the hydrogel were assessed using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscope (SEM), swelling ratio, gelation time, mechanical assay, and degradation rate. The viability of encapsulated cells was monitored on days 7, 14, and 21 using an MTT assay. Osteoblast differentiation was studied using western blotting, and real-time PCR. Using PCR array analysis, the role of the Wnt signaling pathway was also investigated. Data showed that the combination of alginate/collagen/nanohydroxyapatite yielded proper mechanical features. The addition of nanohydroxyapatite, and collagen reduced degradation, swelling rate coincided with increased stiffness. Elasticity and pore size were also diminished. NMR and FTIR revealed suitable incorporation of collagen and nanohydroxyapatite in the structure of alginate. Real-time PCR analysis and western blotting indicated the expression of osteoblast-related genes such as Runx2 and osteocalcin. PCR array revealed the induction of numerous genes related to Wnt signaling pathways during the maturation of human stem cells toward osteoblast-like cells. In vivo data indicated that transplantation of phenolated alginate/collagen/nanohydroxyapatite hydrogel led to enhanced de novo bone formation in rats with critical-sized calvarial defects. Phenolated alginate hydrogel can promote the osteogenic capacity of human amniotic membrane mesenchymal stem cells in the presence of nanohydroxyapatite and collagen via engaging the Wnt signaling pathway.
Collapse
Affiliation(s)
- Sepideh Saghati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Çığır Biray Avci
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ayla Hassani
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Sajed Nazifkerdar
- Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran; Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz 51335-1996, Iran
| | - Hassan Amini
- Department of General and Vascular Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnaz Banimohamad-Shotorbani
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atieh Rezaei Namjoo
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Hamid Tayefi Nasrabadi
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Baradar Khoshfetrat
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Turkey; Chemical Engineering Faculty, Sahand University of Technology, Tabriz 51335-1996, Iran.
| |
Collapse
|
4
|
Jiao Y, Okada M, Nutan B, Nagaoka N, Bikharudin A, Musa R, Matsumoto T. Fabrication of a Fish-Bone-Inspired Inorganic-Organic Composite Membrane. Polymers (Basel) 2023; 15:4190. [PMID: 37896434 PMCID: PMC10611054 DOI: 10.3390/polym15204190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Biological materials have properties like great strength and flexibility that are not present in synthetic materials. Using the ribs of crucian carp as a reference, we investigated the mechanisms behind the high mechanical properties of this rib bone, and found highly oriented layers of calcium phosphate (CaP) and collagen fibers. To fabricate a fish-rib-bone-mimicking membrane with similar structure and mechanical properties, this study involves (1) the rapid synthesis of plate-like CaP crystals, (2) the layering of CaP-gelatin hydrogels by gradual drying, and (3) controlling the shape of composite membranes using porous gypsum molds. Finally, as a result of optimizing the compositional ratio of CaP filler and gelatin hydrogel, a CaP filler content of 40% provided the optimal mechanical properties of toughness and stiffness similar to fish bone. Due to the rigidity, flexibility, and ease of shape control of the composite membrane materials, this membrane could be applied as a guided bone regeneration (GBR) membrane.
Collapse
Affiliation(s)
- YuYang Jiao
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.J.); (M.O.); (B.N.); (A.B.); (R.M.)
| | - Masahiro Okada
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.J.); (M.O.); (B.N.); (A.B.); (R.M.)
| | - Bhingaradiya Nutan
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.J.); (M.O.); (B.N.); (A.B.); (R.M.)
| | - Noriyuki Nagaoka
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan;
| | - Ahmad Bikharudin
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.J.); (M.O.); (B.N.); (A.B.); (R.M.)
| | - Randa Musa
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.J.); (M.O.); (B.N.); (A.B.); (R.M.)
| | - Takuya Matsumoto
- Department of Biomaterials, Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (Y.J.); (M.O.); (B.N.); (A.B.); (R.M.)
| |
Collapse
|
5
|
Lazarevic M, Petrovic S, Pierfelice TV, Ignjatovic N, Piattelli A, Vlajic Tovilovic T, Radunovic M. Antimicrobial and Osteogenic Effects of Collagen Membrane Decorated with Chitosan-Nano-Hydroxyapatite. Biomolecules 2023; 13:biom13040579. [PMID: 37189328 DOI: 10.3390/biom13040579] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 05/17/2023] Open
Abstract
Collagen membranes are routinely used in oral surgery for bone regeneration. Despite their numerous advantages, such as stimulating bone growth, bacterial contamination still remains one of the disadvantages of membrane use. Thus, we assessed the biocompatibility and osteogenic and antibacterial properties of a collagen membrane (OsteoBiol) modified with chitosan (CHI) and hydroxyapatite nanoparticles (HApNPs). Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR FT-IR), X-ray powder diffraction (XRD), and field emission scanning electron microscopy (FE-SEM) were performed for membrane characterization. Biocompatibility was assessed on dental pulp stem cells (DPSCs) by an MTT assay, while the osteogenic effect was assessed by an ALP activity assay and qPCR analysis of osteogenic markers (BMP4, ALP, RUNX2, and OCN). Antimicrobial properties were investigated by counting colony-forming units (CFUs) of Streptococcus mitis, Porphyromonas gingivalis, and Fusobaterium nucleatum on membranes and in the surrounding medium. Membranes showed no cytotoxicity. ALP activity was higher and ALP, BMP4, and OCN genes were up-regulated in DPSCs on modified membranes compared to unmodified membranes. The CFUs were reduced on modified membranes and in the medium. Modified membranes showed great biocompatibility and a high osteoinductive effect. Additionally, they showed antimicrobial and antibiofilm effects against periopathogens. It can be concluded that the incorporation of CHI and hydroxyapatite nanoparticles in collagen membranes may be advantageous to promote osteogenesis and reduce bacterial adhesion.
Collapse
Affiliation(s)
- Milos Lazarevic
- School of Dental Medicine, University of Belgrade, 11 070 Belgrade, Serbia
| | - Sanja Petrovic
- School of Dental Medicine, University of Belgrade, 11 070 Belgrade, Serbia
| | - Tania Vanessa Pierfelice
- School of Dental Medicine, University of Belgrade, 11 070 Belgrade, Serbia
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Nenad Ignjatovic
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, 11 070 Belgrade, Serbia
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Catolica San Antonio de Murcia, 30107 Guadalupe, Spain
| | | | - Milena Radunovic
- School of Dental Medicine, University of Belgrade, 11 070 Belgrade, Serbia
| |
Collapse
|
6
|
Li Y, Yang X, Wen Y, Zhao Y, Yan L, Han G, Shao L. Progress reports of mineralized membranes: Engineering strategies and multifunctional applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Liu Z, Wei P, Cui Q, Mu Y, Zhao Y, Deng J, Zhi M, Wu Y, Jing W, Liu X, Zhao J, Zhao B. Guided bone regeneration with extracellular matrix scaffold of small intestinal submucosa membrane. J Biomater Appl 2022; 37:805-813. [PMID: 35924456 DOI: 10.1177/08853282221114450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Guided bone regeneration (GBR) is a promising strategy for repairing bone defects using bioactive membranes. In this study, a new type of GBR membrane based on the small intestinal submucosa (SIS) was created, and its surface structure, cytological characteristics, and bone defect repair ability were compared with commonly used membranes. Our results show that compared to the Heal-all and Dentium membranes, the SIS membrane has an asymmetric structure that does not affect the proliferation of bone marrow mesenchymal stem cells (BMSCs). Instead, it increased their formation of calcium nodules and expression of bone morphogenetic protein-2 (BMP-2), alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteopontin (OPN). Six weeks after their insertion into a rat calvarial defect model, increased bone growth was observed in the SIS membrane group. Our results indicate that the SIS membrane has good biocompatibility and is more effective in promoting early bone formation than existing membranes. Given the wide range of source materials and simple preparation processes available, SIS membrane is a promising candidate for guided bone regeneration.
Collapse
Affiliation(s)
- Zihao Liu
- Tianjin Nankai Zhongnuo Stomatological Hospital, Tianjin, China
| | - Pengfei Wei
- Beijing Biosis Healing Biological Technology Co, Ltd, Beijing, China
| | - Qingying Cui
- School of Stomatology Kunming Medical University, Kunming, China
| | - Yuzhu Mu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yifan Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Min Zhi
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yi Wu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Wei Jing
- Beijing Biosis Healing Biological Technology Co, Ltd, Beijing, China
| | - Xian Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, ChengDu, China
| | - Jihong Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School &Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bo Zhao
- Beijing Biosis Healing Biological Technology Co, Ltd, Beijing, China
| |
Collapse
|
8
|
Prakobkarn J, Makeudom A, Jenvoraphot T, Supanchart C, Krisanaprakornkit S, Punyodom W, Daranarong D. Biphasic nanofibrous scaffolds based on collagen and
PLC
for controlled release
LL
‐37 in guided bone regeneration. J Appl Polym Sci 2022. [DOI: 10.1002/app.51629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jeeranan Prakobkarn
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
| | - Anupong Makeudom
- Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
| | - Thannaphat Jenvoraphot
- Bioplastic Production Laboratory for Medical Application, Faculty of Science Chiang Mai University Chiang Mai Thailand
| | - Chayarop Supanchart
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
| | - Suttichai Krisanaprakornkit
- Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
| | - Winita Punyodom
- Bioplastic Production Laboratory for Medical Application, Faculty of Science Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Materials Science and Technology Chiang Mai University Chiang Mai Thailand
| | - Donraporn Daranarong
- Bioplastic Production Laboratory for Medical Application, Faculty of Science Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Materials Science and Technology Chiang Mai University Chiang Mai Thailand
- Science and Technology Research Institute Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
9
|
Kim D, Gwon Y, Park S, Kim W, Yun K, Kim J. Eggshell membrane as a bioactive agent in polymeric nanotopographic scaffolds for enhanced bone regeneration. Biotechnol Bioeng 2021; 118:1862-1875. [PMID: 33527343 DOI: 10.1002/bit.27702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/21/2022]
Abstract
A bone regeneration scaffold is typically designed as a platform to effectively heal a bone defect while preventing soft tissue infiltration. Despite the wide variety of scaffold materials currently available, such as collagen, critical problems in achieving bone regeneration remain, including a rapid absorption period and low tensile strength as well as high costs. Inspired by extracellular matrix protein and topographical cues, we developed a polycaprolactone-based scaffold for bone regeneration using a soluble eggshell membrane protein (SEP) coating and a nanotopography structure for enhancing the physical properties and bioactivity. The scaffold exhibited adequate flexibility and mechanical strength as a biomedical platform for bone regeneration. The highly aligned nanostructures and SEP coating were found to regulate and enhance cell morphology, adhesion, proliferation, and differentiation in vitro. In a calvaria bone defect mouse model, the scaffolds coated with SEP applied to the defect site promoted bone regeneration along the direction of the nanotopography in vivo. These findings demonstrate that bone-inspired nanostructures and SEP coatings have high potential to be applicable in the design and manipulation of scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Daun Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Yonghyun Gwon
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Sunho Park
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Woochan Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| | - Kwidug Yun
- Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jangho Kim
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea.,Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Hong I, Khalid AW, Pae HC, Song YW, Cha JK, Lee JS, Paik JW, Choi SH. Diverse patterns of bone regeneration in rabbit calvarial defects depending on the type of collagen membrane. J Periodontal Implant Sci 2021; 51:40-52. [PMID: 33634614 PMCID: PMC7920838 DOI: 10.5051/jpis.2004180209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Various crosslinking methods have been introduced to increase the longevity of collagen membranes. The aim of this study was to compare and evaluate the degradation and bone regeneration patterns of 3 collagen membranes. METHODS Four 8-mm-diameter circular bone defects were created in the calvaria of 10 rabbits. In each rabbit, each defect was randomly allocated to 1) the sham control group, 2) the non-crosslinked collagen sponge (NS) group, 3) the chemically crosslinked collagen membrane (CCM) group, or 4) the biphasic calcium phosphate (BCP)-supplemented ultraviolet (UV)-crosslinked collagen membrane (UVM) group. Each defect was covered with the allocated membrane without any graft material. Rabbits were sacrificed at either 2 or 8 weeks post-surgery, and radiographic and histologic analyses were done. RESULTS New bone formed underneath the membrane in defects in the CCM and UVM groups, with a distinctive new bone formation pattern, while new bone formed from the base of the defect in the NS and control groups. The CCM maintained its shape until 8 weeks, while the UVM and NS were fully degraded at 8 weeks; simultaneously, sustained inflammatory infiltration was found in the margin of the CCM, while it was absent in the UVM. In conclusion, the CCM showed longer longevity than the UVM, but was accompanied by higher levels of inflammation. CONCLUSIONS Both the CCM and UVM showed distinctive patterns of enhancement in new bone formation in the early phase. UV crosslinking can be a biocompatible alternative to chemical crosslinking.
Collapse
Affiliation(s)
- Inpyo Hong
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Alharthi Waleed Khalid
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Hyung Chul Pae
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Young Woo Song
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jae Kook Cha
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jung Seok Lee
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jeong Won Paik
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Seong Ho Choi
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea.
| |
Collapse
|
11
|
Ng HW, Zhang Y, Naffa R, Prabakar S. Monitoring the Degradation of Collagen Hydrogels by Collagenase Clostridium histolyticum. Gels 2020; 6:E46. [PMID: 33260949 PMCID: PMC7709630 DOI: 10.3390/gels6040046] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/03/2023] Open
Abstract
Collagen-based hydrogels are investigated extensively in tissue engineering for their tunable physiochemical properties, biocompatibility and biodegradability. However, the effect of the integrity of the collagen triple helical structure on biodegradability is yet to be studied. In this study, we monitored the degradation of intact collagen (C-coll) and hydrolyzed collagen (D-coll) hydrogels in collagenase Clostridium histolyticum to understand their degradation process. Our results show that when peptides are present on the surface of the fibrils of D-coll hydrogels, cleavage of amide bonds occur at a much higher rate. The fibrillar structure of D-coll hydrogel results in a more pronounced breakdown of the gel network and dissolution of collagen peptides. The results from this work will improve the understanding of enzymatic degradation and the resulting bioabsorption of collagen materials used in drug delivery systems and scaffolds.
Collapse
Affiliation(s)
| | | | | | - Sujay Prabakar
- Leather and Shoe Research Association of New Zealand, P.O. Box 8094, Palmerston North 4472, New Zealand; (H.W.N.); (Y.Z.); (R.N.)
| |
Collapse
|
12
|
Guo H, Xia D, Zheng Y, Zhu Y, Liu Y, Zhou Y. A pure zinc membrane with degradability and osteogenesis promotion for guided bone regeneration: In vitro and in vivo studies. Acta Biomater 2020; 106:396-409. [PMID: 32092431 DOI: 10.1016/j.actbio.2020.02.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
Selection of an appropriate membrane material for guided bone regeneration (GBR) is still ongoing among resorbable and nonresorbable membranes with different characteristics. The major problem with nonresorbable membranes is the inevitable secondary surgery, while resorbable polymer membranes have limitations in providing sufficient mechanical support during the bone repair period due to premature loss of mechanical strength. Pure magnesium foil has been evaluated to explore its feasibility as a resorbable GBR membrane. It exhibited better mechanical properties, whereas poor formability and fast degradation rate were noted. In light of this, pure zinc membrane was developed as a pilot research in this paper. We designed three types of pure zinc membranes: pure Zn without pores, pure Zn with 300 µm diameter and 1000 µm diameter pores, and pure titanium without pores as a control. The mechanical property, in vitro immersion tests, and MC3T3-E1 cell viability assays were tested. Moreover, in vivo behaviors of three type zinc membranes were evaluated by using a rat calvarial critical-sized bone defect model. The experimental results indicated that pure Zn membrane with 300 µm pores showed the most favorable osteogenic capability, comparable to that of titanium membrane without pores. Therefore, considering appropriate degradation rate, adequate mechanical maintenance, and profitable osteogenic capacity, metallic pure zinc is believed to be a promising candidate for barrier membranes in GBR therapy for bone regeneration, and its mechanical property can be enhanced with further alloying. STATEMENT OF SIGNIFICANCE: Metallic element zinc plays a pivotal role in the growth and mineralization of bone tissues. As a pilot research, three type of guided bone regeneration (GBR) membranes were developed in the present work: pure Zn without pores, pure Zn with 300 µm-diameter and 1000 µm-diameter pores respectively. The mechanical property, in vitro immersion tests and MC3T3-E1 cell viability assays were tested, with pure titanium without pores as a control, thereafter the in vivo performance were evaluated by using a rat calvarial critical-sized bone defect model. It indicated that pure Zn membrane with 300 µm pores showed the most favorable osteogenic capability, comparable to that of titanium membrane control, and is believed to be a promising material candidate as barrier membrane in GBR therapy for bone regeneration.
Collapse
|
13
|
Hong I, Khalid AW, Pae HC, Cha JK, Lee JS, Paik JW, Jung UW, Choi SH. Distinctive bone regeneration of calvarial defects using biphasic calcium phosphate supplemented ultraviolet-crosslinked collagen membrane. J Periodontal Implant Sci 2019; 50:14-27. [PMID: 32128270 PMCID: PMC7040443 DOI: 10.5051/jpis.2020.50.1.14] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 11/08/2022] Open
Abstract
Purpose To overcome several drawbacks of chemically-crosslinked collagen membranes, modification processes such as ultraviolet (UV) crosslinking and the addition of biphasic calcium phosphate (BCP) to collagen membranes have been introduced. This study evaluated the efficacy and biocompatibility of BCP-supplemented UV-crosslinked collagen membrane for guided bone regeneration (GBR) in a rabbit calvarial model. Methods Four circular bone defects (diameter, 8 mm) were created in the calvarium of 10 rabbits. Each defect was randomly allocated to one of the following groups: 1) the sham control group (spontaneous healing); 2) the M group (defect coverage with a BCP-supplemented UV-crosslinked collagen membrane and no graft material); 3) the BG (defects filled with BCP particles without membrane coverage); and 4) the BG+M group (defects filled with BCP particles and covered with a BCP-supplemented UV-crosslinked collagen membrane in a conventional GBR procedure). At 2 and 8 weeks, rabbits were sacrificed, and experimental defects were investigated histologically and by micro-computed tomography (micro-CT). Results In both micro-CT and histometric analyses, the BG and BG+M groups at both 2 and 8 weeks showed significantly higher new bone formation than the control group. On micro-CT, the new bone volume of the BG+M group (48.39±5.47 mm3) was larger than that of the BG group (38.71±2.24 mm3, P=0.032) at 8 weeks. Histologically, greater new bone area was observed in the BG+M group than in the BG or M groups. BCP-supplemented UV-crosslinked collagen membrane did not cause an abnormal cellular reaction and was stable until 8 weeks. Conclusions Enhanced new bone formation in GBR can be achieved by simultaneously using bone graft material and a BCP-supplemented UV-crosslinked collagen membrane, which showed high biocompatibility and resistance to degradation, making it a biocompatible alternative to chemically-crosslinked collagen membranes.
Collapse
Affiliation(s)
- Inpyo Hong
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Alharthi Waleed Khalid
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Hyung-Chul Pae
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jae-Kook Cha
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jung-Seok Lee
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Jeong-Won Paik
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Ui-Won Jung
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| | - Seong-Ho Choi
- Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|
14
|
Design of a biodegradable UV-irradiated gelatin-chitosan/nanocomposed membrane with osteogenic ability for application in bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:875-886. [DOI: 10.1016/j.msec.2019.01.135] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
|
15
|
Lan C, Xiang X, Gao X, Sun D, Pan Y, Li J. Cellular Compatibility Analysis of nHAp/PPC Membrane. J HARD TISSUE BIOL 2019. [DOI: 10.2485/jhtb.28.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Chuanjian Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling (School and Hospital of Stomatology, Jilin University)
| | - Xingchen Xiang
- Department of General Dentistry, School and Hospital of Stomatology, Jilin University
| | - Xing Gao
- Department of Preventive Dentistry, School and Hospital of Stomatology, Jilin University
| | - Duo Sun
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Yongsheng Pan
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| | - Jiang Li
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University
| |
Collapse
|
16
|
Hashimoto Y, Mukai S, Sasaki Y, Akiyoshi K. Nanogel Tectonics for Tissue Engineering: Protein Delivery Systems with Nanogel Chaperones. Adv Healthc Mater 2018; 7:e1800729. [PMID: 30221496 DOI: 10.1002/adhm.201800729] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/12/2018] [Indexed: 12/15/2022]
Abstract
Amphiphilic polysaccharide self-assembled (SA) nanogels are promising protein carriers owing to their chaperone-like activity that allows them to nanoencapsulate proteins within their polymer networks. The chaperoning function is an important concept that has led to breakthroughs in the development of effective protein drug delivery systems by stabilizing formulations and controlling the quality of unstable proteins. Recently, nanogel-tectonic materials that integrate SA nanogels as building blocks have been designed as new hydrogel biomaterials. This article describes recent progress and applications of SA nanogel tectonic materials as protein delivery systems for tissue engineering.
Collapse
Affiliation(s)
- Yoshihide Hashimoto
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo‐ku Kyoto 615‐8510 Japan
- Japan Science and Technology Agency (JST) The Exploratory Research for Advanced Technology (ERATO) Bio‐Nanotransporter Project Katsura Int'tech Center Katsura, Nishikyo‐ku Kyoto 615‐8530 Japan
- Department of Material‐based Medical Engineering Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2‐3‐10 Kanda‐Surugadai Chiyoda‐ku Tokyo 101‐0062 Japan
| | - Sada‐atsu Mukai
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo‐ku Kyoto 615‐8510 Japan
- Japan Science and Technology Agency (JST) The Exploratory Research for Advanced Technology (ERATO) Bio‐Nanotransporter Project Katsura Int'tech Center Katsura, Nishikyo‐ku Kyoto 615‐8530 Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry Graduate School of Engineering Kyoto University Katsura, Nishikyo‐ku Kyoto 615‐8510 Japan
- Japan Science and Technology Agency (JST) The Exploratory Research for Advanced Technology (ERATO) Bio‐Nanotransporter Project Katsura Int'tech Center Katsura, Nishikyo‐ku Kyoto 615‐8530 Japan
| |
Collapse
|
17
|
Scaffolds Fabricated from Natural Polymers/Composites by Electrospinning for Bone Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:49-78. [DOI: 10.1007/978-981-13-0950-2_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Bone Regeneration of Peri-Implant Defects Using a Collagen Membrane as a Carrier for Recombinant Human Bone Morphogenetic Protein-2. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5437361. [PMID: 30046599 PMCID: PMC6036850 DOI: 10.1155/2018/5437361] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/19/2018] [Indexed: 11/17/2022]
Abstract
This study is designed to determine the effect of collagen membrane (CM) soaked with bone morphogenetic protein-2 (rhBMP-2) for the treatment of peri-implant dehiscence defects. Material and Methods. Three treatment groups were allocated at each defect in 5 dogs: (i) collagenated synthetic bone (OC) and CM soaked with rhBMP-2 (BMP group), (ii) OC and CM soaked with saline (nonBMP group), and (iii) no further treatment (control group). Titanium pins were used to stabilize the membranes in two dogs. Radiographic and histomorphometric analyses were performed 4 weeks later. Results. The median augmented volumes were 4.27 mm3, 6.24 mm3, and 2.75 mm3 in the BMP, nonBMP, and control groups, respectively; the corresponding median first bone-to-implant contact (fBIC) distances were 3.25 mm, 3.08 mm, and 2.56 mm (P > 0.05). The placement of pins (with the BMP and nonBMP groups pooled) significantly improved bone regeneration: the augmented volumes were 17.60 mm3 with pins and 3.68 mm3 without pins (P = 0.024), with corresponding fBIC distances of 2.25 mm and 3.31 mm, respectively (P < 0.001). Conclusions. The addition of rhBMP-2 to CM failed to improve bone regeneration of peri-implant dehiscence defects compared to using an unsoaked CM after 4 weeks. However, the stabilization of CMs using pins positively influenced the outcomes.
Collapse
|
19
|
Pajoumshariati S, Shirali H, Yavari SK, Sheikholeslami SN, Lotfi G, Mashhadi Abbas F, Abbaspourrad A. GBR membrane of novel poly (butylene succinate-co-glycolate) co-polyester co-polymer for periodontal application. Sci Rep 2018; 8:7513. [PMID: 29760507 PMCID: PMC5951950 DOI: 10.1038/s41598-018-25952-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/23/2018] [Indexed: 11/30/2022] Open
Abstract
In periodontics, osteoconductive biodegradable guided bone regeneration (GBR) membranes with acceptable physico-mechanical properties are required to fix alveolar bone defects. The objectives of the present study were to produce and characterize a novel co-polyester—poly (butylene succinate-co-glycolate) (PBSGL), and fabricate a PBSGL membrane by electrospinning. We then aimed to evaluate the in vitro effect of the glycolate ratio on the biocompatibility and osteogenic differentiation of mesenchymal stem cells (MSCs), and evaluate in vivo bone regeneration using these membranes in rabbit calvarial defects by histology. Increasing the glycolate ratio of electrospun PBSGL membranes resulted in better cell attachment, greater cell metabolic activity, and enhanced osteogenic potential at both transcriptional and translational levels. Histologic and histomorphometric evaluations revealed further that bone defects covered with fibers of higher glycolate ratios showed more bone formation, with no adverse inflammatory response. These results suggest that novel PBSGL electrospun nanofibers show great promise as GBR membranes for bone regeneration.
Collapse
Affiliation(s)
- Seyedramin Pajoumshariati
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, USA
| | - Hadi Shirali
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | | | | | - Ghogha Lotfi
- Dental Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Periodontology, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, USA.
| |
Collapse
|
20
|
Tu Y, Chen C, Li Y, Hou Y, Huang M, Zhang L. Fabrication of nano-hydroxyapatite/chitosan membrane with asymmetric structure and its applications in guided bone regeneration. Biomed Mater Eng 2017; 28:223-233. [PMID: 28527186 DOI: 10.3233/bme-171669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The development of guided bone regeneration (GBR) technique brings a promising alternative for bone defects and fracture healing. In this study, an asymmetric nano-hydroxyapatite/chitosan (n-HA/CS) composite GBR membrane was fabricated by means of solution-blending and solvent-evaporating in vacuum. The membranes were characterized using SEM, XPS and contact angle. It was found that the composite membrane displayed an asymmetric structure, in which the upper surface was CS and the under surface was a complex of n-HA and CS, and some interactions between n-HA and CS were also confirmed to exist. The contact angle testing showed that the under surface was more hydrophilic than the upper surface. The in vivo experiments demonstrated that the asymmetric composite membrane had the ability to make osteoblasts mineralize and promote loose bone calcified, and then accelerate the bone regeneration. Compared with CS membrane, the asymmetric composite membrane displays a better bone regeneration ability and is suitable for GBR membrane.
Collapse
Affiliation(s)
- Ying Tu
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu, China
| | - Chen Chen
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu, China
| | - Yubao Li
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu, China
| | - Yi Hou
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu, China
| | - Min Huang
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu, China
| | - Li Zhang
- Analytical & Testing Center, Research Center for Nano-biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Nanocellulose-collagen-apatite composite associated with osteogenic growth peptide for bone regeneration. Int J Biol Macromol 2017; 103:467-476. [DOI: 10.1016/j.ijbiomac.2017.05.086] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/12/2017] [Accepted: 05/16/2017] [Indexed: 12/21/2022]
|
22
|
Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. Int J Pharm 2017; 527:115-125. [DOI: 10.1016/j.ijpharm.2017.05.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 02/04/2023]
|
23
|
He Y, Wang W, Tang X, Liu X. Osteogenic induction of bone marrow mesenchymal cells on electrospun polycaprolactone/chitosan nanofibrous membrane. Dent Mater J 2017; 36:325-332. [PMID: 28228626 DOI: 10.4012/dmj.2016-203] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel chitosan/polycaprolactone (CS/PCL) nanofibrous membrane by electrospinning was developed for guided tissue regeneration (GTR) to improve mechanical properties and to promote osteogenic differentiation. Firstly, chitosan and PCL solutions of different weight ratios (0/100, 30/70, 50/50) were mixed and then electrospun. Our data demonstrated that the CS/PCL (30/70) nanofibrous membrane promoted an increased rBMSCs proliferation when compared to the CS/PCL (50/50) membrane and pure PCL (0/100) membrane. The highest ALP activity and extracellular calcium deposit were observed on the CS/PCL (30/70) nanofibrous membrane, followed by the CS/PCL (50/50) and pure PCL nanofibrous membrane. Furthermore, the expression of osteocalcin (OCN) and Runx2 were also significantly higher on the CS/PCL (30/70, 50/50) nanofibrous membrane as compared to the pure PCL nanofibrous membrane. In conclusion, the electrospun CS/PCL nanofibrous membrane was found to be a biocompatible material that could stimulate osteogenic differentiation, suggesting that the novel CS/PCL membrane has an interesting potential as use for GTR.
Collapse
Affiliation(s)
- Ying He
- Key Lab of Oral Diseases Research of Anhui Province, Stomatologic Hospital & College, Anhui Medical University.,Department of Stomatology, The Second People's Hospital of Wuhu
| | - Wei Wang
- Surgical Department one, Wuhu Traditional Chinese
| | - Xuyan Tang
- Key Lab of Oral Diseases Research of Anhui Province, Stomatologic Hospital & College, Anhui Medical University
| | - Xin Liu
- Shanghai Biomaterials Research & Testing Center, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine
| |
Collapse
|
24
|
Lim HC, Nam OH, Kim MJ, El-Fiqi A, Yun HM, Lee YM, Jin GZ, Lee HH, Kim HW, Kim EC. Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells through integrin/BMP/mTOR signaling pathways. Int J Nanomedicine 2016; 11:2557-67. [PMID: 27354790 PMCID: PMC4907710 DOI: 10.2147/ijn.s97846] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Therapeutically relevant design of scaffolds is of special importance in the repair and regeneration of tissues including dentin and pulp. Here we exploit nanofiber matrices that incorporate bioactive glass nanoparticles (BGNs) and deliver the odontogenic drug dexamethasone (DEX) to stimulate the odontogenic differentiation of human dental pulp cells (HDPCs). DEX molecules were first loaded onto the BGN, and then the DEX-BGN complex was incorporated within the biopolymer nanofiber matrix through electrospinning. The release of DEX continued over a month, showing a slow releasing profile. HDPCs cultured on the DEX-releasing BGN matrices were viable, proliferating well up to 14 days. The odontogenic differentiation, as assessed by alkaline phosphatase activity, mRNA expression of genes, and mineralization, was significantly stimulated on the matrices incorporating BGN and further on those releasing DEX. The DEX-releasing BGN matrices highly upregulated the expression of the integrin subsets α1, α5, and β3 as well as integrin downstream signaling molecules, including focal adhesion kinase (FAK), Paxillin, and RhoA, and activated bone morphogenetic protein mRNA and phosphorylation of Smad1/5/8. Furthermore, the DEX-releasing BGN-matrices stimulated Akt and mammalian target of rapamycin (mTOR), which was proven by the inhibition study. Collectively, the designed therapeutic nanofiber matrices that incorporate BGN and deliver DEX were demonstrated to promote odontogenesis of HDPCs, and the integrins, bone morphogenetic protein, and mTOR signaling pathways are proposed to be the possible molecular mechanisms. While further in vivo studies are still needed, the DEX-releasing bioactive scaffolds are considered as a potential therapeutic nanomatrix for regenerative endodontics and tissue engineering.
Collapse
Affiliation(s)
- Hyun-Chang Lim
- Department of Periodontology, Kyung Hee University, Seoul, Republic of Korea
| | - Ok Hyung Nam
- Department of Pediatric Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Mi-joo Kim
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Ahmed El-Fiqi
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Hyung-Mun Yun
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Yoo-Mi Lee
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| | - Guang-Zhen Jin
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| | - Eun-Cheol Kim
- Department of Oral and Maxillofacial Pathology, Research Center for Tooth and Periodontal Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Lotfi G, Shokrgozar MA, Mofid R, Abbas FM, Ghanavati F, Baghban AA, Yavari SK, Pajoumshariati S. Biological Evaluation (In Vitro and In Vivo) of Bilayered Collagenous Coated (Nano Electrospun and Solid Wall) Chitosan Membrane for Periodontal Guided Bone Regeneration. Ann Biomed Eng 2015; 44:2132-44. [DOI: 10.1007/s10439-015-1516-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 11/13/2015] [Indexed: 01/01/2023]
|
26
|
Dorozhkin SV. Calcium Orthophosphate-Containing Biocomposites and Hybrid Biomaterials for Biomedical Applications. J Funct Biomater 2015; 6:708-832. [PMID: 26262645 PMCID: PMC4598679 DOI: 10.3390/jfb6030708] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022] Open
Abstract
The state-of-the-art on calcium orthophosphate (CaPO4)-containing biocomposites and hybrid biomaterials suitable for biomedical applications is presented. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through the successful combinations of the desired properties of matrix materials with those of fillers (in such systems, CaPO4 might play either role), innovative bone graft biomaterials can be designed. Various types of CaPO4-based biocomposites and hybrid biomaterials those are either already in use or being investigated for biomedical applications are extensively discussed. Many different formulations in terms of the material constituents, fabrication technologies, structural and bioactive properties, as well as both in vitro and in vivo characteristics have been already proposed. Among the others, the nano-structurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin, as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using CaPO4-based biocomposites and hybrid biomaterials in the selected applications are highlighted. As the way from a laboratory to a hospital is a long one and the prospective biomedical candidates have to meet many different necessities, the critical issues and scientific challenges that require further research and development are also examined.
Collapse
|
27
|
Sarker B, Hum J, Nazhat SN, Boccaccini AR. Combining collagen and bioactive glasses for bone tissue engineering: a review. Adv Healthc Mater 2015; 4:176-94. [PMID: 25116596 DOI: 10.1002/adhm.201400302] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/07/2014] [Indexed: 01/07/2023]
Abstract
Collagen (COL), the most abundant protein in mammals, offers a wide range of attractive properties for biomedical applications which are the result of its biocompatibility and high affinity to water. However, due to the relative low mechanical properties of COL its applications are still limited. To tackle this disadvantage of COL, especially in the field of bone tissue engineering, COL can be combined with bioactive inorganic materials in a variety of composite systems. One of such systems is the collagen-bioactive glass (COL-BG) composite family, which is the theme of this Review. BG fillers can increase compressive strength and stiffness of COL-based structures. This article reviews the relevant literature published in the last 15 years discussing the fabrication of a variety of COL-BG composites. In vitro cell studies have demonstrated the osteogenic, odontogenic, and angiogenic potential of these composite systems, which has been confirmed by stimulating specific biochemical indicators of relevant cells. Bony integration and connective tissue vessel formation have also been studied by implantation of the composites in vivo. Areas of future research in the field of COL-BG systems, based on current challenges, and gaps in knowledge are highlighted.
Collapse
Affiliation(s)
- Bapi Sarker
- Institute of Biomaterials; Department of Materials Science and Engineering; University of Erlangen-Nuremberg; Cauerstrasse 6 91058 Erlangen Germany
| | - Jasmin Hum
- Institute of Biomaterials; Department of Materials Science and Engineering; University of Erlangen-Nuremberg; Cauerstrasse 6 91058 Erlangen Germany
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering; McGill University; Montreal QC H3A 0C5 Canada
| | - Aldo R. Boccaccini
- Institute of Biomaterials; Department of Materials Science and Engineering; University of Erlangen-Nuremberg; Cauerstrasse 6 91058 Erlangen Germany
| |
Collapse
|
28
|
Jamuna-Thevi K, Saarani NN, Abdul Kadir MR, Hermawan H. Triple-layered PLGA/nanoapatite/lauric acid graded composite membrane for periodontal guided bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 43:253-63. [DOI: 10.1016/j.msec.2014.07.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/28/2014] [Accepted: 07/07/2014] [Indexed: 12/31/2022]
|
29
|
Jin GZ, Kim HW. Nanocomposite bioactive polymeric scaffold promotes adhesion, proliferation and osteogenesis of rat bone marrow stromal cells. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0033-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
30
|
Song JM, Shin SH, Kim YD, Lee JY, Baek YJ, Yoon SY, Kim HS. Comparative study of chitosan/fibroin-hydroxyapatite and collagen membranes for guided bone regeneration in rat calvarial defects: micro-computed tomography analysis. Int J Oral Sci 2014; 6:87-93. [PMID: 24722582 PMCID: PMC5130055 DOI: 10.1038/ijos.2014.16] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2014] [Indexed: 11/08/2022] Open
Abstract
This study aimed to utilize micro-computed tomography (micro-CT) analysis to compare new bone formation in rat calvarial defects using chitosan/fibroin-hydroxyapatite (CFB-HAP) or collagen (Bio-Gide) membranes. Fifty-four (54) rats were studied. A circular bony defect (8 mm diameter) was formed in the centre of the calvaria using a trephine bur. The CFB-HAP membrane was prepared by thermally induced phase separation. In the experimental group (n=18), the CFB-HAP membrane was used to cover the bony defect, and in the control group (n=18), a resorbable collagen membrane (Bio-Gide) was used. In the negative control group (n=18), no membrane was used. In each group, six animals were euthanized at 2, 4 and 8 weeks after surgery. The specimens were then analysed using micro-CT. There were significant differences in bone volume (BV) and bone mineral density (BMD) (P<0.05) between the negative control group and the membrane groups. However, there were no significant differences between the CFB-HAP group and the collagen group. We concluded that the CFB-HAP membrane has significant potential as a guided bone regeneration (GBR) membrane.
Collapse
Affiliation(s)
- Jae Min Song
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Sang Hun Shin
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Yong Deok Kim
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Jae Yeol Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Young Jae Baek
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Sang Yong Yoon
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Hong Sung Kim
- Department of Biomaterial Science, Pusan National University, Miryang, Korea
| |
Collapse
|
31
|
Abou Neel EA, Chrzanowski W, Salih VM, Kim HW, Knowles JC. Tissue engineering in dentistry. J Dent 2014; 42:915-28. [PMID: 24880036 DOI: 10.1016/j.jdent.2014.05.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 05/15/2014] [Accepted: 05/17/2014] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES of this review is to inform practitioners with the most updated information on tissue engineering and its potential applications in dentistry. DATA The authors used "PUBMED" to find relevant literature written in English and published from the beginning of tissue engineering until today. A combination of keywords was used as the search terms e.g., "tissue engineering", "approaches", "strategies" "dentistry", "dental stem cells", "dentino-pulp complex", "guided tissue regeneration", "whole tooth", "TMJ", "condyle", "salivary glands", and "oral mucosa". SOURCES Abstracts and full text articles were used to identify causes of craniofacial tissue loss, different approaches for craniofacial reconstructions, how the tissue engineering emerges, different strategies of tissue engineering, biomaterials employed for this purpose, the major attempts to engineer different dental structures, finally challenges and future of tissue engineering in dentistry. STUDY SELECTION Only those articles that dealt with the tissue engineering in dentistry were selected. CONCLUSIONS There have been a recent surge in guided tissue engineering methods to manage periodontal diseases beyond the traditional approaches. However, the predictable reconstruction of the innate organisation and function of whole teeth as well as their periodontal structures remains challenging. Despite some limited progress and minor successes, there remain distinct and important challenges in the development of reproducible and clinically safe approaches for oral tissue repair and regeneration. Clearly, there is a convincing body of evidence which confirms the need for this type of treatment, and public health data worldwide indicates a more than adequate patient resource. The future of these therapies involving more biological approaches and the use of dental tissue stem cells is promising and advancing. Also there may be a significant interest of their application and wider potential to treat disorders beyond the craniofacial region. CLINICAL SIGNIFICANCE Considering the interests of the patients who could possibly be helped by applying stem cell-based therapies should be carefully assessed against current ethical concerns regarding the moral status of the early embryo.
Collapse
Affiliation(s)
- Ensanya Ali Abou Neel
- Division of Biomaterials, Operative and Aesthetic Department Biomaterials Division, King Abdulaziz University, Jeddah, Saudi Arabia; Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt; UCL Eastman Dental Institute, Biomaterials & Tissue Engineering, 256 Gray's Inn Road, London WC1X 8LD, UK.
| | - Wojciech Chrzanowski
- The University of Sydney, The Faculty of Pharmacy, NSW 2006 Sydney, Australia; Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Vehid M Salih
- UCL Eastman Dental Institute, Biomaterials & Tissue Engineering, 256 Gray's Inn Road, London WC1X 8LD, UK; Plymouth University Peninsula School of Medicine & Dentistry, Drake's Circus, Plymouth PL4 8AA, Devon, UK
| | - Hae-Won Kim
- Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook, University, Cheonan 330-714, Republic of Korea
| | - Jonathan C Knowles
- UCL Eastman Dental Institute, Biomaterials & Tissue Engineering, 256 Gray's Inn Road, London WC1X 8LD, UK; Department of Nanobiomedical Science & BK21 Plus NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| |
Collapse
|
32
|
Osteoconductive potential of barrier nanoSiO2 PLGA membranes functionalized by plasma enhanced chemical vapour deposition. BIOMED RESEARCH INTERNATIONAL 2014; 2014:253590. [PMID: 24883304 PMCID: PMC4026916 DOI: 10.1155/2014/253590] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 04/01/2014] [Indexed: 11/19/2022]
Abstract
The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide) (PLGA) membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD), onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR). HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes.
Collapse
|
33
|
Cheirmadurai K, Biswas S, Murali R, Thanikaivelan P. Green synthesis of copper nanoparticles and conducting nanobiocomposites using plant and animal sources. RSC Adv 2014. [DOI: 10.1039/c4ra01414f] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
34
|
Won JE, El-Fiqi A, Jegal SH, Han CM, Lee EJ, Knowles JC, Kim HW. Gelatin-apatite bone mimetic co-precipitates incorporated within biopolymer matrix to improve mechanical and biological properties useful for hard tissue repair. J Biomater Appl 2013; 28:1213-25. [PMID: 23985536 PMCID: PMC4107824 DOI: 10.1177/0885328213502100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Synthetic biopolymers are commonly used for the repair and regeneration of damaged
tissues. Specifically targeting bone, the composite approach of utilizing inorganic
components is considered promising in terms of improving mechanical and biological
properties. We developed gelatin-apatite co-precipitates which mimic the native bone
matrix composition within poly(lactide-co-caprolactone) (PLCL). Ionic
reaction of calcium and phosphate with gelatin molecules enabled the co-precipitate
formation of gelatin-apatite nanocrystals at varying ratios. The gelatin-apatite
precipitates formed were carbonated apatite in nature, and were homogeneously distributed
within the gelatin matrix. The incorporation of gelatin-apatite significantly improved the
mechanical properties, including tensile strength, elastic modulus and elongation at
break, and the improvement was more pronounced as the apatite content increased. Of note,
the tensile strength increased to as high as 45 MPa (a four-fold increase vs. PLCL), the
elastic modulus was increased up to 1500 MPa (a five-fold increase vs. PLCL), and the
elongation rate was ∼240% (twice vs. PLCL). These results support the strengthening role
of the gelatin-apatite precipitates within PLCL. The gelatin-apatite addition considerably
enhanced the water affinity and the acellular mineral-forming ability in vitro in
simulated body fluid; moreover, it stimulated cell proliferation and osteogenic
differentiation. Taken together, the GAp-PLCL nanocomposite composition is considered to
have excellent mechanical and biological properties, which hold great potential for use as
bone regenerative matrices.
Collapse
Affiliation(s)
- Jong-Eun Won
- 1Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
| | | | | | | | | | | | | |
Collapse
|
35
|
Allo BA, Lin S, Mequanint K, Rizkalla AS. Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression. ACS APPLIED MATERIALS & INTERFACES 2013; 5:7574-7583. [PMID: 23826710 DOI: 10.1021/am401861w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three-dimensional (3D) bioactive organic-inorganic (O/I) hybrid fibrous scaffolds are attractive extracellular matrix (ECM) surrogates for bone tissue engineering. With the aim of regulating osteoblast gene expression in 3D, a new class of hybrid fibrous scaffolds with two distinct fiber diameters (260 and 600 nm) and excellent physico-mechanical properties were fabricated from tertiary (SiO2-CaO-P2O5) bioactive glass (BG) and poly (ε-caprolactone) (PCL) by in situ sol-gel and electrospinning process. The PCL/BG hybrid fibrous scaffolds exhibited accelerated wetting properties, enhanced pore sizes and porosity, and superior mechanical properties that were dependent on fiber diameter. Contrary to control PCL fibrous scaffolds that were devoid of bonelike apatite particles, incubating PCL/BG hybrid fibrous scaffolds in simulated body fluid (SBF) revealed bonelike apatite deposition. Osteoblast cells cultured on PCL/BG hybrid fibrous scaffolds spread with multiple attachments and actively proliferated suggesting that the low temperature in situ sol-gel and electrospinning process did not have a detrimental effect. Targeted bone-associated gene expressions by rat calvarial osteoblasts seeded on these hybrid scaffolds demonstrated remarkable spatiotemporal gene activation. Transcriptional-level gene expressions for alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin (OCN) were significantly higher on the hybrid fibrous scaffolds (p < 0.001) that were largely dependent on fiber diameter compared. Taken together, our results suggest that PCL/BG fibrous scaffolds may accelerate bone formation by providing a favorable microenvironment.
Collapse
Affiliation(s)
- Bedilu A Allo
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
36
|
Kim JJ, Bae WJ, Kim JM, Kim JJ, Lee EJ, Kim HW, Kim EC. Mineralized polycaprolactone nanofibrous matrix for odontogenesis of human dental pulp cells. J Biomater Appl 2013; 28:1069-78. [PMID: 23839784 DOI: 10.1177/0885328213495903] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to fabricate mineralized polycaprolactone nanofibrous scaffold and investigate its ability to elicit odontogenic differentiation of human dental pulp cells, compared to the pure polycaprolactone scaffold. Polycaprolactone nanofibrous scaffold was produced by electrospinning, and the surface was mineralized with apatite. Cellular behaviors on the mineralized polycaprolactone scaffold were assessed in terms of cell adhesion, growth, and odontoblastic differentiation. To evaluate the signal transduction of human dental pulp cells, mRNA expression was analyzed and Western blotting was performed. Mineralized polycaprolactone showed improved cell proliferation, mineralized nodule formation, and expression of odontoblastic marker genes including alkaline phosphatase, osteopontin, osteocalcin, dentin sialophosphoprotein (DSPP), and dentin matrix protein-1, as compared with pure polycaprolactone. Although the cell adhesion on the mineralized polycaprolactone was similar to that of the polycaprolactone, the expression level of proteins including collagen type I and the key adhesion receptor (integrin components α1, α2, and β1) was upregulated in mineralized polycaprolactone compared to polycaprolactone. Especially, cells seeded onto mineralized polycaprolactone scaffolds showed significantly increased levels of phosphorylated focal adhesion kinase, a marker of integrin activation, and downstream pathways, such as phosphor (p)-Akt, p-extracellular signal regulated kinase, p-c Jun N-terminal kinase, nuclear factor-kappa B, c-fos, and c-jun, compared with pure polycaprolactone. The mineralized polycaprolactone scaffold is attractive for dentin tissue engineering by promoting growth and odontogenic differentiation of human dental pulp cells through the integrin-mediated signaling pathway.
Collapse
Affiliation(s)
- Jong-Jin Kim
- 1Department of Maxillofacial Tissue Regeneration, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
37
|
Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomater 2013; 9:7308-19. [PMID: 23567944 DOI: 10.1016/j.actbio.2013.03.038] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 03/24/2013] [Accepted: 03/26/2013] [Indexed: 12/23/2022]
Abstract
The objective of the current study is to prepare a biomimetic collagen-apatite scaffold for improved bone repair and regeneration. A novel bottom-up approach has been developed, which combines a biomimetic self-assembly method with a controllable freeze-casting technology. In this study, the mineralized collagen fibers were generated using a simple one-step co-precipitation method which involved collagen self-assembly and in situ apatite precipitation in a collagen-containing modified simulated body fluid (m-SBF). The precipitates were then subjected to controllable freeze casting, forming scaffolds with either an isotropic equiaxed structure or a unidirectional lamellar structure. These scaffolds were comprised of collagen fibers and poorly crystalline bone-like carbonated apatite nanoparticles. The mineral content in the scaffold could be tailored in the range 0-54wt.% by simply adjusting the collagen content in the m-SBF. Further, the mechanisms of the formation of both the equiaxed and the lamellar scaffolds were investigated, and freezing regimes for equiaxed and lamellar solidification were established. Finally, the bone-forming capability of such prepared scaffolds was evaluated in vivo in a mouse calvarial defect model. It was confirmed that the scaffolds well support new bone formation.
Collapse
|
38
|
Abou Neel EA, Bozec L, Knowles JC, Syed O, Mudera V, Day R, Hyun JK. Collagen--emerging collagen based therapies hit the patient. Adv Drug Deliv Rev 2013; 65:429-456. [PMID: 22960357 DOI: 10.1016/j.addr.2012.08.010] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/10/2012] [Accepted: 08/28/2012] [Indexed: 12/11/2022]
Abstract
The choice of biomaterials available for regenerative medicine continues to grow rapidly, with new materials often claiming advantages over the short-comings of those already in existence. Going back to nature, collagen is one of the most abundant proteins in mammals and its role is essential to our way of life. It can therefore be obtained from many sources including porcine, bovine, equine or human and offer a great promise as a biomimetic scaffold for regenerative medicine. Using naturally derived collagen, extracellular matrices (ECMs), as surgical materials have become established practice for a number of years. For clinical use the goal has been to preserve as much of the composition and structure of the ECM as possible without adverse effects to the recipient. This review will therefore cover in-depth both naturally and synthetically produced collagen matrices. Furthermore the production of more sophisticated three dimensional collagen scaffolds that provide cues at nano-, micro- and meso-scale for molecules, cells, proteins and bulk fluids by inducing fibrils alignments, embossing and layered configuration through the application of plastic compression technology will be discussed in details. This review will also shed light on both naturally and synthetically derived collagen products that have been available in the market for several purposes including neural repair, as cosmetic for the treatment of dermatologic defects, haemostatic agents, mucosal wound dressing and guided bone regeneration membrane. There are other several potential applications of collagen still under investigations and they are also covered in this review.
Collapse
Affiliation(s)
- Ensanya A Abou Neel
- King Abdulaziz University, Conservative Dental Science Department, Biomaterials Division, Saudi Arabia.
| | | | | | | | | | | | | |
Collapse
|
39
|
McMahon RE, Wang L, Skoracki R, Mathur AB. Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater 2012; 101:387-97. [DOI: 10.1002/jbm.b.32823] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 07/31/2012] [Accepted: 08/05/2012] [Indexed: 11/05/2022]
|
40
|
Bae WJ, Min KS, Kim JJ, Kim JJ, Kim HW, Kim EC. Odontogenic responses of human dental pulp cells to collagen/nanobioactive glass nanocomposites. Dent Mater 2012; 28:1271-9. [PMID: 23031484 DOI: 10.1016/j.dental.2012.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Collagen-based nanocomposite incorporating nanobioactive glass (Col/nBG) was developed as a scaffolding matrix for dentin-pulp regeneration. The effects of the novel matrix on the proliferation of human dental pulp cells (hDPCs) and their differentiation into odontoblastic lineage were investigated. METHODS Nanocomposite scaffold was prepared by incorporating nBG within the Col solution and then reconstituting them into a membrane form. Cell growth by MTS assay, adhesion by scanning electron microscopy (SEM), and odontoblastic differentiation by alkaline phosphatase (ALP) activity, mineralization, and the mRNA expression of differentiation-related genes of DPCs on each scaffold were evaluated. RESULTS The introduction of nBG significantly improved the bone mineral-like apatite formation in the simulated body fluid, suggesting excellent acellular bone-bioactivity. The hDPCs cultured on the Col/nBG nanocomposite have shown active growth behavior during culture for 14 days. The mRNA levels of major organic extracellular matrix of dentin, collagen type I and III were highly expressed in the Col/nBG matrix. Moreover, the alkaline phosphatase (ALP) activity and the mineralized nodule formation were increased in the Col/nBG nanocomposite compared to those in Col. Odontoblatic differentiation genes, including dentin sialophosphoprotein, dentin matrix protein I, ALP, osteopontin and osteocalcin were significantly stimulated in the Col containing nBG. Moreover, the key adhesion receptor integrin components α2 and β1, specifically binding to collagen molecule sequence, were upregulated in Col/nBG compared to Col, suggesting that odontogenic stimulation was closely related to the integrin-mediated process. SIGNIFICANCE In our study, the nanocomposite Col/nBG matrix induced the growth and odontogenic differentiation more effectively than Col alone, providing a promising scaffold condition for regeneration of dentin-pulp complex tissue.
Collapse
Affiliation(s)
- Won-Jung Bae
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
41
|
Sezer UA, Aksoy EA, Hasirci V, Hasirci N. Poly(ε-caprolactone) composites containing gentamicin-loaded β-tricalcium phosphate/gelatin microspheres as bone tissue supports. J Appl Polym Sci 2012. [DOI: 10.1002/app.37770] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Aimé C, Coradin T. Nanocomposites from biopolymer hydrogels: Blueprints for white biotechnology and green materials chemistry. ACTA ACUST UNITED AC 2012. [DOI: 10.1002/polb.23061] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Lee EJ, Jun SH, Kim HE, Koh YH. Collagen-silica xerogel nanohybrid membrane for guided bone regeneration. J Biomed Mater Res A 2012; 100:841-7. [DOI: 10.1002/jbm.a.34019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 08/28/2011] [Accepted: 10/10/2011] [Indexed: 11/08/2022]
|
44
|
Saska S, Teixeira LN, Tambasco de Oliveira P, Minarelli Gaspar AM, Lima Ribeiro SJ, Messaddeq Y, Marchetto R. Bacterial cellulose-collagen nanocomposite for bone tissue engineering. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm33762b] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Jang TS, Lee EJ, Jo JH, Jeon JM, Kim MY, Kim HE, Koh YH. Fibrous membrane of nano-hybrid poly-L-lactic acid/silica xerogel for guided bone regeneration. J Biomed Mater Res B Appl Biomater 2011; 100:321-30. [PMID: 22102608 DOI: 10.1002/jbm.b.31952] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 05/26/2011] [Accepted: 08/03/2011] [Indexed: 11/10/2022]
Abstract
Nanofibrous membranes, consisting of a poly(L-lactic acid) (PLLA)-silica xerogel hybrid material, were successfully fabricated from a hybrid sol using the electrospinning technique for guided bone regeneration (GBR) application. These hybrid nanofibers exhibited a homogeneous and continuous morphology, with a nano-sized dispersed silica xerogel phase in the PLLA fiber matrix. The mechanical properties, such as the tensile strength and the elastic modulus, were improved as the silica xerogel content increased up to 40%. All of the hybrid membranes exhibited highly hydrophilic surfaces and good proliferation levels. After culturing for 13 days, the cells that were cultured on the hybrid membranes exhibited a significantly higher ALP activity compared to the pure PLLA membrane. Moreover, the in vivo animal experiments that used the rat calvarial defect model revealed a remarkably improved bone regeneration ability for the hybrid membrane compared to pure PLLA. These results demonstrated the feasibility of these hybrid membranes for efficient GBR.
Collapse
Affiliation(s)
- Tae-Sik Jang
- WCU Hybrid Materials Program, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Korea
| | | | | | | | | | | | | |
Collapse
|
46
|
Matsumoto G, Hoshino J, Kinoshita Y, Sugita Y, Kubo K, Maeda H, Ikada Y, Kinoshita Y. Alveolar bone regeneration using poly-(lactic acid-co-glycolic acid-co-ε-caprolactone) porous membrane with collagen sponge containing basic fibroblast growth factor: An experimental study in the dog. J Biomater Appl 2011; 27:485-93. [PMID: 22071349 DOI: 10.1177/0885328211414940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to evaluate the effects of combining porous poly-lactic acid-co-glycolic acid-co-ε-caprolactone (PLGC) as a barrier membrane and collagen sponge containing basic fibroblast growth factor (bFGF) to promote bone regeneration in the canine mandible. In six beagle dogs, two lateral bone defects per side were created in the mandible. The lateral bone defects on the left side were treated with a PLGC membrane plus a collagen sponge containing bFGF. In half of these, the collagen sponge contained 50 µg of bFGF. In the other half, it contained 250 µg of bFGF. As a control, we treated the right-side bone defects in each animal with the same PLGC membrane but with a collagen sponge containing phosphate buffered saline. Computed tomography (CT) images were recorded at 3 and 6 months post-op to evaluate regeneration of the bone defects. After a healing period of 6 months, whole mandibles were removed for micro-CT and histological analyses. The post-op CT images showed that more bone had formed at all experimental sites than at control sites. At 3 months post-op, the volume of bone at defect sites covered with PLGC membrane plus 250 µg of bFGF was significantly greater than it was at defect sites covered with PLGC membrane plus 50 µg of bFGF. At 6 months post-op, however, this difference was smaller and not statistically significant. Micro-CT measurement showed that the volume of new bone regenerated at bone-defect sites, covered with PLGC membrane plus bFGF, was significantly greater than that of control sites. However, the presence or absence of bFGF in the collagen sponge did not significantly affect the bone density of new bone. These results suggest that the macroporous bioresorbable PLGC membrane plus collagen sponge containing bFGF effectively facilitates healing in GBR procedures.
Collapse
Affiliation(s)
- Goichi Matsumoto
- Department of Oral and Maxillofacial Surgery, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka 238-8580, Japan
- Foundation for Biomedical Research and Innovation, 2-2, Minatojima Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Jyunichi Hoshino
- Institute for Frontier Oral Science, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka 238-8580, Japan
| | - Yasuhiko Kinoshita
- Foundation for Biomedical Research and Innovation, 2-2, Minatojima Minamimachi Chuo-ku, Kobe 650-0047, Japan
| | - Yoshihiko Sugita
- Department of Oral Pathology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Katsutoshi Kubo
- Department of Oral Pathology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Hatsuhiko Maeda
- Department of Oral Pathology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Yoshito Ikada
- Department of Indoor Environmental Medicine, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | - Yukihiko Kinoshita
- Foundation for Biomedical Research and Innovation, 2-2, Minatojima Minamimachi Chuo-ku, Kobe 650-0047, Japan
- Department of Oral Pathology, School of Dentistry, Aichi-Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
47
|
Bacterial cellulose-hydroxyapatite nanocomposites for bone regeneration. Int J Biomater 2011; 2011:175362. [PMID: 21961004 PMCID: PMC3180784 DOI: 10.1155/2011/175362] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/01/2011] [Accepted: 07/07/2011] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was to develop and to evaluate the biological properties of bacterial cellulose-hydroxyapatite (BC-HA) nanocomposite membranes for bone regeneration. Nanocomposites were prepared from bacterial cellulose membranes sequentially incubated in solutions of CaCl2 followed by Na2HPO4. BC-HA membranes were evaluated in noncritical bone defects in rat tibiae at 1, 4, and 16 weeks. Thermogravimetric analyses showed that the amount of the mineral phase was 40%–50% of the total weight. Spectroscopy, electronic microscopy/energy dispersive X-ray analyses, and X-ray diffraction showed formation of HA crystals on BC nanofibres. Low crystallinity HA crystals presented Ca/P a molar ratio of 1.5 (calcium-deficient HA), similar to physiological bone. Fourier transformed infrared spectroscopy analysis showed bands assigned to phosphate and carbonate ions. In vivo tests showed no inflammatory reaction after 1 week. After 4 weeks, defects were observed to be completely filled in by new bone tissue. The BC-HA membranes were effective for bone regeneration.
Collapse
|
48
|
Abstract
The state-of-the-art of biocomposites and hybrid biomaterials based on calcium orthophosphates that are suitable for biomedical applications is presented in this review. Since these types of biomaterials offer many significant and exciting possibilities for hard tissue regeneration, this subject belongs to a rapidly expanding area of biomedical research. Through successful combinations of the desired properties of matrix materials with those of fillers (in such systems, calcium orthophosphates might play either role), innovative bone graft biomaterials can be designed. Various types of biocomposites and hybrid biomaterials based on calcium orthophosphates, either those already in use or being investigated for biomedical applications, are extensively discussed. Many different formulations, in terms of the material constituents, fabrication technologies, structural and bioactive properties as well as both in vitro and in vivo characteristics, have already been proposed. Among the others, the nanostructurally controlled biocomposites, those containing nanodimensional compounds, biomimetically fabricated formulations with collagen, chitin and/or gelatin as well as various functionally graded structures seem to be the most promising candidates for clinical applications. The specific advantages of using biocomposites and hybrid biomaterials based on calcium orthophosphates in the selected applications are highlighted. As the way from the laboratory to the hospital is a long one, and the prospective biomedical candidates have to meet many different necessities, this review also examines the critical issues and scientific challenges that require further research and development.
Collapse
|
49
|
Jegal SH, Park JH, Kim JH, Kim TH, Shin US, Kim TI, Kim HW. Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration. Acta Biomater 2011; 7:1609-17. [PMID: 21145435 DOI: 10.1016/j.actbio.2010.12.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 10/28/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
Abstract
Functional nanofibrous materials composed of gelatin-apatite-poly(lactide-co-caprolactone) (PLCL) were produced using an electrospinning process. A gelatin-apatite precipitate, which mimicked bone extracellular matrix, was homogenized in an organic solvent using various concentrations of PLCL. A fibrous structure with approximate diameters of a few hundred nanometers was successfully generated. Apatite nanocrystallines were found to be effectively distributed within the polymeric matrix of the gelatin-PLCL. The addition of a small amount of gelatin-apatite into PLCL significantly improved the tensile strength of the nanofiber by a factor of 1.8. Moreover, tissue cell growth on the composite nanofiber was enhanced. Osteogenic differentiation of the cells was significantly stimulated by the composite nanofiber compared with the pure PLCL nanofiber. When implanted in a rat calvarium for 6weeks the composite nanofiber supported defect closure and new bone formation better than the pure PLCL nanofiber, as deduced from micro-computed tomography and histological analyses. Based on these results, the gelatin-apatite-PLCL composite nanofiber developed in this study is considered to be potentially useful as a bone tissue regeneration matrix.
Collapse
|
50
|
Creating Electrospun Nanofiber-Based Biomimetic Scaffolds for Bone Regeneration. BIOMEDICAL APPLICATIONS OF POLYMERIC NANOFIBERS 2011. [DOI: 10.1007/12_2011_131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|