1
|
Par M, Cheng L, Camilleri J, Lingström P. Applications of smart materials in minimally invasive dentistry - some research and clinical perspectives. Dent Mater 2024; 40:2008-2016. [PMID: 39341720 DOI: 10.1016/j.dental.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/25/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVES Dental caries is one of the most prevalent bacteria-induced non-communicable diseases globally. It is known to be the top oral health burden in both developing and developed nations. There is substantial literature on the disease process and there is still debate on the extent of caries removal needed and the adequacy of the materials available to restore the lost tooth structure. The current review discusses the disease process together with the contemporary management of the carious lesion and also presents substantial evidence on novel materials and techniques that make minimally invasive dentistry predictable. METHODS The written work presented shows the most relevant literature for the management of dental caries focusing on novel materials used in minimally invasive dentistry. RESULTS There is still much to learn about specific antimicrobial and caries prevention mechanisms of novel materials. Materials that respond to a single or a few stimuli remain "weakly intelligent" in the face of the complex microenvironment in the oral cavity. Engineered systems that combine artificial intelligence and chemical engineering, are expected to possess higher intelligence, self-healing capabilities as well as environmental adaptability, and may be future promising research directions. SIGNIFICANCE The targeted approach in managing dental caries will hopefully have a better clinical outcome. The strategies discussed are alternatives to the contemporary approach and will improve the clinical management.
Collapse
Affiliation(s)
- M Par
- Department of Endodontics and Restorative Dentistry, University of Zagreb School of Dental Medicine, Zagreb, Croatia
| | - L Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China; Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Camilleri
- Dentistry, School of Health Sciences, College of Medicine and Health, University fo Birmingham, Birmingham, United Kingdom.
| | - P Lingström
- Department of Cariology, Institute of Odontolog, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Wang J, Zhang L, Wang K. Bioactive ceramic-based materials: beneficial properties and potential applications in dental repair and regeneration. Regen Med 2024; 19:257-278. [PMID: 39118532 PMCID: PMC11321270 DOI: 10.1080/17460751.2024.2343555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/12/2024] [Indexed: 08/10/2024] Open
Abstract
Bioactive ceramics, primarily consisting of bioactive glasses, glass-ceramics, calcium orthophosphate ceramics, calcium silicate ceramics and calcium carbonate ceramics, have received great attention in the past decades given their biocompatible nature and excellent bioactivity in stimulating cell proliferation, differentiation and tissue regeneration. Recent studies have tried to combine bioactive ceramics with bioactive ions, polymers, bioactive proteins and other chemicals to improve their mechanical and biological properties, thus rendering them more valid in tissue engineering scaffolds. This review presents the beneficial properties and potential applications of bioactive ceramic-based materials in dentistry, particularly in the repair and regeneration of dental hard tissue, pulp-dentin complex, periodontal tissue and bone tissue. Moreover, greater insights into the mechanisms of bioactive ceramics and the development of ceramic-based materials are provided.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, Section 3rd of Renmin South Road, Chengdu, 610041, China
| |
Collapse
|
3
|
Shi Y, Zheng H, Wang W, Qian L, Zhao W, Xu J, Li M, Wu Z, Fu B. Dentin surface modification by MDP to improve dentin bonding stability: Topological enhancement and mineralization of collagen structure in hybrid layers. Colloids Surf B Biointerfaces 2024; 235:113776. [PMID: 38364520 DOI: 10.1016/j.colsurfb.2024.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
Decades of research have been conducted on 10-Methacryloyloxydecyl dihydrogen phosphate (MDP) through numerous studies. The mechanisms by which its residual calcium salts benefit dentin bonding remain undetermined. The objective of the research was to investigate the role and process of remaining calcium salts in the priming procedure and their capacity for remineralization. The investigation focused on the variations in topological structure, mechanical properties, and chemical interactions between the main agent and the dentin surface. Two adhesive modes including prime-and-rinse(P&R) and prime-and-nonrinse (P&NR) utilized to evaluate the bonding performance and remineralization ability. The findings indicated that both P&R and P&NR methods could eliminate the smear-layer, uncover dentinal-tubules, and generate a textured/rough surface on the dentin. Collagen fibrils exhibited a greater presence of inorganic minerals in the P&NR mode. Compared to control group, both P&R and P&NR groups improved immediate and aging bond strength significantly (P < 0.05). AFM and 3D-STORM revealed MDP and its residual calcium salts distributed in collagen fibrils and expanded collagen matrix. In the P&NR group, TEM revealed that the dentin collagen matrix experienced some remineralization, and there was also mineralization within the collagen fibrils embedded in the bonding interface. Thus, MDP priming improved dentin bonding stability. Residual calcium salts of P&NR process can enhance topological structure of the collagen matrix and induce intrafibrillar mineralization.
Collapse
Affiliation(s)
- Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Wenting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Linna Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Weijia Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Jingqiu Xu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Mingxing Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
4
|
Shekofteh K, Kashi TJ, Behroozibakhsh M, Sadr A, Najafi F, Bagheri H. Evaluation of physical/mechanical properties of an experimental dental composite modified with a zirconium-based metal-organic framework (MOF) as an innovative dental filler. Dent Mater 2023; 39:790-799. [PMID: 37455205 DOI: 10.1016/j.dental.2023.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVES This study aimed to modify an experimental dental composite using a synthesized nano-structured methacrylated zirconium-based MOF to enhance physical/mechanical properties. METHODS The previously known Uio-66-NH2 MOF was first synthesized and post-modified with Glycidyl Methacrylate (GMA). Fourier Transform Infrared (FTIR) Spectroscopy and CHNS analysis confirmed the post-modification reaction. The prepared filler was investigated by XRD, BET, SEM-EDS, and TEM. The experimental composite was prepared by mixing 60% wt. of resin matrix with 40% wt. of fillers, including silanized silica (SS) or Uio-66-NH-Me (UM). The experimental composites' depth of cure (DPC) was investigated in five groups (G1 =40% SS, G2 =30%SS+10%UM, G3 =20%SS+20%UM, G4 =10%SS+30%UM, G5 =40%UM). Then flexural strength(FS), Elastic Modulus(EM), solubility(S), water sorption(WS), degree of conversion(DC), polymerization shrinkage(PS), and polymerization stress(PSR) of the groups with DPC of more than 1 mm were investigated. Finally, the cytotoxicity of composites was studied. RESULTS The groups with more than 20% wt. UM, filler (G4, G5) had lesser than 1 mm DPC. Therefore, we investigated three groups' physical and mechanical properties with lower than 20% UM filler (G1-G3). Within these groups, G3 has a higher FS, EM (P < 0.05), and lower WS and S (P < 0.05). DC dropped in G2 and G3 compared to G1 (p < 0.05), but there was no significant difference between G2 and G3 (P = 0.594). SIGNIFICANCE This new filler is an innovative coupling-agent free filler and can be part of dental filler technology itself. It can also introduce a new group of dental fillers based on MOFs, but it still needs a complete investigation to be widely used.
Collapse
Affiliation(s)
- Kiana Shekofteh
- Department of Dental Biomaterials, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Jafarzadeh Kashi
- Department of Dental Biomaterials, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran.
| | - Marjan Behroozibakhsh
- Department of Dental Biomaterials, Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran; Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sadr
- Department of Restorative Dentistry, Biomimetics Biomaterials Biophotonics Biomechanics & Technology Laboratory, School of Dentistry, University of Washington, WA, USA
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Hossein Bagheri
- Dental Materials Research Center; Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Yu K, Zhang Q, Dai Z, Zhu M, Xiao L, Zhao Z, Bai Y, Zhang K. Smart Dental Materials Intelligently Responding to Oral pH to Combat Caries: A Literature Review. Polymers (Basel) 2023; 15:2611. [PMID: 37376255 DOI: 10.3390/polym15122611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Smart dental materials are designed to intelligently respond to physiological changes and local environmental stimuli to protect the teeth and promote oral health. Dental plaque, or biofilms, can substantially reduce the local pH, causing demineralization that can then progress to tooth caries. Progress has been made recently in developing smart dental materials that possess antibacterial and remineralizing capabilities in response to local oral pH in order to suppress caries, promote mineralization, and protect tooth structures. This article reviews cutting-edge research on smart dental materials, their novel microstructural and chemical designs, physical and biological properties, antibiofilm and remineralizing capabilities, and mechanisms of being smart to respond to pH. In addition, this article discusses exciting and new developments, methods to further improve the smart materials, and potential clinical applications.
Collapse
Affiliation(s)
- Kan Yu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Qinrou Zhang
- School of Stomatology, Chongqing Medical University, Chongqing 401147, China
| | - Zixiang Dai
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Minjia Zhu
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Le Xiao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Zeqing Zhao
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| | - Ke Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing 100050, China
| |
Collapse
|
6
|
Zhou W, Chen H, Weir MD, Oates TW, Zhou X, Wang S, Cheng L, Xu HH. Novel bioactive dental restorations to inhibit secondary caries in enamel and dentin under oral biofilms. J Dent 2023; 133:104497. [PMID: 37011782 DOI: 10.1016/j.jdent.2023.104497] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
OBJECTIVE To provide the first review on cutting-edge research on the development of new bioactive restorations to inhibit secondary caries in enamel and dentin under biofilms. State-of-the-art bioactive and therapeutic materials design, structure-property relationships, performance and efficacies in oral biofilm models. DATA, SOURCES AND STUDY SELECTION Researches on development and assessment new secondary caries inhibition restorations via in vitro and in vivo biofilm-based secondary caries models were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS Based on the found articles, novel bioactive materials are divided into different categories according to their remineralization and antibacterial biofunctions. In vitro and in vivo biofilm-based secondary caries models are effective way of evaluating the materials efficacies. However, new intelligent and pH-responsive materials were still urgent need. And the materials evaluation should be performed via more clinical relevant biofilm-based secondary caries models. CLINICAL SIGNIFICANCE Secondary caries is a primary reason for dental restoration failures. Biofilms produce acids, causing demineralization and secondary caries. To inhibit dental caries and improve the health and quality of life for millions of people, it is necessary to summarize the present state of technologies and new advances in dental biomaterials for preventing secondary caries and protecting tooth structures against oral biofilm attacks. In addition, suggestions for future studies are provided.
Collapse
|
7
|
Par M, Plančak L, Ratkovski L, Tauböck TT, Marovic D, Attin T, Tarle Z. Improved Flexural Properties of Experimental Resin Composites Functionalized with a Customized Low-Sodium Bioactive Glass. Polymers (Basel) 2022; 14:4289. [PMID: 36297866 PMCID: PMC9607205 DOI: 10.3390/polym14204289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
This study evaluated the flexural properties of an experimental composite series functionalized with 5-40 wt% of a low-Na F-containing bioactive glass (F-series) and compared it to another experimental composite series containing the same amounts of the conventional bioactive glass 45S5 (C-series). Flexural strength and modulus were evaluated using a three-point bending test. Degree of conversion was measured using Fourier-transform infrared spectroscopy. Weibull analysis was performed to evaluate material reliability. The control material with 0 wt% of bioactive glass demonstrated flexural strength values of 105.1-126.8 MPa). In the C-series, flexural strength ranged between 17.1 and 121.5 MPa and was considerably more diminished by the increasing amounts of bioactive glass than flexural strength in the F-series (83.8-130.2 MPa). Analogously, flexural modulus in the C-series (0.56-6.66 GPa) was more reduced by the increase in bioactive glass amount than in the F-series (5.24-7.56 GPa). The ISO-recommended "minimum acceptable" flexural strength for restorative resin composites of 80 MPa was achieved for all materials in the F-series, while in the C-series, the materials with higher bioactive glass amounts (20 and 40 wt%) failed to meet the requirement of 80 MPa. The degree of conversion in the F-series was statistically similar or higher compared to that of the control composite with no bioactive glass, while the C-series showed a declining degree of conversion with increasing bioactive glass amounts. In summary, the negative effect of the addition of bioactive glass on mechanical properties was notably less pronounced for the customized bioactive glass than for the bioactive glass 45S5; additionally, mechanical properties of the composites functionalized with the customized bioactive glass were significantly less diminished by artificial aging. Hence, the customized bioactive glass investigated in the present study represents a promising candidate for functionalizing ion-releasing resin composites.
Collapse
Affiliation(s)
- Matej Par
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Laura Plančak
- School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Lucija Ratkovski
- School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Tobias T. Tauböck
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Danijela Marovic
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Zrinka Tarle
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, Gunduliceva 5, 10000 Zagreb, Croatia
| |
Collapse
|
8
|
Filemban H, Bhadila G, Wang X, Melo MAS, Oates TW, Hack GD, Lynch CD, Weir MD, Sun J, Xu HHK. Effects of thermal cycling on mechanical and antibacterial durability of bioactive low-shrinkage-stress nanocomposite. J Dent 2022; 124:104218. [PMID: 35817225 DOI: 10.1016/j.jdent.2022.104218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/10/2022] [Accepted: 05/18/2022] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES Recent studies developed low-shrinkage-stress composite with remineralizing and antibacterial properties to combat secondary caries and increase restoration longevity. However, their long-term durability in thermal cycling is unclear. The objectives of this study were to develop an antibacterial, remineralizing and low-shrinkage-stress composite, and to investigate its durability in thermal cycling for 20,000 cycles, equivalent to two years of clinical life. METHODS The resin consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE). Composites were made with 5% dimethylaminohexadecyl methacrylate (DMAHDM) and 20% of nanoparticles of amorphous calcium phosphate (NACP). Composites were thermal cycled at 5°C and 55°C for 20,000 cycles. A human salivary biofilm model was used to evaluate antibiofilm activity before and after thermal cycling. RESULTS After 20,000 cycles, the flexural strength of bioactive low-shrinkage-stress composite matched commercial control with no antibacterial activity (p > 0.05). Surface roughness was clinically acceptable at less than 0.2 μm. UV+NACP+DMAHDM composite reduced the total microorganisms, total streptococci, and mutans streptococci by 2-5 logs, compared to commercial composite. Biofilm lactic acid production was reduced by 11 folds. The antibacterial performance was maintained after thermal cycling, with no decrease after 20,000 cycles. CONCLUSIONS Bioactive low-shrinkage-stress composite possessed good mechanical properties that matched commercial composite both before and after thermal cycling. The new composite had potent antibacterial activity, which was maintained and did not decrease after thermal cycling. CLINICAL SIGNIFICANCE The new bioactive low-shrinkage-stress composite could reduce polymerization shrinkage stress and release calcium and phosphate ions, with good mechanical properties and strong antibacterial function that were durable after thermal cycling. These properties indicate great potential for inhibiting recurrent caries and increasing the restoration longevity.
Collapse
Affiliation(s)
- Hanan Filemban
- Ph.D. Program in Dental Biomedical Sciences, Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Operative Dentistry, Faculty of Dentistry, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Ghalia Bhadila
- Department of Pediatric Dentistry, Faculty of Dentistry, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Xiaohong Wang
- American Dental Association Science and Research Institute, Gaithersburg, MD 20899, USA
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Gary D Hack
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Christopher D Lynch
- Restorative Dentistry, University Dental School and Hospital, University College Cork, Wilton, Cork, Ireland
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Jirun Sun
- The Forsyth Institute, Cambridge, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
9
|
Resin Cement Residue Removal Techniques: In Vitro Analysis of Marginal Defects and Discoloration Intensity Using Micro-CT and Stereomicroscopy. Dent J (Basel) 2022; 10:dj10040055. [PMID: 35448050 PMCID: PMC9027873 DOI: 10.3390/dj10040055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/02/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
The objective was to compare marginal defects and evaluate discoloration for adhesively cemented veneers in vitro when using two cement removal techniques. Twenty premolars were prepared with chamfer and borders in enamel. IPS e.max CAD veneers were cemented using Panavia V5 and divided in two groups (n = 10): cement excess removed with a probe after tack-curing for 3–5 s, or cement excess removed with a brush, then completely polymerized. All teeth were stored in alginate gel until micro-CT examination. Scanning was performed twice: directly after cementation and after thermocycling (5000 cycles, between 5 and 55 °C). To analyze discoloration, teeth were colored using 0.5% basic fuchsine and examined under a stereomicroscope. Depth of dye infiltration was scored 0 (no discoloration) to 5 (discoloration along the entire margin). Statistically significant differences of cement defects before thermocycling were reported, where brushing showed more defects than probing (p = 0.0161). After thermocycling, the defects increased for both groups. Extensive discoloration was the most common (55.56%) when removing excess by probing; by brushing, 90% of the specimens exhibited slight discoloration (p = 0.008). Regression analysis showed no relationship between type of defect and degree of discoloration. Removing cement with a brush causes more marginal defects, however less discoloration after thermocycling.
Collapse
|
10
|
Mitwalli H, AlSahafi R, Albeshir EG, Dai Q, Sun J, Oates TW, Melo MAS, Xu HHK, Weir MD. Novel Nano Calcium Fluoride Remineralizing and Antibacterial Dental Composites. J Dent 2021; 113:103789. [PMID: 34455017 DOI: 10.1016/j.jdent.2021.103789] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Composites with remineralizing and antibacterial properties are favorable for caries inhibition. The objectives of this study were to develop a new bioactive nanocomposite with remineralizing and antibiofilm properties by incorporating dimethylaminohexadecyl methacrylate (DMAHDM) and nano-calcium fluoride (nCaF2). METHODS nCaF2 was produced via a spray-drying method and integrated at 15% mass fraction into composite. DMAHDM was added at 3% mass fraction. Mechanical properties and F and Ca ion releases were assessed. Colony-forming units (CFU), lactic acid and metabolic activity of biofilms on composites were performed. RESULTS The new composites had flexural strengths of (95.28±6.32) MPa and (125.93±7.49) MPa, which were within the ISO recommendations. Biofilm CFU were reduced by 3-4 log (p<0.05). The composites achieved high F releases of (0.89±0.01) mmol/L and (0.44±0.01) mmol/L, and Ca releases of (1.46±0.05) mmol/L and (0.54±0.005) mmol/L. CONCLUSIONS New nanocomposites were developed with good mechanical properties, potent antibacterial activity against salivary biofilms, and high F and Ca ion releases with potential for remineralization. CLINICAL SIGNIFICANCE Novel nanocomposites using nCaF2 and DMAHDM were developed with potent antibacterial and remineralizing effects and high F and Ca ion releases. They are promising to inhibit recurrent caries, promote remineralization, and possess long-term sustainability.
Collapse
Affiliation(s)
- Heba Mitwalli
- Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, United States; Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashed AlSahafi
- Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, United States; Department of Restorative Dental Sciences, College of Dentistry, Umm Al-Qura University, Makkah 24211, Saudi Arabia
| | - Ebtehal G Albeshir
- Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, United States; Department of Restorative Dentistry, King Abdul-Aziz Medical City, Riyadh 11426, Saudi Arabia
| | - Quan Dai
- Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, United States; Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research; College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Jirun Sun
- The Forsyth Institute, A Harvard School of Dental Medicine Affiliate, 245 First Street, Cambridge, MA 02142, United States
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, United States
| | - Mary Anne S Melo
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, United States; Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, United States
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, United States; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, School of Dentistry, University of Maryland, Baltimore, MD 21201, United States.
| |
Collapse
|
11
|
Bhadila G, Wang X, Weir MD, Melo MAS, Martinho F, Fay GG, Oates TW, Sun J, Xu HHK. Low-shrinkage-stress nanocomposite: An insight into shrinkage stress, antibacterial, and ion release properties. J Biomed Mater Res B Appl Biomater 2021; 109:1124-1134. [PMID: 33386668 DOI: 10.1002/jbm.b.34775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 10/17/2020] [Accepted: 11/28/2020] [Indexed: 02/05/2023]
Abstract
The aims are: (a) To develop the first low-shrinkage-stress nanocomposite with antibacterial and remineralization capabilities through the incorporation of dimethylaminododecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP); (b) to investigate the effects of the new composite on biofilm inhibition, mechanical properties, shrinkage stress, and calcium (Ca) and phosphate (P) ion releases. The low-shrinkage-stress resin consisted of urethane dimethacrylate and triethylene glycol divinylbenzyl ether. Composite was formulated with 3% DMAHDM and 20% NACP. Mechanical properties, shrinkage stress, and degree of conversion were evaluated. Streptococcus mutans biofilm growth on composites was assessed. Ca and P ion releases were measured. The shrinkage stress of the low-shrinkage-stress composite containing 3% DMAHDM and 20% NACP was 36% lower than that of traditional composite control (p < 0.05), with similar degrees of conversion of 73.9%. The new composite decreased the biofilm colony-forming unit by 4 log orders and substantially reduced biofilm lactic acid production compared to control composite (p < 0.05). Incorporating DMAHDM to the low-shrinkage-stress composite did not adversely affect the Ca and P ion release. A novel bioactive nanocomposite was developed with low shrinkage stress, strong antibiofilm activity, and high levels of ion release for remineralization, without undermining the mechanical properties and degree of conversion.
Collapse
Affiliation(s)
- Ghalia Bhadila
- Biomaterials and Tissue Engineering Division, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Pediatric Dentistry, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Xiaohong Wang
- Volpe Research Center, American Dental Association Foundation, Frederick, Maryland, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Mary Ann S Melo
- Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Frederico Martinho
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Guadalupe Garcia Fay
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Jirun Sun
- Volpe Research Center, American Dental Association Foundation, Frederick, Maryland, USA
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Bastos NA, Bitencourt SB, Martins EA, De Souza GM. Review of nano-technology applications in resin-based restorative materials. J ESTHET RESTOR DENT 2020; 33:567-582. [PMID: 33368974 DOI: 10.1111/jerd.12699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Nanotechnology has progressed significantly and particles as small as 3 nm are being employed in resin-based restorative materials to improve clinical performance. The goal of this review is to report the progress of nanotechnology in Restorative Dentistry by reviewing the advantages, limitations, and applications of resin-based restorative materials with nanoparticles. MATERIALS AND METHODS A literature review was conducted using PubMed/Medline, Scopus and Embase databases. In vitro, in vivo and in situ research studies published in English between 1999 and 2020, and which focused on the analysis of resin-based restorative materials containing nanoparticles were included. RESULTS A total of 140 studies were included in this review. Studies reported the effect of incorporating different types of nanoparticles on adhesive systems or resin composites. Mechanical, physical, and anti-bacterial properties were described. The clinical performance of resin-based restorative materials with nanoparticles was also reported. CONCLUSIONS The high surface area of nanoparticles exponentially increases the bioactivity of materials using bioactive nanofillers. However, the tendency of nanoparticles to agglomerate, the chemical instability of the developed materials and the decline of rheological properties when high ratios of nanoparticles are employed are some of the obstacles to overcome in the near future. CLINICAL SIGNIFICANCE In spite of the recent advancements of nanotechnology in resin-based restorative materials, some challenges need to be overcome before new nano-based restorative materials are considered permanent solutions to clinical problems.
Collapse
Affiliation(s)
- Natalia Almeida Bastos
- Department of Operative Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Sandro Basso Bitencourt
- Department of Dental Materials and Prosthodontics, Sao Paulo State University (UNESP), Araçatuba, Brazil
| | | | | |
Collapse
|
13
|
Bhadila G, Filemban H, Wang X, Melo MAS, Arola DD, Tay FR, Oates TW, Weir MD, Sun J, Xu HH. Bioactive low-shrinkage-stress nanocomposite suppresses S. mutans biofilm and preserves tooth dentin hardness. Acta Biomater 2020; 114:146-157. [PMID: 32771591 DOI: 10.1016/j.actbio.2020.07.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/22/2022]
Abstract
Recurrent dental caries is one of the main reasons for resin composite restoration failures. This study aimed to: (1) develop a bioactive, low-shrinkage-stress, antibacterial and remineralizing composite and evaluate the sustainability of its antibacterial effect against Streptococcus mutans (S. mutans) biofilms; and (2) evaluate the remineralization and cariostatic potential of the composite containing nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM), using dentin hardness measurement and a biofilm-induced recurrent caries model. The antibacterial and remineralizing low-shrinkage-stress composite consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE), 3% DMAHDM and 20% NACP. S. mutans biofilm was used to evaluate antibiofilm activity, before and after 3 months of composite aging in acidic solution. Human dentin was used to develop a recurrent caries biofilm-model. Adding DMAHDM and NACP into low shrinkage-stress composite did not compromise the flexural strength. The low-shrinkage-stress composite with DMAHDM achieved substantial reductions in biofilm colony-forming units (CFU), lactic acid production, and biofilm biomass (p < 0.05). The low-shrinkage-stress DMAHDM+NACP composite exhibited no significant difference in antibacterial performance before and after 3 months of aging, demonstrating long-term antibacterial activity. Under S. mutans biofilm acidic attack, dentin hardness (GPa) was 0.24 ± 0.04 for commercial control, and 0.23 ± 0.03 for experimental control, but significantly higher at 0.34 ± 0.03 for DMAHDM+NACP group (p < 0.05). At an instrumental compliance of 0.33 μm/N, the polymerization shrinkage stress of the new composite was 36% lower than that of a traditional composite (p < 0.05). The triple strategy of antibacterial, remineralization and lower shrinkage-stress has great potential to inhibit recurrent caries and increase restoration longevity. Statement of Significance Polymerization shrinkage stress, masticatory load over time as well as biochemical degradation can lead to marginal failure and secondary caries. The present study developed a new low-shrinkage-stress, antibacterial and remineralizing dental nanocomposite. Polymerization shrinkage stress was greatly reduced, biofilm acid production was inhibited, and tooth dentin mineral and hardness were preserved. The antibacterial composite possessed a long-lasting antibiofilm effect against cariogenic bacteria S. mutans. The new bioactive nanocomposite has the potential to suppress recurrent caries at the restoration margins, protects tooth structures, and increases restoration longevity.
Collapse
|
14
|
Zhou W, Peng X, Zhou X, Weir MD, Melo MAS, Tay FR, Imazato S, Oates TW, Cheng L, Xu HHK. In vitro evaluation of composite containing DMAHDM and calcium phosphate nanoparticles on recurrent caries inhibition at bovine enamel-restoration margins. Dent Mater 2020; 36:1343-1355. [PMID: 32800353 DOI: 10.1016/j.dental.2020.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/09/2020] [Accepted: 07/15/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Recurrent caries is a primary reason for restoration failure caused by biofilm acids. The objectives of this study were to: (1) develop a novel multifunctional composite with antibacterial function and calcium (Ca) and phosphate (P) ion release, and (2) investigate the effects on enamel demineralization and hardness at the margins under biofilms. METHODS Dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP) were incorporated into composite. Four groups were tested: (1) Commercial control (Heliomolar), (2) Experimental control (0% DMAHDM + 0% NACP), (3) antibacterial group (3% DMAHDM + 0% NACP), (D) antibacterial and remineralizing group (3% DMAHDM + 30% NACP). Mechanical properties and Ca and P ion release were measured. Colony-forming units (CFU), lactic acid and polysaccharide of Streptococcus mutans (S. mutans) biofilms were evaluated. Demineralization of bovine enamel with restorations was induced via S. mutans, and enamel hardness was measured. Data were analyzed via one-way and two-way analyses of variance and Tukey's multiple comparison tests. RESULTS Adding DMAHDM and NACP into composite did not compromise the mechanical properties (P > 0.05). Ca and P ion release of 3% DMAHDM + 30% NACP was increased at cariogenic low pH. Biofilm lactic acid and polysaccharides were greatly decreased via DMAHDM, and CFU was reduced by 4 logs (P < 0.05). Under biofilm acids, enamel hardness at the margins was decreased to about 0.5 GPa for control; it was about 1 GPa for antibacterial group, and 1.3 GPa for antibacterial and remineralizing group (P < 0.05). CONCLUSIONS The novel 3% DMAHDM + 30% NACP composite had strong antibacterial effects. It substantially reduced enamel demineralization adjacent to restorations under biofilm acid attacks, yielding enamel hardness that was 2-fold greater than that of control composites. The novel multifunctional composite is promising to inhibit recurrent caries.
Collapse
Affiliation(s)
- Wen Zhou
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Mary Anne S Melo
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University, Chengdu, 610041, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
15
|
Development of brushite particles synthesized in the presence of acidic monomers for dental applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111178. [PMID: 32806326 DOI: 10.1016/j.msec.2020.111178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To synthesize and characterize brushite particles in the presence of acidic monomers (acrylic acid/AA, citric acid/CA, and methacryloyloxyethyl phosphate/MOEP) and evaluate the effect of these particles on degree of conversion (DC), flexural strength/modulus (FS/FM) and ion release of experimental composites. METHODS Particles were synthesized by co-precipitation with monomers added to the phosphate precursor solution and characterized for monomer content, size and morphology. Composites containing 20 vol% brushite and 40 vol% reinforcing glass were tested for DC, FS and FM (after 24 h and 60 d in water), and 60-day ion release. Data were subjected to ANOVA/Tukey tests (DC) or Kruskal-Wallis/Dunn tests (FS and FM, alpha: 5%). RESULTS The presence of acidic monomers affected particle morphology. Monomer content on the particles was low (0.1-1.4% by mass). Composites presented similar DC. For FS/24 h, only the composite containing DCPD_AA was statistically similar to the composite containing 60 vol% of reinforcing glass (without brushite, "control"). After 60 days, all brushite-containing materials showed similar FS, statistically lower than the control composite (p<0.01). Composites containing DCPD_AA, DCPD_MOEP or DCPD_U ("unmodified") showed statistically similar FM/24 h, higher than the control composite. After prolonged immersion, all composites were similar to the control composite, except DCPD_AA. Cumulative ion release ranged from 21 ppm to 28 ppm (calcium) and 9 ppm to 17 ppm (phosphate). Statistically significant reductions in ion release between 15 and 60 days were detected only for the composite containing DCPD_MOEP. SIGNIFICANCE Acidic monomers added to the synthesis affected brushite particle morphology. After 60-day storage in water, composite strength was similar among all brushite-containing composites. Ion release was sustained for 60 days and it was not affected by particle morphology.
Collapse
|
16
|
Vilela HS, Campos AL, Cabral C, Chiari MD, Vieira DN, Braga RR. Effect of calcium orthophosphate: Reinforcing glass ratio and prolonged water storage on flexural properties of remineralizing composites. J Mech Behav Biomed Mater 2020; 104:103637. [DOI: 10.1016/j.jmbbm.2020.103637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/31/2019] [Accepted: 01/11/2020] [Indexed: 11/27/2022]
|
17
|
Odermatt R, Par M, Mohn D, Wiedemeier DB, Attin T, Tauböck TT. Bioactivity and Physico-Chemical Properties of Dental Composites Functionalized with Nano- vs. Micro-Sized Bioactive Glass. J Clin Med 2020; 9:E772. [PMID: 32178372 PMCID: PMC7141313 DOI: 10.3390/jcm9030772] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/03/2023] Open
Abstract
Bioactive resin composites can contribute to the prevention of secondary caries, which is one of the main reasons for failure of contemporary dental restorations. This study investigated the effect of particle size of bioactive glass 45S5 on chemical and physical composite properties. Four experimental composites were prepared by admixing the following fillers into a commercial flowable composite: (1) 15 wt% of micro-sized bioactive glass, (2) 15 wt% of nano-sized bioactive glass, (3) a combination of micro- (7.5 wt%) and nano-sized (7.5 wt%) bioactive glass, and (4) 15 wt% of micro-sized inert barium glass. Hydroxyapatite precipitation and pH rise in phosphate-buffered saline were evaluated during 28 days. Degree of conversion and Knoop microhardness were measured 24 h after specimen preparation and after 28 days of phosphate-buffered saline immersion. Data were analyzed using non-parametric statistics (Kruskal-Wallis and Wilcoxon tests) at an overall level of significance of 5%. Downsizing the bioactive glass particles from micro- to nano-size considerably improved their capability to increase pH. The effect of nano-sized bioactive glass on degree of conversion and Knoop microhardness was similar to that of micro-sized bioactive glass. Composites containing nano-sized bioactive glass formed a more uniform hydroxyapatite layer after phosphate-buffered saline immersion than composites containing exclusively micro-sized particles. Partial replacement of nano- by micro-sized bioactive glass in the hybrid composite did not impair its reactivity, degree of conversion (p > 0.05), and Knoop microhardness (p > 0.05). It is concluded that downsizing bioactive glass particles to nano-size improves the alkalizing potential of experimental composites with no negative effects on their fundamental properties.
Collapse
Affiliation(s)
- Reto Odermatt
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Matej Par
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
- Department of Endodontics and Restorative Dentistry, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dirk Mohn
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel B. Wiedemeier
- Statistical Services, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Thomas Attin
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Tobias T. Tauböck
- Department of Conservative and Preventive Dentistry, Center for Dental Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
18
|
Imazato S, Kohno T, Tsuboi R, Thongthai P, Xu HH, Kitagawa H. Cutting-edge filler technologies to release bio-active components for restorative and preventive dentistry. Dent Mater J 2020; 39:69-79. [PMID: 31932551 DOI: 10.4012/dmj.2019-350] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Advancements in materials used for restorative and preventive treatment is being directed toward "bio-active" functionality. Incorporation of filler particles that release active components is a popular method to create bio-active materials, and many approaches are available to develop fillers with the ability to release components that provide "bio-protective" or "bio-promoting" properties; e.g. metal/calcium phosphate nanoparticles, multiple ion-releasing glass fillers, and non-biodegradable polymer particles. In this review paper, recent developments in cutting-edge filler technologies to release bio-active components are addressed and summarized according to their usefulness and functions, including control of bacterial infection, tooth strengthening, and promotion of tissue regeneration.
Collapse
Affiliation(s)
- Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry.,Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Tomoki Kohno
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Ririko Tsuboi
- Department of Advanced Functional Materials Science, Osaka University Graduate School of Dentistry
| | - Pasiree Thongthai
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| | - Hockin Hk Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry
| | - Haruaki Kitagawa
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry
| |
Collapse
|
19
|
Yi J, Dai Q, Weir MD, Melo MA, Lynch CD, Oates TW, Zhang K, Zhao Z, Xu HH. A nano-CaF2-containing orthodontic cement with antibacterial and remineralization capabilities to combat enamel white spot lesions. J Dent 2019; 89:103172. [DOI: 10.1016/j.jdent.2019.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
|
20
|
Wang S, Xia Y, Ma T, Weir MD, Ren K, Reynolds MA, Shu Y, Cheng L, Schneider A, Xu HHK. Novel metformin-containing resin promotes odontogenic differentiation and mineral synthesis of dental pulp stem cells. Drug Deliv Transl Res 2019; 9:85-96. [PMID: 30465181 DOI: 10.1007/s13346-018-00600-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This represents the first report on the development of metformin-containing dental resins. The objectives were to use the resin as a carrier to deliver metformin locally to stimulate dental cells for dental tissue regeneration and to investigate the effects on odontogenic differentiation of dental pulp stem cells (DPSCs) and mineral synthesis. Metformin was incorporated into a resin at 20% by mass as a model system. DPSC proliferation attaching on resins was evaluated. Dentin sialophosphoprotein (DSPP), dentin matrix phosphoprotein 1 (DMP-1), alkaline phosphatase (ALP), and runt-related transcription factor 2 (Runx2) genes expressions were measured. ALP activity and alizarin red staining (ARS) of mineral synthesis by the DPSCs on resins were determined. DPSCs on metformin-containing resin proliferated well (mean ± SD; n = 6), and the number of cells increased by 4-fold from 1 to 14 days (p > 0.1). DSPP, ALP, and DMP-1 gene expressions of DPSCs on metformin resin were much higher than DPSCs on control resin without metformin (p < 0.05). ALP activity of metformin group was 70% higher than that without metformin at 14 days (p < 0.05). Mineral synthesis by DPSCs on metformin-containing resin at 21 days was 9-fold that without metformin (p < 0.05). A novel metformin-containing resin was developed, achieving substantial enhancement of odontoblastic differentiation of DPSCs and greater mineral synthesis. The metformin resin is promising for deep cavities and perforated cavities to stimulate DPSCs for tertiary dentin formation, for tooth root coatings with metformin release for periodontal regeneration, and for root canal fillings with apical lesions to stimulate bone regeneration.
Collapse
Affiliation(s)
- Suping Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral, Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Yang Xia
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Ke Ren
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral, Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
21
|
Balhaddad AA, Kansara AA, Hidan D, Weir MD, Xu HHK, Melo MAS. Toward dental caries: Exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials. Bioact Mater 2018; 4:43-55. [PMID: 30582079 PMCID: PMC6299130 DOI: 10.1016/j.bioactmat.2018.12.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 12/08/2018] [Accepted: 12/09/2018] [Indexed: 01/06/2023] Open
Abstract
Millions of people worldwide suffer from a toothache due to tooth cavity, and often permanent tooth loss. Dental caries, also known as tooth decay, is a biofilm-dependent infectious disease that damages teeth by minerals loss and presents a high incidence of clinical restorative polymeric fillings (tooth colored fillings). Until now, restorative polymeric fillings present no bioactivity. The complexity of oral biofilms contributes to the difficulty in developing effective novel dental materials. Nanotechnology has been explored in the development of bioactive dental materials to reduce or modulate the activities of caries-related bacteria. Nano-structured platforms based on calcium phosphate and metallic particles have advanced to impart an anti-caries potential to restorative materials. The bioactivity of these platforms induces prevention of mineral loss of the hard tooth structure and antibacterial activities against caries-related pathogens. It has been suggested that this bioactivity could minimize the incidence of caries around restorations (CARS) and increase the longevity of such filling materials. The last few years witnessed growing numbers of studies on the preparation evaluations of these novel materials. Herein, the caries disease process and the role of pathogenic caries-related biofilm, the increasing incidence of CARS, and the recent efforts employed for incorporation of bioactive nanoparticles in restorative polymer materials as useful strategies for prevention and management of caries-related-bacteria are discussed. We highlight the status of the most advanced and widely explored interaction of nanoparticle-based platforms and calcium phosphate compounds with an eye toward translating the potential of these approaches to the dental clinical reality. Current progress and future applications of functional nanoparticles and remineralizing compounds incorporated in dental direct restorative materials. Overview of the antibacterial and remineralizing mechanisms presenting direct and indirect implications on the tooth mineral loss. These investigations, although in the initial phase of evidence are necessary and their results are encouraging and open the doors to future clinical studies that will allow the therapeutic value of nanotechnology-based restorative materials to be established.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Biomaterials & Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam, Saudi Arabia
| | - Anmar A Kansara
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Department of Restorative Dentistry, Umm Al-Qura University, College of Dentistry, Makkah, Saudi Arabia
| | - Denise Hidan
- Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Michael D Weir
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Biomaterials & Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Hockin H K Xu
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Biomaterials & Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Mary Anne S Melo
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Biomaterials & Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| |
Collapse
|
22
|
Abstract
Currently, much has been published related to conventional resin-based composites and adhesives; however, little information is available about bioceramics-based restorative materials. The aim was to structure this topic into its component parts and to highlight the translational research that has been conducted up to the present time. A literature search was done from indexed journals up to September 2017. The main search terms used were based on dental resin-based composites, dental adhesives along with bioactive glass and the calcium phosphate family. The results showed that in 123 articles, amorphous calcium phosphate (39.83%), hydroxyapatite (23.5%), bioactive glass (16.2%), dicalcium phosphate (5.69%), monocalcium phosphate monohydrate (3.25%), and tricalcium phosphate (2.43%) have been used in restorative materials. Moreover, seven studies were found related to a newly developed commercial bioactive composite. The utilization of bioactive materials for tooth restorations can promote remineralization and a durable seal of the tooth-material interface.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University
| | - Mariam Raza Syed
- Department of Dental Materials, University of Health Sciences.,Department of Dental Materials, Lahore Medical and Dental College
| |
Collapse
|
23
|
Wu JL, Li T, Gao X, Zhang Q, Liu D, Ge JH, Zhou CJ. [Effect of water immersion on a dental self-healing and antibacterial resin composite]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2018; 36:521-527. [PMID: 30465346 DOI: 10.7518/hxkq.2018.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This investigation aimed to develop a novel self-healing and antibacterial dental resin composite. The effects of water immersion on its properties were also evaluated. METHODS Microcapsules filled with healing agent of triethylene glycol dimethacrylate were synthesized on the basis of previous studies. Antibacterial resin composite contained nano-antibacterial inorganic fillers that were modified by quaternary ammonium salt with long-chain alkyl. Microcapsules were incorporated into antibacterial resin composite at mass fraction of 7.5%. A commercial resin composite named Tetric N-Ceram was used as control. The resin samples were immersed in 37 °C distilled water for different periods. A flexural test was used to measure the mechanical properties of the novel resin composite. A single-edge V-notched beam method was used to measure fracture toughness and self-healing efficiency. A dental plaque microcosm biofilm model with human saliva as inoculum was formed. Colony-forming units (CFU) and lactic acid production of biofilm on the novel resin composite were calculated to test the antibacterial property. RESULTS Mechanical properties and fracture toughness decreased significantly after the composite was immersed in water for 30 days (P<0.05), and no significant reduction was found from then on (P>0.05). Water immersion did not weaken the self-healing capability of the composite (P>0.05), and self-healing efficiency of 64% could still be obtained even after 270 days. The antibacterial resin composite showed a strong inhibition effect on the biofilm metabolic activity versus water immersion time from 1 day to 270 days. Therefore, the composite could still have a promising antibacterial property even after being immersed in water (P<0.05). CONCLUSIONS Water immersion could weaken the mechanical properties of the novel self-healing and antibacterial resin composite, but it insignificantly affected the self-healing and antibacterial properties of the composite.
Collapse
Affiliation(s)
- Jun-Ling Wu
- Dept. of Prosthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Tong Li
- Dept. of Conservative Dentistry and Endodontics, Jinan Stomatological Hospital, Jinan 250001, China
| | - Xu Gao
- Dept. of Prosthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Qiang Zhang
- Oral Implantology Center, Jinan Stomatological Hospital, Jinan 250001, China
| | - Di Liu
- Dept. of Prosthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Jian-Hua Ge
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Chuan-Jian Zhou
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
24
|
Braga RR. Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent Mater 2018; 35:3-14. [PMID: 30139530 DOI: 10.1016/j.dental.2018.08.288] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/30/2023]
Abstract
Calcium phosphates (CaP) are the main constituents of the mineral phase in bones and teeth and, along with calcium silicates and bioactive glasses, have been extensively investigated in remineralization of enamel and dentin. When used as ion-releasing fillers in resin-based materials, they could contribute to extend the service life of adhesive restorations, remineralize caries-affected dentin or prevent caries lesions under sealants and orthodontic brackets. However, the development of resin-based bioactive materials is not straightforward because of the several compositional variables involved in ion release. Also, CaP particles do not reinforce the material; therefore, if high mechanical properties are required, the ratio between CaP particles and reinforcing fillers must be observed. Several research groups have investigated how CaP phase, particle size and content, as well as resin matrix formulation affect remineralization, ion release kinetics and mechanical properties of these materials. This review presents an overview of the main findings reported in the literature.
Collapse
Affiliation(s)
- Roberto Ruggiero Braga
- Department of Biomaterials and Oral Biology, University of São Paulo School of Dentistry, Av. Prof. Lineu Prestes, 2227 São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
25
|
Natale LC, Rodrigues MC, Alania Y, Chiari MD, Boaro LC, Cotrim M, Vega O, Braga RR. Mechanical characterization and ion release of bioactive dental composites containing calcium phosphate particles. J Mech Behav Biomed Mater 2018; 84:161-167. [DOI: 10.1016/j.jmbbm.2018.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 01/13/2023]
|
26
|
Zhang N, Zhang K, Weir MD, Xu DJ, Reynolds MA, Bai Y, Xu HHK. Effects of water-aging for 6 months on the durability of a novel antimicrobial and protein-repellent dental bonding agent. Int J Oral Sci 2018; 10:18. [PMID: 29925870 PMCID: PMC6010414 DOI: 10.1038/s41368-018-0019-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/27/2017] [Accepted: 08/01/2017] [Indexed: 12/02/2022] Open
Abstract
Biofilms at the tooth-restoration bonded interface can produce acids and cause recurrent caries. Recurrent caries is a primary reason for restoration failures. The objectives of this study were to synthesize a novel bioactive dental bonding agent containing dimethylaminohexadecyl methacrylate (DMAHDM) and 2-methacryloyloxyethyl phosphorylcholine (MPC) to inhibit biofilm formation at the tooth-restoration margin and to investigate the effects of water-aging for 6 months on the dentin bond strength and protein-repellent and antibacterial durability. A protein-repellent agent (MPC) and antibacterial agent (DMAHDM) were added to a Scotchbond multi-purpose (SBMP) primer and adhesive. Specimens were stored in water at 37 °C for 1, 30, 90, or 180 days (d). At the end of each time period, the dentin bond strength and protein-repellent and antibacterial properties were evaluated. Protein attachment onto resin specimens was measured by the micro-bicinchoninic acid approach. A dental plaque microcosm biofilm model was used to test the biofilm response. The SBMP + MPC + DMAHDM group showed no decline in dentin bond strength after water-aging for 6 months, which was significantly higher than that of the control (P < 0.05). The SBMP + MPC + DMAHDM group had protein adhesion that was only 1/20 of that of the SBMP control (P < 0.05). Incorporation of MPC and DMAHDM into SBMP provided a synergistic effect on biofilm reduction. The antibacterial effect and resistance to protein adsorption exhibited no decrease from 1 to 180 d (P > 0.1). In conclusion, a bonding agent with MPC and DMAHDM achieved a durable dentin bond strength and long-term resistance to proteins and oral bacteria. The novel dental bonding agent is promising for applications in preventive and restorative dentistry to reduce biofilm formation at the tooth-restoration margin.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Biomatexrials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD, USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
- Biomatexrials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD, USA.
| | - Michael D Weir
- Biomatexrials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD, USA
| | - David J Xu
- Biomatexrials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD, USA
| | - Mark A Reynolds
- Biomatexrials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD, USA
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Hockin H K Xu
- Biomatexrials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD, USA.
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Mechanical Engineering, University of Maryland, Baltimore County, MD, USA.
| |
Collapse
|
27
|
Arjmand N, Boruziniat A, Zakeri M, Mohammadipour HS. Microtensile bond strength of resin cement primer containing nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) to human dentin. J Adv Prosthodont 2018; 10:177-183. [PMID: 29930786 PMCID: PMC6004357 DOI: 10.4047/jap.2018.10.3.177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 12/29/2017] [Accepted: 02/27/2018] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The purpose of the current study was to evaluate the effect of incorporating nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) into a self-etching primer of a resin cement on the microtensile bond strength of dentin, regarding the proven antibacterial feature of NAg and remineralizing effect of NACP. MATERIALS AND METHODS Flat, mid-coronal dentin from 20 intact extracted human third molars were prepared for cementation using Panavia F2.0 cement. The teeth were randomly divided into the four test groups (n=5) according to the experimental cement primer composition: cement primer without change (control group), primer with 1% (wt) of NACP, primer with 1% (wt) of physical mixture of NACP+Nag, and primer with 1% (wt) of chemical mixture of NACP+Nag. The resin cement was used according to the manufacturer's instructions. After storage in distilled water at 37℃ for 24 h, the bonded samples were sectioned longitudinally to produce 1.0 × 1.0 mm beams for micro-tensile bond strength testing in a universal testing machine. Failure modes at the dentin-resin interface were observed using a stereomicroscope. The data were analyzed by one-way ANOVA and Tukey's post-hoc tests and the level of significance was set at 0.05. RESULTS The lowest mean microtensile bond strength was obtained for the NACP group. Tukey's test showed that the bond strength of the control group was significantly higher than those of the other experimental groups, except for group 4 (chemical mixture of NACP and NAg; P=.67). CONCLUSION Novel chemical incorporation of NAg-NACP into the self-etching primer of resin cement does not compromise the dentin bond strength.
Collapse
Affiliation(s)
- Nushin Arjmand
- Department of Restorative and Cosmetic Dentistry, School of Dentistry, Bojnord University of Medical Sciences, Bojnord, Iran
| | - Alireza Boruziniat
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Restorative and Cosmetic Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Zakeri
- Postgraduate Student of Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Sadat Mohammadipour
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Restorative and Cosmetic Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Rodrigues MC, Chiari MD, Alania Y, Natale LC, Arana-Chavez VE, Meier MM, Fadel VS, Vichi FM, Hewer TL, Braga RR. Ion-releasing dental restorative composites containing functionalized brushite nanoparticles for improved mechanical strength. Dent Mater 2018; 34:746-755. [DOI: 10.1016/j.dental.2018.01.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/06/2017] [Accepted: 01/19/2018] [Indexed: 01/01/2023]
|
29
|
Maas MS, Alania Y, Natale LC, Rodrigues MC, Watts DC, Braga RR. Trends in restorative composites research: what is in the future? Braz Oral Res 2017; 31:e55. [PMID: 28902235 DOI: 10.1590/1807-3107bor-2017.vol31.0055] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/22/2017] [Indexed: 01/12/2023] Open
Abstract
Clinical trials have identified secondary caries and bulk fracture as the main causes for composite restoration failure. As a measure to avoid frequent reinterventions for restoration replacement, composites with some sort of defense mechanism against biofilm formation and demineralization, as well as materials with lower susceptibility to crack propagation are necessary. Also, the restorative procedure with composites are very time-consuming and technically demanding, particularly concerning the application of the adhesive system. Therefore, together with bulk-fill composites, self-adhesive restorative composites could reduce operator error and chairside time. This literature review describes the current stage of development of remineralizing, antibacterial and self-healing composites. Also, an overview of the research on fiber-reinforced composites and self-adhesive composites, both introduced for clinical use in recent years, is presented.
Collapse
Affiliation(s)
- Mariel Soeiro Maas
- Universidade de São Paulo - USP, School of Dentistry,Department of Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Yvette Alania
- Universidade de São Paulo - USP, School of Dentistry,Department of Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Livia Camargo Natale
- Universidade de São Paulo - USP, School of Dentistry,Department of Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - Marcela Charantola Rodrigues
- Universidade de São Paulo - USP, School of Dentistry,Department of Biomaterials and Oral Biology, São Paulo, SP, Brazil
| | - David Christopher Watts
- University of Manchester School of Medical Sciences, Division of Dentistry, Manchester, United Kingdom
| | - Roberto Ruggiero Braga
- Universidade de São Paulo - USP, School of Dentistry,Department of Biomaterials and Oral Biology, São Paulo, SP, Brazil
| |
Collapse
|
30
|
Zhang N, Zhang K, Melo MAS, Weir MD, Xu DJ, Bai Y, Xu HHK. Effects of Long-Term Water-Aging on Novel Anti-Biofilm and Protein-Repellent Dental Composite. Int J Mol Sci 2017; 18:ijms18010186. [PMID: 28106774 PMCID: PMC5297818 DOI: 10.3390/ijms18010186] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 12/21/2022] Open
Abstract
The aims of this study were to: (1) synthesize an anti-biofilm and protein-repellent dental composite by combining 2-methacryloyloxyethyl phosphorylcholine (MPC) with quaternary ammonium dimethylaminohexadecyl methacrylate (DMAHDM); and (2) evaluate the effects of water-aging for 180 days on protein resistance, bacteria-killing ability, and mechanical properties of MPC-DMAHDM composite. MPC and DMAHDM were added into a resin composite. Specimens were stored in distilled water at 37 °C for 1, 30, 90, and 180 days. Mechanical properties were measured in three-point flexure. Protein attachment onto the composite was evaluated by a micro bicinchoninic acid approach. An oral plaque microcosm biofilm model was employed to evaluate oral biofilm viability vs. water-aging time. Mechanical properties of the MPC-DMAHDM composite after 180-day immersion matched those of the commercial control composite. The composite with 3% MPC + 1.5% DMAHDM had much stronger resistance to protein adhesion than control (p < 0.05). MPC + DMAHDM achieved much stronger biofilm-eradicating effects than MPC or DMAHDM alone (p < 0.05). Biofilm colony-forming units on the 3% MPC + 1.5% DMAHDM composite were three orders of magnitude lower than commercial control. The protein-repellent and antibacterial effects were durable and showed no loss in water-aging from 1 to 180 days. The novel MPC-DMAHDM composite possessed strong and durable resistance to protein adhesion and potent bacteria-eradicating function, while matching the load-bearing ability of a commercial dental composite. The novel MPC-DMAHDM composite represents a promising means of suppressing oral plaque growth, acid production, and secondary caries.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China.
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China.
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Mary A S Melo
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Michael D Weir
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - David J Xu
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD 21201, USA.
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, China.
| | - Hockin H K Xu
- Department of Endodontics, Periodontics and Prosthodontics, University of Maryland Dental School, Baltimore, MD 21201, USA.
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Department of Mechanical Engineering, University of Maryland, Baltimore County, MD 21250, USA.
| |
Collapse
|
31
|
Rodrigues MC, Xavier TA, Arana-Chavez VE, Braga RR. Polymer-based material containing calcium phosphate particles functionalized with a dimethacrylate monomer for use in restorative dentistry. J Biomater Appl 2016; 31:871-877. [DOI: 10.1177/0885328216680116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dicalcium phosphate dihydrate particles functionalized with triethyleneglycol dimethacrylate were synthesized and added to a photocurable mixture of bisphenol-A glycidyl dimethacrylate and triethyleneglycol dimethacrylate with the purpose of developing a resin composite capable of releasing calcium and phosphate ions to foster dental remineralization. Particle functionalization would minimize the deleterious effect of adding low cohesive strength nano-structured particles with no chemical interaction with the organic matrix on the material’s mechanical properties. The results showed that calcium release over 28 days was not impaired by particle functionalization. A statistically significant 32% increase in strength was recorded with the use of functionalized dicalcium phosphate dihydrate in comparison to the material containing non-functionalized particles. However, the strength of the unfilled resin was not matched by the composite with functionalized particles. Elastic modulus increased with particle incorporation, regardless of functionalization. Degree of conversion and optical properties (total transmittance and color change/ΔE) of the resin-based materials were not affected by the addition of dicalcium phosphate dihydrate particles (functionalized or not).
Collapse
|
32
|
Novel rechargeable calcium phosphate nanoparticle-containing orthodontic cement. Int J Oral Sci 2016; 9:24-32. [PMID: 27811847 PMCID: PMC5379158 DOI: 10.1038/ijos.2016.40] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 11/18/2022] Open
Abstract
White spot lesions (WSLs), due to enamel demineralization, occur frequently in orthodontic treatment. We recently developed a novel rechargeable dental composite containing nanoparticles of amorphous calcium phosphate (NACP) with long-term calcium (Ca) and phosphate (P) ion release and caries-inhibiting capability. The objectives of this study were to develop the first NACP-rechargeable orthodontic cement and investigate the effects of recharge duration and frequency on the efficacy of ion re-release. The rechargeable cement consisted of pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). NACP was mixed into the resin at 40% by mass. Specimens were tested for orthodontic bracket shear bond strength (SBS) to enamel, Ca and P ion initial release, recharge and re-release. The new orthodontic cement exhibited an SBS similar to commercial orthodontic cement without CaP release (P>0.1). Specimens after one recharge treatment (e.g., 1 min immersion in recharge solution repeating three times in one day, referred to as “1 min 3 times”) exhibited a substantial and continuous re-release of Ca and P ions for 14 days without further recharge. The ion re-release did not decrease with increasing the number of recharge/re-release cycles (P>0.1). The ion re-release concentrations at 14 days versus various recharge treatments were as follows: 1 min 3 times>3 min 2 times>1 min 2 times>6 min 1 time>3 min 1 time>1 min 1 time. In conclusion, although previous studies have shown that NACP nanocomposite remineralized tooth lesions and inhibited caries, the present study developed the first orthodontic cement with Ca and P ion recharge and long-term release capability. This NACP-rechargeable orthodontic cement is a promising therapy to inhibit enamel demineralization and WSLs around orthodontic brackets.
Collapse
|
33
|
Comparison of the Physical and Mechanical Properties of Resin Matrix with Two Photoinitiator Systems in Dental Adhesives. Polymers (Basel) 2016; 8:polym8070250. [PMID: 30974526 PMCID: PMC6432356 DOI: 10.3390/polym8070250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/13/2016] [Accepted: 06/27/2016] [Indexed: 11/27/2022] Open
Abstract
This study evaluated the physical and mechanical properties of resin matrices in dental adhesives with two photoinitiator systems. Resin matrix specimens were made with five different kinds of photoinitiators. Neat resin consisted of 60% 2,2-bis[4-2(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (Bis-GMA) and 40% hydroxyethyl methacrylate (HEMA) by weight, along with camphorquinone (CQ, 1 mol %) and additional components (1 mol % each) as follows: Group 1, 2-(dimethylamino)ethyl methacrylate (DMAEMA); Group 2, ethyl-4-(dimethylamino) benzoate (EDMAB); Group 3, diphenyliodonium hexafluorphosphate (DPIHFP); Group 4, DMAEMA+DPIHFP; Group 5, EDMAB+DPIHFP. The degree of conversion (DC), flexural strength, flexural modulus, microhardness, and ultimate tensile strength were tested. The contribution of each photoinitiator to the DC in a selected group was analyzed with contour plots. One-way ANOVA and Tukey tests (p < 0.05) were used for statistical analyses. The DC of Groups 2, 4, and 5 was similar. The flexural strength was similar in all groups, but flexural modulus was significantly different. Group 3 had the lowest values for all physical and mechanical properties. Among all methods, the microhardness test revealed the greatest degree of difference among the five specimens. CQ, EDMAB, and DPIHFP were the most effective photoinitiators and CQ was the most influential factor for the DC rate.
Collapse
|
34
|
Zhang K, Cheng L, Weir MD, Bai YX, Xu HHK. Effects of quaternary ammonium chain length on the antibacterial and remineralizing effects of a calcium phosphate nanocomposite. Int J Oral Sci 2016; 8:45-53. [PMID: 27025265 PMCID: PMC4822178 DOI: 10.1038/ijos.2015.33] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2015] [Indexed: 02/05/2023] Open
Abstract
Composites containing nanoparticles of amorphous calcium phosphate (NACP) remineralize tooth lesions and inhibit caries. A recent study synthesized quaternary ammonium methacrylates (QAMs) with chain lengths (CLs) of 3-18 and determined their effects on a bonding agent. This study aimed to incorporate these QAMs into NACP nanocomposites for the first time to simultaneously endow the material with antibacterial and remineralizing capabilities and to investigate the effects of the CL on the mechanical and biofilm properties. Five QAMs were synthesized: DMAPM (CL3), DMAHM (CL6), DMADDM (CL12), DMAHDM (CL16), and DMAODM (CL18). Each QAM was incorporated into a composite containing 20% NACP and 50% glass fillers. A dental plaque microcosm biofilm model was used to evaluate the antibacterial activity. The flexural strength and elastic modulus of nanocomposites with QAMs matched those of a commercial control composite (n = 6; P > 0.1). Increasing the CL from 3 to 16 greatly enhanced the antibacterial activity of the NACP nanocomposite (P < 0.05); further increasing the CL to 18 decreased the antibacterial potency. The NACP nanocomposite with a CL of 16 exhibited biofilm metabolic activity and acid production that were 10-fold lesser than those of the control composite. The NACP nanocomposite with a CL of 16 produced 2-log decreases in the colony-forming units (CFU) of total microorganisms, total streptococci, and mutans streptococci. In conclusion, QAMs with CLs of 3-18 were synthesized and incorporated into an NACP nanocomposite for the first time to simultaneously endow the material with antibacterial and remineralization capabilities. Increasing the CL reduced the metabolic activity and acid production of biofilms and caused a 2-log decrease in CFU without compromising the mechanical properties. Nanocomposites exhibiting strong anti-biofilm activity, remineralization effects, and mechanical properties are promising materials for tooth restorations that inhibit caries.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, School of Dentistry, University of Maryland, Baltimore, USA
| | - Lei Cheng
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, School of Dentistry, University of Maryland, Baltimore, USA
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, School of Dentistry, University of Maryland, Baltimore, USA
| | - Yu-Xing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Periodontics and Prosthodontics, School of Dentistry, University of Maryland, Baltimore, USA
- Center for Stem Cell Biology & Regenerative Medicine, School of Medicine, University of Maryland, Baltimore, USA
- Department of Mechanical Engineering, University of Maryland, Baltimore County, USA
| |
Collapse
|
35
|
Zhang L, Weir MD, Chow LC, Antonucci JM, Chen J, Xu HHK. Novel rechargeable calcium phosphate dental nanocomposite. Dent Mater 2015; 32:285-93. [PMID: 26743970 DOI: 10.1016/j.dental.2015.11.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/07/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
Abstract
OBJECTIVES Calcium phosphate (CaP) composites with Ca and P ion release can remineralize tooth lesions and inhibit caries. But the ion release lasts only a few months. The objectives of this study were to develop rechargeable CaP dental composite for the first time, and investigate the Ca and P recharge and re-release of composites with nanoparticles of amorphous calcium phosphate (NACP) to achieve long-term inhibition of caries. METHODS Three NACP nanocomposites were fabricated with resin matrix of: (1) bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) at 1:1 mass ratio (referred to as BT group); (2) pyromellitic glycerol dimethacrylate (PMGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA) at 1:1 ratio (PE group); (3) BisGMA, TEGDMA, and Bis[2-(methacryloyloxy)ethyl] phosphate (BisMEP) at 2:1:1 ratio (BTM group). Each resin was filled with 20% NACP and 50% glass particles, and the composite was photo-cured. Specimens were tested for flexural strength and elastic modulus, Ca and P ion release, and Ca and P ion recharge and re-release. RESULTS NACP nanocomposites had strengths 3-fold of, and elastic moduli similar to, commercial resin-modified glass ionomer controls. CaP ion recharge capability was the greatest for PE group, followed by BTM group, with BT group being the lowest (p<0.05). For each recharge cycle, CaP re-release reached similarly high levels, showing that CaP re-release did not decrease with more recharge cycles. After six recharge/re-release cycles, NACP nanocomposites without further recharge had continuous CaP ion release for 42 d. SIGNIFICANCE Novel rechargeable CaP composites achieved long-term and sustained Ca and P ion release. Rechargeable NACP nanocomposite is promising for caries-inhibiting restorations, and the Ca and P ion recharge and re-release method has wide applicability to dental composites, adhesives, cements and sealants to achieve long-term caries-inhibition.
Collapse
Affiliation(s)
- Ling Zhang
- State Key laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China; Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Laurence C Chow
- Dr Anthony Volpe Research Center, American Dental Association Foundation (ADAF), National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Joseph M Antonucci
- Biomaterials Group, Biosystems & Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jihua Chen
- State Key laboratory of Military Stomatology, Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an 710032, China
| | - Hockin H K Xu
- Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Mechanical Engineering, University of Maryland, Baltimore County, MD 21250, USA.
| |
Collapse
|
36
|
Cheng L, Zhang K, Weir MD, Melo MAS, Zhou X, Xu HHK. Nanotechnology strategies for antibacterial and remineralizing composites and adhesives to tackle dental caries. Nanomedicine (Lond) 2015; 10:627-41. [PMID: 25723095 DOI: 10.2217/nnm.14.191] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dental caries is the most widespread disease and an economic burden. Nanotechnology is promising to inhibit caries by controlling biofilm acids and enhancing remineralization. Nanoparticles of silver were incorporated into composites/adhesives, along with quaternary ammonium methacrylates (QAMs), to combat biofilms. Nanoparticles of amorphous calcium phosphate (NACP) released calcium/phosphate ions, remineralized tooth-lesions and neutralized acids. By combining nanoparticles of silver/QAM/NACP, a new class of composites and adhesives with antibacterial and remineralization double benefits was developed. Various other nanoparticles including metal and oxide nanoparticles such as ZnO and TiO2, as well as polyethylenimine nanoparticles and their antibacterial capabilities in dental resins were also reviewed. These nanoparticles are promising for incorporation into dental composites/cements/sealants/bases/liners/adhesives. Therefore, nanotechnology has potential to significantly improve restorative and preventive dentistry.
Collapse
Affiliation(s)
- Lei Cheng
- Department of Endodontics, Prosthodontics and Operative Dentistry, Biomaterials & Tissue Engineering Division, University of Maryland Dental School, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
37
|
Effect of dimethylaminohexadecyl methacrylate mass fraction on fracture toughness and antibacterial properties of CaP nanocomposite. J Dent 2015; 43:1539-46. [PMID: 26404407 DOI: 10.1016/j.jdent.2015.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/15/2015] [Accepted: 09/18/2015] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES Biofilm acids contribute to secondary caries which is a reason for restoration failure. Previous studies synthesized nanoparticles of amorphous calcium phosphate (NACP) and dimethylaminohexadecyl methacrylate (DMAHDM). The objectives of this study were to develop DMAHMD-NACP nanocomposite for double benefits of antibacterial and remineralization capabilities, and investigate the DMAHMD mass fraction effects on fracture toughness and biofilm response of NACP nanocomposite for the first time. METHODS DMAHDM was incorporated into NACP nanocomposite at mass fractions of 0% (control), 0.75%, 1.5%, 2.25% and 3%. A single edge V-notched beam method was used to measure fracture toughness K(IC). A dental plaque microcosm biofilm model using human saliva as inoculum was used to measure the antibacterial properties of composites. RESULTS K(IC) was about 1 MPa×m(1/2) for all composite (mean±sd; n=6). Adding DMAHDM from 0% to 3% did not affect K(IC) (p>0.1). Lactic acid production by biofilms on composite containing 3% DMAHDM was reduced to less than 1% of that on composite control. Metabolic activity of adherent biofilms on composite containing 3% DMAHDM was reduced to 4% of that on composite control. Biofilm colony-forming unit (CFU) counts were reduced by three orders of magnitude on NACP nanocomposite containing 3% DMAHDM. CONCLUSIONS DMAHDM-NACP nanocomposite had good fracture resistance, strong antibacterial potency, and NACP for remineralization (shown in previous studies). The DMAHDM-NACP nanocomposite may be promising for caries-inhibiting dental restorations, and the method of using double agents (DMAHDM and NACP) may have a wide applicability to other dental materials including bonding agents and cements.
Collapse
|
38
|
Morresi AL, D'Amario M, Monaco A, Rengo C, Grassi FR, Capogreco M. Effects of critical thermal cycling on the flexural strength of resin composites. J Oral Sci 2015; 57:137-43. [PMID: 26062863 DOI: 10.2334/josnusd.57.137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
We compared flexural strength (FS) in four resin composites before and after three protocols for thermal cycling aging. Four resin composites were evaluated: Enamel Plus Hri, Gradia Direct Posterior, Grandioso, and Grandioso Flow. Sixty specimens (2 × 2 × 25 mm) were fabricated using a split metallic mold and light-cured for 30 s. The specimens were then randomly divided into four groups and tested using one of the following thermal cycling procedures: (1) storage in deionized water for 24 h (control group), (2) 15,000 cycles, 3) 30,000 cycles, and 4) 45,000 cycles. Each thermal cycling procedure was conducted between 5 °C and 55 °C, with a dwell time of 30 s. All specimens were subjected to a three-point bending test, to determine FS (0.5 mm/min). "Material" and "thermal aging" were significantly associated with FS (P < 0.001). A statistically significant interaction between the two factors was also detected (P < 0.001). In the non-aged groups, nanohybrid composites had the highest FS. FS significantly decreased after thermal cycling protocols in all composites tested. Gradia composite exhibited decrease in FS only after 45,000 cycles. In contrast, FS significantly decreased in the Grandioso Flow composite at 15,000 cycles. The trend in the decrease varied among composites, and the decrement in FS was not proportional to baseline values.
Collapse
Affiliation(s)
- Anna L Morresi
- Department of Life, Health and Environmental Sciences, School of Dentistry, University of L'Aquila
| | | | | | | | | | | |
Collapse
|
39
|
Zhang N, Zhang K, Melo MAS, Chen C, Fouad AF, Bai Y, Xu HHK. Novel protein-repellent and biofilm-repellent orthodontic cement containing 2-methacryloyloxyethyl phosphorylcholine. J Biomed Mater Res B Appl Biomater 2015; 104:949-59. [PMID: 25970092 DOI: 10.1002/jbm.b.33444] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 03/03/2015] [Accepted: 04/09/2015] [Indexed: 11/09/2022]
Abstract
The objectives of this study were to develop the first protein-repellent resin-modified glass ionomer cement (RMGI) by incorporating 2-methacryloyloxyethyl phosphorylcholine (MPC) for orthodontic applications, and to investigate the MPC effects on protein adsorption, biofilm growth, and enamel bond strength. MPC was incorporated into RMGI at 0% (control), 1.5%, 3%, and 5% by mass. Specimens were stored in water at 37°C for 1 and 30 days. Enamel shear bond strength (SBS) was measured, and the adhesive remnant index (ARI) scores were assessed. Protein adsorption onto the specimens was determined by a micro bicinchoninic acid method. A dental plaque microcosm biofilm model with human saliva as inoculum was used. The results showed that adding 3% of MPC into RMGI did not significantly reduce the SBS (p > 0.1). There was no significant loss in SBS for RMGI containing 3% MPC after water-aging for 30 days, as compared to 1 day (p > 0.1). RMGI with 3% MPC had protein adsorption that was 1/10 that of control. RMGI with 3% MPC greatly reduced the bacterial adhesion, and lactic acid production and colony-forming units of biofilms, while substantially increasing the medium solution pH containing biofilms. The protein-repellent and biofilm-repellent effects were not decreased after water-aging for 30 days. In conclusion, the MPC-containing RMGI is promising to reduce biofilms and white spot lesions without compromising orthodontic bracket-enamel bond strength. The novel protein-repellent method may have applicability to other orthodontic cements, dental composites, adhesives, sealants, and cements to repel proteins and biofilms. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 949-959, 2016.
Collapse
Affiliation(s)
- Ning Zhang
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, Maryland, 21201.,Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Ke Zhang
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, Maryland, 21201.,Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Mary Anne S Melo
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, Maryland, 21201
| | - Chen Chen
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, Maryland, 21201.,State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ashraf F Fouad
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, Maryland, 21201
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, Maryland, 21201.,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, 21201.,Department of Mechanical Engineering, University of Maryland, Baltimore County, Maryland, 21250
| |
Collapse
|
40
|
Mechanical properties and ion release from bioactive restorative composites containing glass fillers and calcium phosphate nano-structured particles. Dent Mater 2015; 31:726-33. [PMID: 25892604 DOI: 10.1016/j.dental.2015.03.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/02/2014] [Accepted: 03/30/2015] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To evaluate the effect of the replacement of barium glass by dicalcium phosphate dihydrate (DCPD) particles on the mechanical properties and degree of conversion (DC) of composites. Additionally, calcium and hydrogen phosphate (HPO4(2-)) release were followed for 28 days. METHODS Nine composites containing equal parts (in mols) of BisGMA and TEGDMA and 40, 50 or 60 vol% of total filler were manipulated. Filler phase was constituted by silanated barium glass and 0%, 10% or 20% of DCPD particles. DC was determined by near-FTIR. Biaxial flexural strength (BFS) and modulus (E) were tested using the "piston on three balls" method, while fracture toughness (KIc) used the "single edge notched beam" method. Specimens were tested after 24h and 28 days in water. Ion release was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Data were analyzed by ANOVA/Tukey (DC and ion release) or Kruskal-Wallis/Mann-Whitney (mechanical properties; alpha: 5%). RESULTS DC was not affected by DCPD. The presence of DCPD reduced BFS for both storage times, while differences in E became evident after 28 days. After 24h, KIc increased with the addition of DCPD; after 28 days, however, KIc decreased only for DCPD-containing composites. Calcium release was similar for both DCPD contents and remained fairly constant during the 28-day period. Overall, HPO4(2-) release was higher at 7 days and did not decrease after 14 days. SIGNIFICANCE The composite with the highest filler level and 10% DCPD represented the best compromise between mechanical properties after aging in water and ion release.
Collapse
|
41
|
Correa D, Almirall A, Carrodeguas RG, dos Santos LA, De Aza AH, Parra J, Morejón L, Delgado JA. α-Tricalcium phosphate cements modified withβ-dicalcium silicate and tricalcium aluminate: Physicochemical characterization,in vitrobioactivity and cytotoxicity. J Biomed Mater Res B Appl Biomater 2014; 103:72-83. [DOI: 10.1002/jbm.b.33176] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/18/2014] [Accepted: 03/30/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Daniel Correa
- Departamento de Cerámicas y Composites; Centro de Biomateriales, Universidad de La Habana; 10400 La Habana Cuba
| | - Amisel Almirall
- Departamento de Cerámicas y Composites; Centro de Biomateriales, Universidad de La Habana; 10400 La Habana Cuba
| | | | - Luis Alberto dos Santos
- Labiomat-Departamento de Materiales; Escuela de Ingenierías, Universidad Federal de Río Grande del Sur; 91509-900 Porto Alegre Rio Grande do Sul Brazil
| | - Antonio H. De Aza
- Departamento de Cerámica; Instituto de Cerámica y Vidrio; CSIC Madrid Spain
| | - Juan Parra
- Unidad de Investigación Clínica y Biopatología Experimental; Hospital Provincial de Ávila, Centro de Investigación en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Ávila Spain
| | - Lizette Morejón
- Departamento de Química Macromolecular, Centro de Biomateriales; Universidad de La Habana; 10400 La Habana Cuba
| | - José Angel Delgado
- Departamento de Cerámicas y Composites; Centro de Biomateriales, Universidad de La Habana; 10400 La Habana Cuba
| |
Collapse
|
42
|
A review and perspective of existing research on the release of nanomaterials from solid nanocomposites. Part Fibre Toxicol 2014; 11:17. [PMID: 24708765 PMCID: PMC4023549 DOI: 10.1186/1743-8977-11-17] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/28/2014] [Indexed: 12/14/2022] Open
Abstract
Advances in adding nanomaterials to various matrices have occurred in tandem with the identification of potential hazards associated with exposure to pure forms of nanomaterials. We searched multiple research publication databases and found that, relative to data generated on potential nanomaterial hazards or exposures, very little attention has focused on understanding the potential and conditions for release of nanomaterials from nanocomposites. However, as a prerequisite to exposure studying release is necessary to inform risk assessments. We identified fifty-four studies that specifically investigated the release of nanomaterials, and review them in the following release scenario groupings: machining, weathering, washing, contact and incineration. While all of the identified studies provided useful information, only half were controlled experiments. Based on these data, the debris released from solid, non-food nanocomposites contains in varying frequencies, a mixture of four types of debris. Most frequently identified are (1) particles of matrix alone, and slightly less often, the (2) matrix particles exhibit the nanomaterial partially or fully embedded; far less frequently is (3) the added nanomaterial entirely dissociated from the matrix identified: and most rare are (4) dissolved ionic forms of the added nanomaterial. The occurrence of specific debris types appeared to be dependent on the specific release scenario and environment. These data highlight that release from nanocomposites can take multiple forms and that additional research and guidance would be beneficial, allowing for more consistent characterization of the release potential of nanomaterials. In addition, these data support calls for method validation and standardization, as well as understanding how laboratory release scenarios relate to real-world conditions. Importantly, as risk is considered to be a function of the inherent hazards of a substance and the actual potential for exposure, data on nanomaterial release dynamics and debris composition from commercially relevant nanocomposites are a valuable starting point for consideration in fate and transport modeling, exposure assessment, and risk assessment frameworks for nanomaterials.
Collapse
|
43
|
Morresi AL, D'Amario M, Capogreco M, Gatto R, Marzo G, D'Arcangelo C, Monaco A. Thermal cycling for restorative materials: Does a standardized protocol exist in laboratory testing? A literature review. J Mech Behav Biomed Mater 2014; 29:295-308. [DOI: 10.1016/j.jmbbm.2013.09.013] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/15/2013] [Accepted: 09/21/2013] [Indexed: 10/26/2022]
|
44
|
Imazato S, Ma S, Chen JH, Xu HHK. Therapeutic polymers for dental adhesives: loading resins with bio-active components. Dent Mater 2013; 30:97-104. [PMID: 23899387 DOI: 10.1016/j.dental.2013.06.003] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 06/25/2013] [Accepted: 06/25/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Many recent adhesives on the market exhibit reasonable clinical performance. Future innovations in adhesive materials should therefore seek out novel properties rather than simply modifying existing technologies. It is proposed that adhesive materials that are "bio-active" could contribute to better prognosis of restorative treatments. METHODS This review examines the recent approaches used to achieve therapeutic polymers for dental adhesives by incorporating bio-active components. A strategy to maintain adhesive restorations is the focus of this paper. RESULTS Major trials on therapeutic dental adhesives have looked at adding antibacterial activities or remineralization effects. Applications of antibacterial resin monomers based on quaternary ammonium compounds have received much research attention, and the loading of nano-sized bioactive particles or multiple ion-releasing glass fillers have been perceived as advantageous since they are not expected to influence the mechanical properties of the carrier polymer. SIGNIFICANCE The therapeutic polymer approaches described here have the potential to provide clinical benefits. However, not many technological applications in this category have been successfully commercialized. Clinical evidence as well as further advancement of these technologies can be a driving force to make these new types of materials clinically available.
Collapse
Affiliation(s)
- Satoshi Imazato
- Department of Biomaterials Science, Osaka University Graduate School of Dentistry, Osaka, Japan.
| | - Sai Ma
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Ji-hua Chen
- Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, China
| | - Hockin H K Xu
- Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland Dental School, Baltimore, USA
| |
Collapse
|
45
|
Zhou C, Weir MD, Zhang K, Deng D, Cheng L, Xu HHK. Synthesis of new antibacterial quaternary ammonium monomer for incorporation into CaP nanocomposite. Dent Mater 2013; 29:859-70. [PMID: 23768794 DOI: 10.1016/j.dental.2013.05.005] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 02/04/2013] [Accepted: 05/03/2013] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Composites are the principal material for tooth cavity restorations due to their esthetics and direct-filling capabilities. However, composites accumulate biofilms in vivo, and secondary caries due to biofilm acids is the main cause of restoration failure. The objectives of this study were to: (1) synthesize new antibacterial monomers and (2) develop nanocomposite containing nanoparticles of amorphous calcium phosphate (NACP) and antibacterial monomer. METHODS Two new antibacterial monomers were synthesized: dimethylaminohexane methacrylate (DMAHM) with a carbon chain length of 6, and dimethylaminododecyl methacrylate (DMADDM) with a chain length of 12. A spray-drying technique was used to make NACP. DMADDM was incorporated into NACP nanocomposite at mass fractions of 0%, 0.75%, 1.5%, 2.25% and 3%. A flexural test was used to measure composite strength and elastic modulus. A dental plaque microcosm biofilm model with human saliva as inoculum was used to measure viability, metabolic activity, and lactic acid production of biofilms on composites. RESULTS The new DMAHM was more potent than a previous quaternary ammonium dimethacrylate (QADM). DMADDM was much more strongly antibacterial than DMAHM. The new DMADDM-NACP nanocomposite had strength similar to that of composite control (p>0.1). At 3% DMADDM in the composite, the metabolic activity of adherent biofilms was reduced to 5% of that on composite control. Lactic acid production by biofilms on composite containing 3% DMADDM was reduced to only 1% of that on composite control. Biofilm colony-forming unit (CFU) counts on composite with 3% DMADDM were reduced by 2-3 orders of magnitude. SIGNIFICANCE New antibacterial monomers were synthesized, and the carbon chain length had a strong effect on antibacterial efficacy. The new DMADDM-NACP nanocomposite possessed potent anti-biofilm activity without compromising load-bearing properties, and is promising for antibacterial and remineralizing dental restorations to inhibit secondary caries.
Collapse
Affiliation(s)
- Chenchen Zhou
- Biomaterials & Tissue Engineering Division, Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|