1
|
Wilke HJ, Sciortino V. The past, present, and the future of disc nucleus replacement. A systematic review of a large diversity of ideas and experiences. Biomaterials 2025; 312:122717. [PMID: 39121730 DOI: 10.1016/j.biomaterials.2024.122717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Disc nucleus replacement (NR) is a challenging surgical technique used as a medical treatment for early-stage disc herniation to restore disc height and the biomechanical function of a motion segment, which may reduce low back pain. The surgical procedure involves the removal and replacement of the degenerated nucleus pulposus with a substitute by accessing the annulus fibrosos via a created hole. Over the decades, nucleus replacement has been an important issue, leading to the development of different substitute alternatives. The first ideas are dated to the 1950s and since then, more than a hundred nucleus replacement concepts can be identified. There were numerous attempts and several clinical trials; however, after more than 70 years of research, no gold standard for nucleus pulposus replacement has been identified. This review aims to collect the different nucleus replacements reported in the literature, thus understanding what failed, what could be improved and what are the opportunities for the future. A systematic review of the literature was performed using a keyword-based search on PubMed, Web of Science, and Scopus databases to detect all nucleus replacements presented in the past by clinicians and engineers. Several studies were extracted from which the main nucleus replacements over the years were investigated, including the ones that received CE mark, FDA approval, or IDE approval and, also those involved in clinical trials. A total of 116 studies were included in this review. The extracted data concern the nucleus replacements proposed over the years to create a historical background as complete as possible, including their mechanical and biomechanical characterization and the clinical trials conducted over the years. Nucleus disc arthroplasty has been explored for many years. Unfortunately, even today there is still nothing safe and definitive in this surgical practice. This review provides an overview of the nucleus replacement history. A breakthrough could be the improvements in technologies for the annulus fibrous closing or sealing and the tissue engineering and medical regenerative techniques which could certainly ensure a higher NR implantation success rate in the future of this clinical treatment. It is not yet clear what is the future of this clinical practice. Only scientific research can answer the question: is the nucleus replacement still a possible clinical solution?
Collapse
Affiliation(s)
- Hans-Joachim Wilke
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University, Helmholtzstrabe 14, Ulm 89081, Germany.
| | - Vincenza Sciortino
- Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre Ulm, Ulm University, Helmholtzstrabe 14, Ulm 89081, Germany; University of Palermo, Department of Engineering, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
2
|
Rahman T, Kibble MJ, Harbert G, Smith N, Brewer E, Schaer TP, Newell N. Comparison of four in vitro test methods to assess nucleus pulposus replacement device expulsion risk. JOR Spine 2024; 7:e1332. [PMID: 38655007 PMCID: PMC11037461 DOI: 10.1002/jsp2.1332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Background Nucleus replacement devices (NRDs) are not routinely used in clinic, predominantly due to the risk of device expulsion. Rigorous in vitro testing may enable failure mechanisms to be identified prior to clinical trials; however, current testing standards do not specify a particular expulsion test. Multiple methods have therefore been developed, complicating comparisons between NRD designs. Thus, this study assessed the effectiveness of four previously reported expulsion testing protocols; hula-hoop (Protocol 1), adapted hula-hoop (Protocol 2), eccentric cycling (Protocol 3), and ramp to failure (Protocol 4), applied to two NRDs, one preformed and one in situ curing. Methods Nucleus material was removed from 40 bovine tail intervertebral disks. A NRD was inserted posteriorly into each cavity and the disks were subjected to one of four expulsion protocols. Results NRD response was dependent on both the NRD design and the loading protocol. Protocol 1 resulted in higher migration and earlier failure rates compared to Protocol 2 in both NRDs. The preformed NRD was more likely to migrate when protocols incorporated rotation. The NRDs had equal migration (60%) and expulsion (60%) rates when using unilateral bending and ramp testing. Combining the results of multiple tests revealed complimentary information regarding the NRD response. Conclusions Adapted hula-hoop (Protocol 2) and ramp to failure (Protocol 4), combined with fluoroscopic analysis, revealed complimentary insights regarding migration and failure risk. Therefore, when adopting the surgical approach and animal model used in this study, it is recommended that NRD performance be assessed using both a cyclic and ramp loading protocol.
Collapse
Affiliation(s)
- Tamanna Rahman
- Department of BioengineeringImperial College LondonLondonUK
- Biomechanics Group, Department of Mechanical EngineeringImperial College LondonLondonUK
| | | | | | - Nigel Smith
- Division of Surgery and Interventional ScienceUniversity College LondonStanmoreUK
| | - Erik Brewer
- Department of Biomedical EngineeringRowan UniversityGlassboroNew JerseyUSA
| | - Thomas P. Schaer
- Department of Clinical Studies New Bolton CenterUniversity of Pennsylvania School of Veterinary MedicineKennett SquarePennsylvaniaUSA
| | - Nicolas Newell
- Department of BioengineeringImperial College LondonLondonUK
| |
Collapse
|
3
|
Beall DP, Amirdelfan K, Nunley PD, Phillips TR, Imaz Navarro LC, Spath A. Hydrogel Augmentation of the Lumbar Intervertebral Disc: An Early Feasibility Study of a Treatment for Discogenic Low Back Pain. J Vasc Interv Radiol 2024; 35:51-58.e1. [PMID: 37758022 DOI: 10.1016/j.jvir.2023.09.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023] Open
Abstract
PURPOSE To assess the safety and effectiveness of intradiscal hydrogel in patients with chronic low back pain (CLBP) due to degenerative disc disease (DDD) refractory to conventional medical management. MATERIALS AND METHODS Twenty patients aged 22-69 years with numerical rating scale (NRS) pain of ≥4 were enrolled. All patients with CLBP resulting from DDD confirmed by imaging and discography received injections of hydrogel (Hydrafil Intervertebral Disc Augmentation; ReGelTec, Baltimore, Maryland) at 1 or 2 lumbar levels (29 levels treated) from August to December 2020. The primary safety end point was freedom from serious adverse events (SAEs). The primary performance end point was successful gel delivery into the desired disc. Patients were also assessed on the NRS as well as the Oswestry disability index (ODI). RESULTS Nineteen patients were followed up at a mean of 131 days, and 1 patient was lost to follow-up. Preliminary results showed significant reductions in median NRS back pain from 7 (range 4-10) to 1 (range 0-8) (P <.0001) and median ODI scores from 54 (range 22-58) to 2 (range 0-58) (P <.0001) at 6 months of follow-up. There were 5 SAEs, and 4 of the 2 were determined to be associated with treatment. CONCLUSIONS This early feasibility study showed that the hydrogel implant was safe with no persistently symptomatic SAEs, and demonstrated effectiveness with significant reduction in pain and improvement in function when used to treat painful DDD and CLBP.
Collapse
Affiliation(s)
- Douglas P Beall
- Comprehensive Specialty Care, Interventional Pain/Interventional Radiology, Edmond, Oklahoma
| | - Kasra Amirdelfan
- IPM Medical Group, Interventional Pain, Walnut Creek, California
| | - Pierce D Nunley
- Department of Orthopedic Surgery, Spine Institute of Louisiana, Shreveport, Los Angeles
| | - Tyler R Phillips
- Comprehensive Specialty Care, Interventional Pain/Interventional Radiology, Edmond, Oklahoma.
| | | | - Alfonso Spath
- Interventional Radiology, Cediul Imagenes Diagnostics Y Terapeuticas, Barranquilla, Columbia
| |
Collapse
|
4
|
Panebianco CJ, Constant C, Vernengo AJ, Nehrbass D, Gehweiler D, DiStefano TJ, Martin J, Alpert DJ, Chaudhary SB, Hecht AC, Seifert AC, Nicoll SB, Grad S, Zeiter S, Iatridis JC. Combining adhesive and nonadhesive injectable hydrogels for intervertebral disc repair in an ovine discectomy model. JOR Spine 2023; 6:e1293. [PMID: 38156055 PMCID: PMC10751969 DOI: 10.1002/jsp2.1293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 12/30/2023] Open
Abstract
Background Intervertebral disc (IVD) disorders (e.g., herniation) directly contribute to back pain, which is a leading cause of global disability. Next-generation treatments for IVD herniation need advanced preclinical testing to evaluate their ability to repair large defects, prevent reherniation, and limit progressive degeneration. This study tested whether experimental, injectable, and nonbioactive biomaterials could slow IVD degeneration in an ovine discectomy model. Methods Ten skeletally mature sheep (4-5.5 years) experienced partial discectomy injury with cruciate-style annulus fibrosus (AF) defects and 0.1 g nucleus pulposus (NP) removal in the L1-L2, L2-L3, and L3-L4 lumbar IVDs. L4-L5 IVDs were Intact controls. IVD injury levels received: (1) no treatment (Injury), (2) poly (ethylene glycol) diacrylate (PEGDA), (3) genipin-crosslinked fibrin (FibGen), (4) carboxymethylcellulose-methylcellulose (C-MC), or (5) C-MC and FibGen (FibGen + C-MC). Animals healed for 12 weeks, then IVDs were assessed using computed tomography (CT), magnetic resonance (MR) imaging, and histopathology. Results All repaired IVDs retained ~90% of their preoperative disc height and showed minor degenerative changes by Pfirrmann grading. All repairs had similar disc height loss and Pfirrmann grade as Injury IVDs. Adhesive AF sealants (i.e., PEGDA and FibGen) did not herniate, although repair caused local endplate (EP) changes and inflammation. NP repair biomaterials (i.e., C-MC) and combination repair (i.e., FibGen + C-MC) exhibited lower levels of degeneration, less EP damage, and less severe inflammation; however, C-MC showed signs of herniation via biomaterial expulsion. Conclusions All repair IVDs were noninferior to Injury IVDs by IVD height loss and Pfirrmann grade. C-MC and FibGen + C-MC IVDs had the best outcomes, and may be appropriate for enhancement with bioactive factors (e.g., cells, growth factors, and miRNAs). Such bioactive factors appear to be necessary to prevent injury-induced IVD degeneration. Application of AF sealants alone (i.e., PEGDA and FibGen) resulted in EP damage and inflammation, particularly for PEGDA IVDs, suggesting further material refinements are needed.
Collapse
Affiliation(s)
- Christopher J. Panebianco
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of Orthopaedic SurgeryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Andrea J. Vernengo
- AO Research Institute DavosDavosSwitzerland
- Department of Chemical EngineeringRowan UniversityGlassboroNJUSA
| | | | | | - Tyler J. DiStefano
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jesse Martin
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | - David J. Alpert
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | - Saad B. Chaudhary
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Andrew C. Hecht
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Alan C. Seifert
- Biomedical Engineering and Imaging InstituteIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Steven B. Nicoll
- Department of Biomedical EngineeringThe City College of New YorkNew YorkNew YorkUSA
| | | | | | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
5
|
Rahman T, Baxan N, Murray RT, Tavana S, Schaer TP, Smith N, Bull J, Newell N. An in vitro comparison of three nucleus pulposus removal techniques for partial intervertebral disc replacement: An ultra-high resolution MRI study. JOR Spine 2023; 6:e1232. [PMID: 37361334 PMCID: PMC10285766 DOI: 10.1002/jsp2.1232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/03/2022] [Indexed: 10/19/2023] Open
Abstract
Background Nuclectomy, also known as nucleotomy, is a percutaneous surgical procedure performed to remove nucleus material from the center of the disc. Multiple techniques have been considered to perform a nuclectomy, however, the advantages and disadvantages of each are not well understood. Aims This in vitro biomechanical investigation on human cadaveric specimens aimed to quantitatively compare three nuclectomy techniques performed using an automated shaver, rongeurs, and laser. Material & Methods Comparisons were made in terms of mass, volume and location of material removal, changes in disc height, and stiffness. Fifteen vertebra-disc-vertebra lumbar specimens were acquired from six donors (40 ± 13 years) and split into three groups. Before and after nucleotomy axial mechanical tests were performed and T2-weighted 9.4T MRIs were acquired for each specimen. Results When using the automated shaver and rongeurs similar volumes of disc material were removed (2.51 ± 1.10% and 2.76 ± 1.39% of the total disc volume, respectively), while considerably less material was removed using the laser (0.12 ± 0.07%). Nuclectomy using the automated shaver and rongeurs significantly reduced the toe-region stiffness (p = 0.036), while the reduction in the linear region stiffness was significant only for the rongeurs group (p = 0.011). Post-nuclectomy, 60% of the rongeurs group specimens showed changes in the endplate profile while 40% from the laser group showed subchondral marrow changes. Discussion From the MRIs, homogeneous cavities were seen in the center of the disc when using the automated shaver. When using rongeurs, material was removed non-homogeneously both from the nucleus and annulus regions. Laser ablation formed small and localized cavities suggesting that the technique is not suitable to remove large volumes of material unless it is developed and optimized for this application. Conclusion The results demonstrate that both rongeurs and automated shavers can be used to remove large volumes of NP material but the reduced risk of collateral damage to surrounding tissues suggests that the automated shaver may be more suitable.
Collapse
Affiliation(s)
- Tamanna Rahman
- Biomechanics Group, Department of Mechanical EngineeringImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
| | - Nicoleta Baxan
- Biological Imaging Centre, Central Biomedical ServicesImperial College London, Hammersmith Hospital CampusLondonUK
| | - Robert T. Murray
- Femtosecond Optics Group, Blackett Laboratory, Department of PhysicsImperial College LondonLondonUK
| | - Saman Tavana
- Biomechanics Group, Department of Mechanical EngineeringImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
| | - Thomas P. Schaer
- Department of Clinical Studies, School of Veterinary Medicine, New Bolton CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nigel Smith
- Division of Surgery and Interventional ScienceUniversity College LondonStanmoreUK
| | - Jonathan Bull
- Department of NeurosurgeryBARTS Health NHS TrustLondonUK
| | - Nicolas Newell
- Department of BioengineeringImperial College LondonLondonUK
| |
Collapse
|
6
|
Ikram M, Atiq I, Rafiq Butt A, shahzadi I, Ul-Hamid A, Haider A, Nabgan W, Medina F. Graphene oxide/polyvinylpyrrolidone-doped MoO 3 nanocomposites used for dye degradation and their antibacterial activity: a molecular docking analysis. Front Chem 2023; 11:1191849. [PMID: 37228862 PMCID: PMC10205020 DOI: 10.3389/fchem.2023.1191849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
In this study, MoO3 nanostructures were prepared, doped with various concentrations of graphene oxide (2 and 4% GO) and a fixed amount of polyvinylpyrrolidone (PVP) using the co-precipitation method. The motive of this study was to examine the catalytic and antimicrobial efficacy with evidential molecular docking analyses of GO/PVP-doped MoO3. GO and PVP were utilized as doping agents to reduce the exciton recombination rate of MoO3 by providing more active sites that increase the antibacterial activity of MoO3. The prepared binary dopant (GO and PVP)-dependent MoO3 was used as an effective antibacterial agent against Escherichia coli (E. coli). Notably, 4% GO/PVP-doped MoO3 showed good bactericidal potential against E. coli at higher concentrations in comparison to ciprofloxacin. Furthermore, in silico docking revealed the possible inhibitory impact of the synthesized nanocomposites on folate and fatty acid synthesis enzymes, dihydrofolate reductase and enoyl-[acyl carrier protein] reductase, respectively.
Collapse
Affiliation(s)
- Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, Punjab, Pakistan
| | - Iram Atiq
- Department of Physics, Lahore Garrison University, Lahore, Punjab, Pakistan
| | - Alvina Rafiq Butt
- Department of Physics, Lahore Garrison University, Lahore, Punjab, Pakistan
| | - Iram shahzadi
- Punjab University College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Punjab, Pakistan
| | - Walid Nabgan
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Spain
| | - Francisco Medina
- Departament d’Enginyeria Química, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
7
|
Vanaclocha A, Vanaclocha V, Atienza CM, Clavel P, Jordá-Gómez P, Barrios C, Saiz-Sapena N, Vanaclocha L. Bionate Lumbar Disc Nucleus Prosthesis: Biomechanical Studies in Cadaveric Human Spines. ACS OMEGA 2022; 7:46501-46514. [PMID: 36570209 PMCID: PMC9774399 DOI: 10.1021/acsomega.2c05294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
DESIGN cadaveric spine nucleus replacement study. OBJECTIVE determining Bionate 80A nucleus replacement biomechanics in cadaveric spines. METHODS in cold preserved spines, with ligaments and discs intact, and no muscles, L3-L4, L4-L5, and L5-S1 nucleus implantation was done. Differences between customized and overdimensioned implants were compared. Flexion, extension, lateral bending, and torsion were measured in the intact spine, nucleotomy, and nucleus implantation specimens. Increasing load or bending moment was applied four times at 2, 4, 6, and 8 Nm, twice in increasing mode and twice in decreasing mode. Spine motion was recorded using stereophotogrammetry. Expulsion tests: cyclic compression of 50-550 N for 50,000 cycles, increasing the load until there was extreme flexion, implant extrusion, or anatomical structure collapse. Subsidence tests were done by increasing the compression to 6000 N load. RESULTS nucleotomy increased the disc mobility, which remained unchanged for the adjacent upper level but increased for the lower adjacent one, particularly in lateral bending and torsion. Nucleus implantation, compared to nucleotomy, reduced disc mobility except in flexion-extension and torsion, but intact mobility was no longer recovered, with no effect on upper or lower adjacent segments. The overdimensioned implant, compared to the customized implant, provided equal or sometimes higher mobility. Lamina, facet joint, and annulus removal during nucleotomy caused more damaged than that restored by nucleus implantation. No implant extrusion was observed under compression loads of 925-1068 N as anatomical structures collapsed before. No subsidence or vertebral body fractures were observed under compression loads of 6697.8-6812.3 N. CONCLUSIONS nucleotomized disc and L1-S1 mobility increased moderately after cadaveric spine nucleus implantation compared to the intact status, partly due to operative anatomical damage. Our implant had shallow expulsion and subsidence risks.
Collapse
Affiliation(s)
- Amparo Vanaclocha
- Biomechanical
Engineer, Biomechanics Institute of Valencia, Valencia 46022, Spain
| | | | - Carlos M. Atienza
- Biomechanical
Engineer, Biomechanics Institute of Valencia, Valencia 46022, Spain
| | - Pablo Clavel
- Instituto
Clavel, Hospital Quironsalud Barcelona, Barcelona 08023, Spain
| | - Pablo Jordá-Gómez
- Hospital
General Universitario de Castellón, Castellón de la Plana 12004, Spain
| | - Carlos Barrios
- Catholic
University of Valencia, Saint Vincent Martyr, Valencia 46001, Spain
| | | | - Leyre Vanaclocha
- Medius
Klinik, Ostfildern-Ruit Klinik für Urologie, Hedelfinger Strasse 166, Ostfildern 73760, Germany
| |
Collapse
|
8
|
Bari A, Ikram M, Haider A, Ul-Hamid A, Haider J, Shahzadi I, Nazir G, Shahzadi A, Imran M, Ghaffar A. Evaluation of bactericidal potential and catalytic dye degradation of multiple morphology based chitosan/polyvinylpyrrolidone-doped bismuth oxide nanostructures. NANOSCALE ADVANCES 2022; 4:2713-2728. [PMID: 36132288 PMCID: PMC9417414 DOI: 10.1039/d2na00105e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/28/2022] [Indexed: 05/31/2023]
Abstract
In this study, 0.02 and 0.04 wt% of chitosan (CS) were successfully incorporated in a fixed amount of polyvinylpyrrolidone (PVP)-doped Bi2O3 nanostructures (NSs) via a co-precipitation approach. The purpose of this research was to degrade hazardous methylene blue dye and assess antimicrobial potential of the prepared CS/PVP-doped Bi2O3 nanostructures. In addition, optical characteristics, charge recombination rate, elemental composition, phase formation, surface morphology, functional groups, d-spacing, and crystallinity of the obtained nanostructures were investigated. CS/PVP-doped Bi2O3 nanostructures exhibited efficient catalytic activity (measured as 99%) in a neutral medium for dopant-free nanostructures while the inhibition zone was measured using a Vernier caliper against pathogens Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) at low and high doses to check antimicrobial activity. Strong bactericidal action was recorded against S. aureus bacteria such that a significant inhibition zone was measured at 3.09 mm.
Collapse
Affiliation(s)
- Ahsaan Bari
- Solar Cell Applications Research Lab, Department of Physics, Government College, University Lahore Lahore 54000 Punjab Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College, University Lahore Lahore 54000 Punjab Pakistan
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture (MNSUA) 66000 Punjab Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences Tianjin 300308 China
| | - Iram Shahzadi
- Punjab University College of Pharmacy, University of the Punjab Lahore 54000 Pakistan
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University Seoul 05006 Republic of Korea
| | - Anum Shahzadi
- Faculty of Pharmacy, University of the Lahore Lahore Pakistan
| | - M Imran
- Department of Chemistry, Government College University Faisalabad Pakpattan Road Sahiwal Punjab 57000 Pakistan
| | - Abdul Ghaffar
- Department of Physics, Government College University Lahore 54000 Pakistan
| |
Collapse
|
9
|
Øvrebø Ø, Perale G, Wojciechowski JP, Echalier C, Jeffers JRT, Stevens MM, Haugen HJ, Rossi F. Design and clinical application of injectable hydrogels for musculoskeletal therapy. Bioeng Transl Med 2022; 7:e10295. [PMID: 35600661 PMCID: PMC9115710 DOI: 10.1002/btm2.10295] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/25/2022] Open
Abstract
Musculoskeletal defects are an enormous healthcare burden and source of pain and disability for individuals. With an aging population, the proportion of individuals living with these medical indications will increase. Simultaneously, there is pressure on healthcare providers to source efficient solutions, which are cheaper and less invasive than conventional technology. This has led to an increased research focus on hydrogels as highly biocompatible biomaterials that can be delivered through minimally invasive procedures. This review will discuss how hydrogels can be designed for clinical translation, particularly in the context of the new European Medical Device Regulation (MDR). We will then do a deep dive into the clinically used hydrogel solutions that have been commercially approved or have undergone clinical trials in Europe or the United States. We will discuss the therapeutic mechanism and limitations of these products. Due to the vast application areas of hydrogels, this work focuses only on treatments of cartilage, bone, and the nucleus pulposus. Lastly, the main steps toward clinical translation of hydrogels as medical devices are outlined. We suggest a framework for how academics can assist small and medium MedTech enterprises conducting the initial clinical investigation and post‐market clinical follow‐up required in the MDR. It is evident that the successful translation of hydrogels is governed by acquiring high‐quality pre‐clinical and clinical data confirming the device mechanism of action and safety.
Collapse
Affiliation(s)
- Øystein Øvrebø
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilanoItaly
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
- Material Biomimetic ASOslo Science ParkOsloNorway
| | - Giuseppe Perale
- Industrie Biomediche Insubri SAMezzovico‐ViraSwitzerland
- Faculty of Biomedical SciencesUniversity of Southern SwitzerlandLuganoSwitzerland
- Ludwig Boltzmann Institute for Experimental and Clinical TraumatologyViennaAustria
| | - Jonathan P. Wojciechowski
- Department of MaterialsImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
- Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Cécile Echalier
- Department of MaterialsImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
- Institute of Biomedical EngineeringImperial College LondonLondonUK
- Hybrid Technology Hub, Centre of ExcellenceInstitute of Basic Medical Science, University of OsloOsloNorway
| | | | - Molly M. Stevens
- Department of MaterialsImperial College LondonLondonUK
- Department of BioengineeringImperial College LondonLondonUK
- Institute of Biomedical EngineeringImperial College LondonLondonUK
| | - Håvard J. Haugen
- Department of BiomaterialsInstitute of Clinical Dentistry, University of OsloOsloNorway
- Material Biomimetic ASOslo Science ParkOsloNorway
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilanoItaly
| |
Collapse
|
10
|
Vanaclocha-Saiz A, Vanaclocha V, Atienza CM, Clavel P, Jorda-Gomez P, Barrios C, Vanaclocha L. Finite Element Analysis of a Bionate Ring-Shaped Customized Lumbar Disc Nucleus Prosthesis. ACS APPLIED BIO MATERIALS 2022; 5:172-182. [PMID: 35014829 PMCID: PMC8767544 DOI: 10.1021/acsabm.1c01027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Study design: Biomechanical study of a nucleus replacement
with a finite element model. Objective: To validate a
Bionate 80A ring-shaped nucleus replacement. Methods:
The ANSYS lumbar spine model made from lumbar spine X-rays and magnetic
resonance images obtained from cadaveric spine specimens were used.
All materials were assumed homogeneous, isotropic, and linearly elastic.
We studied three options: intact spine, nucleotomy, and nucleus implant.
Two loading conditions were evaluated at L3-L4, L4-L5, and L5-S1 discs:
a 1000 N axial compression load and this load after the addition of
8 Nm flexion moment in the sagittal plane plus 8 Nm axial rotation
torque. Results: Maximum nucleus implant axial compression
stresses in the range of 16–34 MPa and tensile stress in the
range of 5–16 MPa, below Bionate 80A resistance were obtained.
Therefore, there is little risk of permanent implant deformation or
severe damage under normal loading conditions. Nucleotomy increased
segment mobility, zygapophyseal joint and end plate pressures, and
annulus stresses and strains. All these parameters were restored satisfactorily
by nucleus replacement but never reached the intact status. In addition,
annulus stresses and strains were lower with the nucleus implant than
in the intact spine under axial compression and higher under complex
loading conditions. Conclusions: Under normal loading
conditions, there is a negligible risk of nucleus replacement, permanent
deformation or severe damage. Nucleotomy increased segmental mobility,
zygapophyseal joint pressures, and annulus stresses and strains. Nucleus
replacement restored segmental mobility and zygapophyseal joint pressures
close to the intact spine. End plate pressures were similar for the
intact and nucleus implant conditions under both loading modes. Manufacturing
customized nucleus implants is considered feasible, as satisfactory
biomechanical performance is confirmed.
Collapse
Affiliation(s)
- Amparo Vanaclocha-Saiz
- Escuela de Doctorado, Universitat Politècnica de Valencia, Camí de Vera, s/n, 46022 Valencia, Spain
| | - Vicente Vanaclocha
- University of Valencia, Avenida de Blasco Ibáñez, 13, 46010 Valencia, Spain
| | - Carlos M Atienza
- Instituto de Biomecánica (IBV), Universitat Politècnica de Valencia, Camí de Vera, s/n, 46022 Valencia. Spain.,Instituto de Biomecánica de Valencia-CIBER BBN, Grupo de Tecnología Sanitaria (GTS-IBV), Camí de Vera, s/n, 46022 Valencia, Spain
| | - Pablo Clavel
- Instituto Clavel, Hospital Quironsalud Barcelona, Plaça d'Alfonso Comín, 5, 08023 Barcelona, Spain
| | - Pablo Jorda-Gomez
- Hospital Politècnic i Universitari La Fe, Avinguda de Fernando Abril Martorell, 106, 46026 Valencia, Spain
| | - Carlos Barrios
- Catholic University of Valencia, Saint Vincent Martyr, Carrer de Quevedo, 2, 46001 Valencia, Spain
| | - Leyre Vanaclocha
- University College London, London, Gower St, London WC1E 6BT, U.K
| |
Collapse
|
11
|
Applications of Functionalized Hydrogels in the Regeneration of the Intervertebral Disc. BIOMED RESEARCH INTERNATIONAL 2021; 2021:2818624. [PMID: 34458364 PMCID: PMC8397561 DOI: 10.1155/2021/2818624] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Intervertebral disc degeneration (IDD) is caused by genetics, aging, and environmental factors and is one of the leading causes of low back pain. The treatment of IDD presents many challenges. Hydrogels are biomaterials that possess properties similar to those of the natural extracellular matrix and have significant potential in the field of regenerative medicine. Hydrogels with various functional qualities have recently been used to repair and regenerate diseased intervertebral discs. Here, we review the mechanisms of intervertebral disc homeostasis and degeneration and then discuss the applications of hydrogel-mediated repair and intervertebral disc regeneration. The classification of artificial hydrogels and natural hydrogels is then briefly introduced, followed by an update on the development of functional hydrogels, which include noncellular therapeutic hydrogels, cellular therapeutic hydrogel scaffolds, responsive hydrogels, and multifunctional hydrogels. The challenges faced and future developments of the hydrogels used in IDD are discussed as they further promote their clinical translation.
Collapse
|
12
|
Ghosh B, Kirtania MD. Clinical applications of biopolymer-based hydrogels. PLANT AND ALGAL HYDROGELS FOR DRUG DELIVERY AND REGENERATIVE MEDICINE 2021:535-568. [DOI: 10.1016/b978-0-12-821649-1.00015-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Knani D, Eylon M, Sivan SS. Molecular modeling study of the swelling of
glycosaminoglycan
‐analog biomimetics for intervertebral disc repair. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dafna Knani
- Department of Biotechnology Engineering ORT Braude College Karmiel Israel
| | - Moran Eylon
- Department of Biotechnology Engineering ORT Braude College Karmiel Israel
| | - Sarit S. Sivan
- Department of Biotechnology Engineering ORT Braude College Karmiel Israel
| |
Collapse
|
14
|
Shi K, Huang Y, Huang L, Wang J, Wang Y, Feng G, Liu L, Song Y. [Research progress of hydrogel used for regeneration of nucleus pulposus in intervertebral disc degeneration]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:275-284. [PMID: 32174070 DOI: 10.7507/1002-1892.201907092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To summarize the research progress of hydrogels for the regeneration and repair of degenerative intervertebral disc and to investigate the potential of hydrogels in clinical application. Methods The related literature about the role of hydrogels in intervertebral disc degeneration especially for nucleus pulposus was reviewed and analyzed. Results Hydrogels share similar properties with nucleus pulposus, and it plays an important role in the regeneration and repair of degenerative intervertebral disc, which can be mainly applied in nucleus pulposus prosthesis, hydrogel-based cell therapy, non-cellular therapy, and tissue engineering repair. Conclusion Hydrogels are widely used in the regeneration and repair of intervertebral disc, which provides a potential treatment for intervertebral disc degeneration.
Collapse
Affiliation(s)
- Kun Shi
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yong Huang
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Leizhen Huang
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Jingcheng Wang
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yuhan Wang
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ganjun Feng
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Limin Liu
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Yueming Song
- Departmen of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
15
|
Olaiya NG, Nuryawan A, Oke PK, Khalil HPSA, Rizal S, Mogaji PB, Sadiku ER, Suprakas SR, Farayibi PK, Ojijo V, Paridah MT. The Role of Two-Step Blending in the Properties of Starch/Chitin/Polylactic Acid Biodegradable Composites for Biomedical Applications. Polymers (Basel) 2020; 12:polym12030592. [PMID: 32151004 PMCID: PMC7182811 DOI: 10.3390/polym12030592] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/17/2020] [Indexed: 12/17/2022] Open
Abstract
The current research trend for excellent miscibility in polymer mixing is the use of plasticizers. The use of most plasticizers usually has some negative effects on the mechanical properties of the resulting composite and can sometimes make it toxic, which makes such polymers unsuitable for biomedical applications. This research focuses on the improvement of the miscibility of polymer composites using two-step mixing with a rheomixer and a mix extruder. Polylactic acid (PLA), chitin, and starch were produced after two-step mixing, using a compression molding method with decreasing composition variation (between 8% to 2%) of chitin and increasing starch content. A dynamic mechanical analysis (DMA) was used to study the mechanical behavior of the composite at various temperatures. The tensile strength, yield, elastic modulus, impact, morphology, and compatibility properties were also studied. The DMA results showed a glass transition temperature range of 50 °C to 100 °C for all samples, with a distinct peak value for the loss modulus and factor. The single distinct peak value meant the polymer blend was compatible. The storage and loss modulus increased with an increase in blending, while the loss factor decreased, indicating excellent compatibility and miscibility of the composite components. The mechanical properties of the samples improved compared to neat PLA. Small voids and immiscibility were noticed in the scanning electron microscopy images, and this was corroborated by X-ray diffraction graphs that showed an improvement in the crystalline nature of PLA with starch. Bioabsorption and toxicity tests showed compatibility with the rat system, which is similar to the human system.
Collapse
Affiliation(s)
- Niyi Gideon Olaiya
- Department of Industrial and Production Engineering, Federal University of Technology Akure, P.M.B. 740, Akure 340282, Nigeria; (P.K.O.); (P.B.M.); (P.K.F.)
- School of Industrial Technology, University Sains Malaysia, Penang 11800, Malaysia
- Correspondence: (N.G.O.); (H.P.S.A.K.); (M.T.P.)
| | - Arif Nuryawan
- Department of Forest Products Technology, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Peter Kayode Oke
- Department of Industrial and Production Engineering, Federal University of Technology Akure, P.M.B. 740, Akure 340282, Nigeria; (P.K.O.); (P.B.M.); (P.K.F.)
| | - H. P. S. Abdul Khalil
- School of Industrial Technology, University Sains Malaysia, Penang 11800, Malaysia
- Correspondence: (N.G.O.); (H.P.S.A.K.); (M.T.P.)
| | - Samsul Rizal
- Department of Mechanical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| | - P. B. Mogaji
- Department of Industrial and Production Engineering, Federal University of Technology Akure, P.M.B. 740, Akure 340282, Nigeria; (P.K.O.); (P.B.M.); (P.K.F.)
| | - E. R. Sadiku
- Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, P.M.B. X680, Pretoria 0183, South Africa;
| | - S. R. Suprakas
- DST-/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (S.R.S.); (V.O.)
- Department of Applied Chemistry, University of Johannesburg, Doornfontein, Johannesburg 2028, South Africa
| | - Peter Kayode Farayibi
- Department of Industrial and Production Engineering, Federal University of Technology Akure, P.M.B. 740, Akure 340282, Nigeria; (P.K.O.); (P.B.M.); (P.K.F.)
| | - Vincent Ojijo
- DST-/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria 0001, South Africa; (S.R.S.); (V.O.)
| | - M. T. Paridah
- Institute of Tropical Forestry and Forest Products (INTROP), University Putra Malaysia, Seri Kembangan 43400, Malaysia
- Correspondence: (N.G.O.); (H.P.S.A.K.); (M.T.P.)
| |
Collapse
|
16
|
Stem Cells for the Treatment of Intervertebral Disk Degeneration. Tech Orthop 2019. [DOI: 10.1097/bto.0000000000000346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Varma DM, DiNicolas MS, Nicoll SB. Injectable, redox-polymerized carboxymethylcellulose hydrogels promote nucleus pulposus-like extracellular matrix elaboration by human MSCs in a cell density-dependent manner. J Biomater Appl 2019; 33:576-589. [PMID: 30326804 DOI: 10.1177/0885328218805216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is a major cause for disability and is closely linked to intervertebral disc degeneration. Mechanical and biological dysfunction of the nucleus pulposus in the disc has been found to initiate intradiscal degenerative processes. Replacing or enriching the diseased nucleus pulposus with an injectable, stem cell-laden biomaterial that mimics its material properties can provide a minimally invasive strategy for biological and structural repair of the tissue. In this study, injectable, in situ-gelling carboxymethylcellulose hydrogels were developed for nucleus pulposus tissue engineering using encapsulated human marrow-derived mesenchymal stromal cells (hMSCs). With the goal of obtaining robust extracellular matrix deposition and faster construct maturation, two cell-seeding densities, 20 × 106 cells/ml and 40 × 106 cells/ml, were examined. The constructs were fabricated using a redox initiation system to yield covalently crosslinked, cell-seeded hydrogels via radical polymerization. Chondrogenic culture of the hydrogels over 35 days exhibited high cell viability along with deposition of proteoglycan and collagen-rich extracellular matrix, and mechanical and swelling properties similar to native human nucleus pulposus. Further, the matrix production and distribution in the carboxymethylcellulose hydrogels was found to be strongly influenced by hMSC-seeding density, with the lower cell-seeding density yielding a more favorable nucleus pulposus-specific matrix phenotype, while the rate of construct maturation was less dependent on the cell-seeding density. These findings are the first to demonstrate the utility of redox-polymerized carboxymethylcellulose hydrogels as hMSC carriers for potential minimally invasive treatment strategies for nucleus pulposus replacement.
Collapse
Affiliation(s)
- Devika M Varma
- The City College of the City University of New York, New York, NY, USA
| | | | - Steven B Nicoll
- The City College of the City University of New York, New York, NY, USA
| |
Collapse
|
18
|
Qiao S, Elbes D, Boubriak O, Urban JPG, Coussios CC, Cleveland RO. Delivering Focused Ultrasound to Intervertebral Discs Using Time-Reversal. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2405-2416. [PMID: 31155405 DOI: 10.1016/j.ultrasmedbio.2019.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 04/18/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Chronic low back pain causes more disability worldwide than any other condition and is thought to arise in part through loss of biomechanical function of degenerate intervertebral discs (IVDs). Current treatments can involve replacing part or all of the degenerate IVDs by invasive surgery. Our vision is to develop a minimally invasive approach in which high intensity focused ultrasound (HIFU) is used to mechanically fractionate degenerate tissue in an IVD; a fine needle is then used to first remove the fractionated tissue and then inject a biomaterial able to restore normal physiologic function. The goal of this manuscript is to demonstrate the feasibility of trans-spinal HIFU delivery using simulations of 3-D ultrasound propagation in models derived from patient computed tomography (CT) scans. The CT data were segmented into bone, fat and other soft tissue for three patients. Ultrasound arrays were placed around the waist of each patient model, and time-reversal was used to determine the source signals necessary to create a focus in the center of the disc. The simulations showed that for 0.5 MHz ultrasound, a focus could be created in most of the lumbar IVDs, with the pressure focal gain ranging from 3.2-13.7. In conclusion, it is shown that with patient-specific planning, focusing ultrasound into an IVD is possible in the majority of patients despite the complex acoustic path introduced by the bony structures of the spine.
Collapse
Affiliation(s)
- S Qiao
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - D Elbes
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - O Boubriak
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - J P G Urban
- Department of Physiology, Anatomy & Genetics, University of Oxford, UK
| | - C-C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK
| | - R O Cleveland
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK.
| |
Collapse
|
19
|
Tendulkar G, Chen T, Ehnert S, Kaps HP, Nüssler AK. Intervertebral Disc Nucleus Repair: Hype or Hope? Int J Mol Sci 2019; 20:3622. [PMID: 31344903 PMCID: PMC6696292 DOI: 10.3390/ijms20153622] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022] Open
Abstract
Chronic back pain is a common disability, which is often accredited to intervertebral disc degeneration. Gold standard interventions such as spinal fusion, which are mainly designed to mechanically seal the defect, frequently fail to restore the native biomechanics. Moreover, artificial implants have limited success as a repair strategy, as they do not alter the underlying disease and fail to promote tissue integration and subsequent native biomechanics. The reported high rates of spinal fusion and artificial disc implant failure have pushed intervertebral disc degeneration research in recent years towards repair strategies. Intervertebral disc repair utilizing principles of tissue engineering should theoretically be successful, overcoming the inadequacies of artificial implants. For instance, advances in the development of scaffolds aided with cells and growth factors have opened up new possibilities for repair strategies. However, none has reached the stage of clinical trials in humans. In this review, we describe the hitches encountered in the musculoskeletal field and summarize recent advances in designing tissue-engineered constructs for promoting nucleus pulposus repair. Additionally, the review focuses on the effect of biomaterial aided with cells and growth factors on achieving effective functional reparative potency, highlighting the ways to enhance the efficacy of these treatments.
Collapse
Affiliation(s)
- Gauri Tendulkar
- Siegfried Weller Institute for Trauma Research at the BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstrasse 95, 72076 Tübingen, Germany
| | - Tao Chen
- Siegfried Weller Institute for Trauma Research at the BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstrasse 95, 72076 Tübingen, Germany
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research at the BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstrasse 95, 72076 Tübingen, Germany
| | - Hans-Peter Kaps
- Siegfried Weller Institute for Trauma Research at the BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstrasse 95, 72076 Tübingen, Germany
| | - Andreas K Nüssler
- Siegfried Weller Institute for Trauma Research at the BG Unfallklinik Tübingen, Eberhard Karls Universität Tübingen, Schnarrenbergstrasse 95, 72076 Tübingen, Germany.
| |
Collapse
|
20
|
Injectable cellulose-based hydrogels as nucleus pulposus replacements: Assessment of in vitro structural stability, ex vivo herniation risk, and in vivo biocompatibility. J Mech Behav Biomed Mater 2019; 96:204-213. [PMID: 31054515 DOI: 10.1016/j.jmbbm.2019.04.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 03/08/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
Current treatments for intervertebral disc degeneration and herniation are palliative only and cannot restore disc structure and function. Nucleus pulposus (NP) replacements are a promising strategy for restoring disc biomechanics and height loss. Cellulose-based hydrogel systems offer potential for NP replacement since they are stable, non-toxic, may be tuned to match NP material properties, and are conducive to cell or drug delivery. A crosslinked, carboxymethylcellulose-methylcellulose dual-polymer hydrogel was recently formulated as an injectable NP replacement that gelled in situ and restored disc height and compressive biomechanical properties. The objective of this study was to investigate the translational potential of this hydrogel system by examining the long-term structural stability in vitro, the herniation risk and fatigue bending endurance in a bovine motion segment model, and the in vivo biocompatibility in a rat subcutaneous pouch model. Results showed that the hydrogels maintained their structural integrity over a 12-week period. AF injury significantly increased herniation risk and reduced fatigue bending endurance in bovine motion segments. Samples repaired with cellulosic hydrogels demonstrated restored height and exhibited herniation risk and fatigue endurance comparable to samples that underwent the current standard treatment of nucleotomy. Lastly, injected hydrogels elicited a minimal foreign body response as determined by analysis of fibrous capsule development and macrophage presence over 12 weeks. Overall, this injectable cellulosic hydrogel system is a promising candidate as an NP substitute. Further assessment and optimization of this cellulosic hydrogel system in an in vivo intradiscal injury model may lead to an improved clinical solution for disc degeneration and herniation.
Collapse
|
21
|
Tendulkar G, Ehnert S, Sreekumar V, Chen T, Kaps HP, Golombek S, Wendel HP, Nüssler AK, Avci-Adali M. Exogenous Delivery of Link N mRNA into Chondrocytes and MSCs-The Potential Role in Increasing Anabolic Response. Int J Mol Sci 2019; 20:1716. [PMID: 30959917 PMCID: PMC6479841 DOI: 10.3390/ijms20071716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
Musculoskeletal disorders, such as osteoarthritis and intervertebral disc degeneration are causes of morbidity, which concomitantly burdens the health and social care systems worldwide, with massive costs. Link N peptide has recently been described as a novel anabolic stimulator for intervertebral disc repair. In this study, we analyzed the influence on anabolic response, by delivering synthetic Link N encoding mRNA into primary human chondrocytes and mesenchymal stromal cells (SCP1 cells), Furthermore, both cell types were seeded on knitted titanium scaffolds, and the influence of Link N peptide mRNA for possible tissue engineering applications was investigated. Synthetic modified Link N mRNA was efficiently delivered into both cell types and cell transfection resulted in an enhanced expression of aggrecan, Sox 9, and type II collagen with a decreased expression of type X collagen. Interestingly, despite increased expression of BMP2 and BMP7, BMP signaling was repressed and TGFβ signaling was boosted by Link N transfection in mesenchymal stromal cells, suggesting possible regulatory mechanisms. Thus, the exogenous delivery of Link N peptide mRNA into cells augmented an anabolic response and thereby increased extracellular matrix synthesis. Considering these findings, we suppose that the cultivation of cells on knitted titanium scaffolds and the exogenous delivery of Link N peptide mRNA into cells could mechanically support the stability of tissue-engineered constructs and improve the synthesis of extracellular matrix by seeded cells. This method can provide a potent strategy for articular cartilage and intervertebral disc regeneration.
Collapse
Affiliation(s)
- Gauri Tendulkar
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Vrinda Sreekumar
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Tao Chen
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Hans-Peter Kaps
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Sonia Golombek
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany.
| | - Hans-Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany.
| | - Andreas K Nüssler
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstraße 95, 72076 Tübingen, Germany.
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Calwerstraße 7/1, 72076 Tübingen, Germany.
| |
Collapse
|
22
|
Varma DM, Lin HA, Long RG, Gold GT, Hecht AC, Iatridis JC, Nicoll SB. Thermoresponsive, redox-polymerized cellulosic hydrogels undergo in situ gelation and restore intervertebral disc biomechanics post discectomy. Eur Cell Mater 2018; 35:300-317. [PMID: 29845998 PMCID: PMC6016390 DOI: 10.22203/ecm.v035a21] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Back and neck pain are commonly associated with intervertebral disc (IVD) degeneration. Structural augmentation of diseased nucleus pulposus (NP) tissue with biomaterials could restore degeneration-related IVD height loss and degraded biomechanical behaviors; however, effective NP replacement biomaterials are not commercially available. This study developed a novel, crosslinked, dual-polymer network (DPN) hydrogel comprised of methacrylated carboxymethylcellulose (CMC) and methylcellulose (MC), and used in vitro, in situ and in vivo testing to assess its efficacy as an injectable, in situ gelling, biocompatible material that matches native NP properties and restores IVD biomechanical behaviors. Thermogelling MC was required to enable consistent and timely gelation of CMC in situ within whole IVDs. The CMC-MC hydrogel was tuned to match compressive and swelling NP tissue properties. When injected into whole IVDs after discectomy injury, CMC-MC restored IVD height and compressive biomechanical behaviors, including range of motion and neutral zone stiffness, to intact levels. Subcutaneous implantation of the hydrogels in rats further demonstrated good biocompatibility of CMC-MC with a relatively thin fibrous capsule, similar to comparable biomaterials. In conclusion, CMC-MC is an injectable, tunable and biocompatible hydrogel with strong potential to be used as an NP replacement biomaterial since it can gel in situ, match NP properties, and restore IVD height and biomechanical function. Future investigations will evaluate herniation risk under severe loading conditions and assess long-term in vivo performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - S B Nicoll
- Department of Biomedical Engineering, The City College of New York, Steinman Hall, Room 401, 160 Convent Avenue, New York, NY 10031,
| |
Collapse
|
23
|
Tendulkar G, Sreekumar V, Rupp F, Teotia AK, Athanasopulu K, Kemkemer R, Buck A, Buck A, Kaps HP, Geis-Gerstorfer J, Kumar A, Nussler AK. Characterisation of porous knitted titanium for replacement of intervertebral disc nucleus pulposus. Sci Rep 2017; 7:16611. [PMID: 29192178 PMCID: PMC5709513 DOI: 10.1038/s41598-017-16863-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023] Open
Abstract
Effective restoration of human intervertebral disc degeneration is challenged by numerous limitations of the currently available spinal fusion and arthroplasty treatment strategies. Consequently, use of artificial biomaterial implant is gaining attention as a potential therapeutic strategy. Our study is aimed at investigating and characterizing a novel knitted titanium (Ti6Al4V) implant for the replacement of nucleus pulposus to treat early stages of chronic intervertebral disc degeneration. Specific knitted geometry of the scaffold with a porosity of 67.67 ± 0.824% was used to overcome tissue integration failures. Furthermore, to improve the wear resistance without impairing original mechanical strength, electro-polishing step was employed. Electro-polishing treatment changed a surface roughness from 15.22 ± 3.28 to 4.35 ± 0.87 µm without affecting its wettability which remained at 81.03 ± 8.5°. Subsequently, cellular responses of human mesenchymal stem cells (SCP1 cell line) and human primary chondrocytes were investigated which showed positive responses in terms of adherence and viability. Surface wettability was further enhanced to super hydrophilic nature by oxygen plasma treatment, which eventually caused substantial increase in the proliferation of SCP1 cells and primary chondrocytes. Our study implies that owing to scaffolds physicochemical and biocompatible properties, it could improve the clinical performance of nucleus pulposus replacement.
Collapse
Affiliation(s)
- Gauri Tendulkar
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr.95, Tübingen, Germany
| | - Vrinda Sreekumar
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr.95, Tübingen, Germany
| | - Frank Rupp
- Section Medical Material Science & Technology, University Hospital Tübingen, Ossianderstr. 2-8, Tübingen, Germany
| | - Arun K Teotia
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Kiriaki Athanasopulu
- Hochschule Reutlingen, Reutlingen University, Alteburgstraße 150, Reutlingen, Germany
| | - Ralf Kemkemer
- Hochschule Reutlingen, Reutlingen University, Alteburgstraße 150, Reutlingen, Germany
| | | | | | - Hans-Peter Kaps
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr.95, Tübingen, Germany
| | - Jürgen Geis-Gerstorfer
- Section Medical Material Science & Technology, University Hospital Tübingen, Ossianderstr. 2-8, Tübingen, Germany
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India
| | - Andreas K Nussler
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen, Schnarrenbergstr.95, Tübingen, Germany.
| |
Collapse
|
24
|
Growney Kalaf EA, Pendyala M, Bledsoe JG, Sell SA. Characterization and restoration of degenerated IVD function with an injectable, in situ gelling alginate hydrogel: An in vitro and ex vivo study. J Mech Behav Biomed Mater 2017; 72:229-240. [DOI: 10.1016/j.jmbbm.2017.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/20/2017] [Accepted: 05/06/2017] [Indexed: 12/30/2022]
|
25
|
Tendulkar G, Grau P, Ziegler P, Buck A, Buck A, Badke A, Kaps HP, Ehnert S, Nussler AK. Imaging Cell Viability on Non-transparent Scaffolds - Using the Example of a Novel Knitted Titanium Implant. J Vis Exp 2016:54537. [PMID: 27684965 PMCID: PMC5092001 DOI: 10.3791/54537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Intervertebral disc degeneration and disc herniation is one of the major causes of lower back pain. Depletion of extracellular matrix, culminating in nucleus pulposus (NP) extrusion leads to intervertebral disc destruction. Currently available surgical treatments reduce the pain but do not restore the mechanical functionality of the spine. In order to preserve mechanical features of the spine, total disc or nucleus replacement thus became a wide interest. However, this arthroplasty era is still in an immature state, since none of the existing products have been clinically evaluated. This study intends to test the biocompatibility of a novel nucleus implant made of knitted titanium wires. Despite all mechanical advantages, the material has its limits for conventional optical analysis as the resulting implant is non-transparent. Here we present a strategy that describes in vitro visualization, tracking and viability testing of osteochondro-progenitor cells on the scaffold. This protocol can be used to visualize the efficiency of the cleaning protocol as well as to investigate the biocompatibility of these and other non-transparent scaffolds. Furthermore, this protocol can be used to show adherence pattern of cells as well as cell viability and proliferation rates on/in the scaffold. This in vitro biocompatibility testing assay provides a propitious tool to analyze cell-material interaction in non-transparent and opaque scaffolds.
Collapse
Affiliation(s)
- Gauri Tendulkar
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen
| | - Phillip Grau
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen
| | - Patrick Ziegler
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen; Department of Orthopaedics, BG Trauma-Center
| | | | | | - Andreas Badke
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen; Department of Orthopaedics, BG Trauma-Center
| | - Hans-Peter Kaps
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen; Department of Orthopaedics, BG Trauma-Center
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen
| | - Andreas K Nussler
- Siegfried Weller Institute for Trauma Research at the BG Trauma Center, Eberhard Karls Universität Tübingen;
| |
Collapse
|
26
|
Schmocker A, Khoushabi A, Frauchiger DA, Gantenbein B, Schizas C, Moser C, Bourban PE, Pioletti DP. A photopolymerized composite hydrogel and surgical implanting tool for a nucleus pulposus replacement. Biomaterials 2016; 88:110-9. [DOI: 10.1016/j.biomaterials.2016.02.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/06/2016] [Accepted: 02/15/2016] [Indexed: 11/25/2022]
|
27
|
Li Z, Lang G, Chen X, Sacks H, Mantzur C, Tropp U, Mader KT, Smallwood TC, Sammon C, Richards RG, Alini M, Grad S. Polyurethane scaffold with in situ swelling capacity for nucleus pulposus replacement. Biomaterials 2016; 84:196-209. [DOI: 10.1016/j.biomaterials.2016.01.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/18/2022]
|
28
|
Growney Kalaf EA, Flores R, Bledsoe JG, Sell SA. Characterization of slow-gelling alginate hydrogels for intervertebral disc tissue-engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:198-210. [PMID: 27040212 DOI: 10.1016/j.msec.2016.02.067] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/27/2016] [Accepted: 02/22/2016] [Indexed: 11/25/2022]
Abstract
Reversal of intervertebral disc degeneration can have a potentially monumental effect on spinal health. As such, the goal of this research is to create an injectable, cellularized alginate-based nucleus pulposus that will restore disc function; with the primary goal of creating an alginate gel with tailorable rates of gelation to improve functionality over standard CaCl2 crosslinking techniques. Gelation characteristics of 1% sodium alginate were analyzed over various molar concentrations of a 1:2 ratio of CaCO3:glucono-δ-lactone (GDL), with 10% CaCl2 as the control crosslinker. Alginate construct characterization for all concentrations was performed via ultimate and cyclic compressive testing over a 28day degradation period in PBS. Dehydration, swell testing, and albumin release kinetics were determined, and cytotoxicity and cell homogeneity tests showed promise for cellularization strategies. Overall, the 30 and 60mM GDL alginate concentrations presented the most viable option for use in further studies, with a gelation time between 10 and 30min, low hysteresis over control, low percent change in thickness and weight under both PBS degradation and swelling conditions, and stable mechanical properties over 28days in vitro.
Collapse
Affiliation(s)
- Emily A Growney Kalaf
- Parks College of Engineering, Aviation & Technology, Department of Biomedical Engineering, Saint Louis University, 3507 Lindell Boulevard, St. Louis, MO 63103, USA
| | - Reynaldo Flores
- Parks College of Engineering, Aviation & Technology, Department of Biomedical Engineering, Saint Louis University, 3507 Lindell Boulevard, St. Louis, MO 63103, USA
| | - J Gary Bledsoe
- Parks College of Engineering, Aviation & Technology, Department of Biomedical Engineering, Saint Louis University, 3507 Lindell Boulevard, St. Louis, MO 63103, USA
| | - Scott A Sell
- Parks College of Engineering, Aviation & Technology, Department of Biomedical Engineering, Saint Louis University, 3507 Lindell Boulevard, St. Louis, MO 63103, USA.
| |
Collapse
|
29
|
|
30
|
Arkesteijn ITM, Mouser VHM, Mwale F, van Dijk BGM, Ito K. A Well-Controlled Nucleus Pulposus Tissue Culture System with Injection Port for Evaluating Regenerative Therapies. Ann Biomed Eng 2015; 44:1798-807. [PMID: 26294008 PMCID: PMC4837215 DOI: 10.1007/s10439-015-1428-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/11/2015] [Indexed: 11/10/2022]
Abstract
In vitro evaluation of nucleus pulposus (NP) tissue regeneration would be useful, but current systems for NP culture are not ideal for injections. The aim of this study was to develop a long-term culture system for NP tissue that allows injections of regenerative agents. Bovine caudal NPs were harvested and placed in the newly designed culture system. After equilibration of the tissue to 0.3 MPa the volume was fixed and the tissue was cultured for 28 days. The cell viability and extracellular matrix composition remained unchanged during the culture period and gene expression profiles were similar to those obtained in earlier studies. Furthermore, to test the responsiveness of bovine caudal NPs in the system, samples were cultured for 4 days and injected twice (day 1 and 3) with (1) PBS, (2) Link-N, for regeneration, and (3) TNF-α, for degeneration. It was shown that TNF-α increased COX2 gene expression, whereas no effect of Link-N was detected. In conclusion, the newly designed system allows long-term culture of NP tissue, wherein tissue reactions to injected stimulants can be observed.
Collapse
Affiliation(s)
- Irene T M Arkesteijn
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Vivian H M Mouser
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fackson Mwale
- Division of Orthopaedic Surgery, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada
| | - Bart G M van Dijk
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
31
|
Liu B, Wu B, Van Hoof T, Okito JPK, Liu Z, Zeng Z. Are the standard parameters of cervical spine alignment and range of motion related to age, sex, and cervical disc degeneration? J Neurosurg Spine 2015; 23:274-9. [PMID: 26091436 DOI: 10.3171/2015.1.spine14489] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The aims of this study were 1) to establish the standard parameters of alignment and total and segmental range of motion (ROM) of the cervical spine in the asymptomatic population, and 2) to identify factors that influence cervical ROM and alignment. METHODS The authors measured 636 standard cervical lateral, flexion, and extension plain radiographs of 212 asymptomatic volunteers. The relationship between cervical alignment and total ROM was assessed with simple linear regression. Multivariate linear regression was used to determine the effect of the influential factors on cervical alignment and total and segmental ROM. RESULTS The mean value for C2-7 cervical alignment was 21.40° ± 12.15°, and the mean value for total ROM was 63.59° ± 15.37°. Sex was a significant factor in cervical alignment, total ROM, and segmental ROM for C2-3 and C5-6 (p < 0.05). Age had a significant negative association with both the total ROM and all of the segmental ROM measurements (p < 0.05). Cervical disc degeneration at the level of interest had a significant negative association with C4-5, C5-6, and C6-7 ROM (p < 0.05). CONCLUSIONS Cervical alignment in female subjects was 2.47° lower than that in male subjects. Total ROM was 3.86° greater in female than in male subjects and decreased 6.46° for each decade of aging. Segmental ROM decreased 1.28° for each decade of aging and 2.26° for each category increase in disc degeneration at the level of interest.
Collapse
Affiliation(s)
- Baoge Liu
- Department of Orthopaedics, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Bingxuan Wu
- Department of Orthopaedics, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | | | | | - Zhenyu Liu
- Department of Orthopaedics, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Zheng Zeng
- Department of Orthopaedics, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Showalter BL, Elliott DM, Chen W, Malhotra NR. Evaluation of an In Situ Gelable and Injectable Hydrogel Treatment to Preserve Human Disc Mechanical Function Undergoing Physiologic Cyclic Loading Followed by Hydrated Recovery. J Biomech Eng 2015; 137:081008. [PMID: 25950273 DOI: 10.1115/1.4030530] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Indexed: 12/21/2022]
Abstract
Despite the prevalence of disc degeneration and its contributions to low back problems, many current treatments are palliative only and ultimately fail. To address this, nucleus pulposus replacements are under development. Previous work on an injectable hydrogel nucleus pulposus replacement composed of n-carboxyethyl chitosan, oxidized dextran, and teleostean has shown that it has properties similar to native nucleus pulposus, can restore compressive range of motion in ovine discs, is biocompatible, and promotes cell proliferation. The objective of this study was to determine if the hydrogel implant will be contained and if it will restore mechanics in human discs undergoing physiologic cyclic compressive loading. Fourteen human lumbar spine segments were tested using physiologic cyclic compressive loading while intact, following nucleotomy, and again following treatment of injecting either phosphate buffered saline (PBS) (sham, n = 7) or hydrogel (implant, n = 7). In each compressive test, mechanical parameters were measured immediately before and after 10,000 cycles of compressive loading and following a period of hydrated recovery. The hydrogel implant was not ejected from the disc during 10,000 cycles of physiological compression testing and appeared undamaged when discs were bisected following all mechanical tests. For sham samples, creep during cyclic loading increased (+15%) from creep during nucleotomy testing, while for implant samples creep strain decreased (-3%) toward normal. There was no difference in compressive modulus or compressive strains between implant and sham samples. These findings demonstrate that the implant interdigitates with the nucleus pulposus, preventing its expulsion during 10,000 cycles of compressive loading and preserves disc creep within human L5-S1 discs. This and previous studies provide a solid foundation for continuing to evaluate the efficacy of the hydrogel implant.
Collapse
|
33
|
Abstract
Intervertebral disk degeneration has been considered an irreversible process characterized by a decrease in cell viability, attenuation of proteoglycan and type II collagen synthesis, and dehydration of nucleus pulposus. Stem cell therapy specifically addresses the degenerative process and offers a potentially effective treatment modality. Current preclinical studies show that mesenchymal stem cells have the capacity to repair degenerative disks by differentiation toward chondrocyte-like cells, which produce proteoglycans and type II collagen. There has been evidence that mesenchymal stem cell transplantation into the intervertebral disk increases the intradiskal magnetic resonance imaging T2 signal intensity, increases the disk height, and decreases the degenerative grade in animal models. Appropriate selection of cell carriers/matrix is important because it may prevent cell leakage into the spinal canal and provide an environment that facilitates cell proliferation and differentiation. Although human cell therapy trials for degenerative disk disease are on the horizon, potential issues might arise. The authors hereby review the current state of regenerative cell therapy in degenerative disk disease, with emphasis in cell source, techniques for cellular expansion, induction, transplantation, potential benefit, and risks of the use of this novel medical armamentarium in the treatment of degenerative disk disease.
Collapse
|
34
|
Showalter BL, Malhotra NR, Vresilovic EJ, Elliott DM. Nucleotomy reduces the effects of cyclic compressive loading with unloaded recovery on human intervertebral discs. J Biomech 2014; 47:2633-40. [PMID: 24957922 DOI: 10.1016/j.jbiomech.2014.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/29/2014] [Accepted: 05/24/2014] [Indexed: 01/06/2023]
Abstract
The first objective of this study was to determine the effects of physiological cyclic loading followed by unloaded recovery on the mechanical response of human intervertebral discs. The second objective was to examine how nucleotomy alters the disc's mechanical response to cyclic loading. To complete these objectives, 15 human L5-S1 discs were tested while intact and subsequent to nucleotomy. The testing consisted of 10,000 cycles of physiological compressive loads followed by unloaded hydrated recovery. Cyclic loading increased compression modulus (3%) and strain (33%), decreased neutral zone modulus (52%), and increased neutral zone strain (31%). Degeneration was not correlated with the effect of cyclic loading in intact discs, but was correlated with cyclic loading effects after nucleotomy, with more degenerate samples experiencing greater increases in both compressive and neutral zone strain following cyclic loading. Partial removal of the nucleus pulposus decreased the compression and neutral zone modulus while increasing strain. These changes correspond to hypermobility, which will alter overall spinal mechanics and may impact low back pain via altered motion throughout the spinal column. Nucleotomy also reduced the effects of cyclic loading on mechanical properties, likely due to altered fluid flow, which may impact cellular mechanotransduction and transport of disc nutrients and waste. Degeneration was not correlated with the acute changes of nucleotomy. Results of this study provide an ideal protocol and control data for evaluating the effectiveness of a mechanically-based disc degeneration treatment, such as a nucleus replacement.
Collapse
Affiliation(s)
- Brent L Showalter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Neil R Malhotra
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Edward J Vresilovic
- Hershey Department of Orthopaedics and Rehabilitation, Penn State University, Hershey, PA, United States
| | - Dawn M Elliott
- Department of Biomedical Engineering, University of Delaware, 125 East Delaware Ave, Newark, DE, United States.
| |
Collapse
|
35
|
Guterl CC, Torre OM, Purmessur D, Dave K, Likhitpanichkul M, Hecht AC, Nicoll SB, Iatridis JC. Characterization of mechanics and cytocompatibility of fibrin-genipin annulus fibrosus sealant with the addition of cell adhesion molecules. Tissue Eng Part A 2014; 20:2536-45. [PMID: 24684314 DOI: 10.1089/ten.tea.2012.0714] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is an unmet clinical need for a biomaterial sealant capable of repairing small annulus fibrosus (AF) defects. Causes of these defects include painful intervertebral disc herniations, microdiscectomy procedures, morbidity associated with needle puncture injury from discography, and future nucleus replacement procedures. This study describes the enhancements of a fibrin gel through genipin crosslinking (FibGen) and the addition of the cell adhesion molecules (CAMs), fibronectin and collagen. The gel's performance as a potential AF sealant is assessed using a series of in vitro tests. FibGen gels with CAMs had equivalent adhesive strength, gene expression, cytomorphology, and cell proliferation as fibrin alone. However, FibGen gels had enhanced material behaviors that were tunable to higher shear stiffness values and approximated human annulus tissue as compared with fibrin alone, were more dimensionally stable, and had a slower in vitro degradation rate. Cytomorphology of human AF cells cultured on FibGen gels exhibited increased elongation compared with fibrin alone, and the addition of CAMs to FibGen did not significantly affect elongation. This FibGen gel offers the promise of being used as a sealant material to repair small AF defects or to be used in combination with other biomaterials as an adhesive for larger defects.
Collapse
Affiliation(s)
- Clare C Guterl
- 1 Leni and Peter W. May Department of Orthopaedics, Mount Sinai School of Medicine , New York, New York
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Smith LJ, Gorth DJ, Showalter BL, Chiaro JA, Beattie EE, Elliott DM, Mauck RL, Chen W, Malhotra NR. In vitro characterization of a stem-cell-seeded triple-interpenetrating-network hydrogel for functional regeneration of the nucleus pulposus. Tissue Eng Part A 2014; 20:1841-9. [PMID: 24410394 DOI: 10.1089/ten.tea.2013.0516] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Intervertebral disc degeneration is implicated as a major cause of low-back pain. There is a pressing need for new regenerative therapies for disc degeneration that restore native tissue structure and mechanical function. To that end we investigated the therapeutic potential of an injectable, triple-interpenetrating-network hydrogel comprised of dextran, chitosan, and teleostean, for functional regeneration of the nucleus pulposus (NP) of the intervertebral disc in a series of biomechanical, cytotoxicity, and tissue engineering studies. Biomechanical properties were evaluated as a function of gelation time, with the hydrogel reaching ∼90% of steady-state aggregate modulus within 10 h. Hydrogel mechanical properties evaluated in confined and unconfined compression were comparable to native human NP properties. To confirm containment within the disc under physiological loading, toluidine-blue-labeled hydrogel was injected into human cadaveric spine segments after creation of a nucleotomy defect, and the segments were subjected to 10,000 cycles of loading. Gross analysis demonstrated no implant extrusion, and further, that the hydrogel interdigitated well with native NP. Constructs were next surface-seeded with NP cells and cultured for 14 days, confirming lack of hydrogel cytotoxicity, with the hydrogel maintaining NP cell viability and promoting proliferation. Next, to evaluate the potential of the hydrogel to support cell-mediated matrix production, constructs were seeded with mesenchymal stem cells (MSCs) and cultured under prochondrogenic conditions for up to 42 days. Importantly, the hydrogel maintained MSC viability and promoted proliferation, as evidenced by increasing DNA content with culture duration. MSCs differentiated along a chondrogenic lineage, evidenced by upregulation of aggrecan and collagen II mRNA, and increased GAG and collagen content, and mechanical properties with increasing culture duration. Collectively, these results establish the therapeutic potential of this novel hydrogel for functional regeneration of the NP. Future work will confirm the ability of this hydrogel to normalize the mechanical stability of cadaveric human motion segments, and advance the material toward human translation using preclinical large-animal models.
Collapse
Affiliation(s)
- Lachlan J Smith
- 1 Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Injectable hydrogels with high fixed charge density and swelling pressure for nucleus pulposus repair: biomimetic glycosaminoglycan analogues. Acta Biomater 2014; 10:1124-33. [PMID: 24270091 DOI: 10.1016/j.actbio.2013.11.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/24/2013] [Accepted: 11/13/2013] [Indexed: 11/21/2022]
Abstract
The load-bearing biomechanical role of the intervertebral disc is governed by the composition and organization of its major macromolecular components, collagen and aggrecan. The major function of aggrecan is to maintain tissue hydration, and hence disc height, under the high loads imposed by muscle activity and body weight. Key to this role is the high negative fixed charge of its glycosaminoglycan side chains, which impart a high osmotic pressure to the tissue, thus regulating and maintaining tissue hydration and hence disc height under load. In degenerate discs, aggrecan degrades and is lost from the disc, particularly centrally from the nucleus pulposus. This loss of fixed charge results in reduced hydration and loss of disc height; such changes are closely associated with low back pain. The present authors developed biomimetic glycosaminoglycan analogues based on sulphonate-containing polymers. These biomimetics are deliverable via injection into the disc where they polymerize in situ, forming a non-degradable, nuclear "implant" aimed at restoring disc height to degenerate discs, thereby relieving back pain. In vitro, these glycosaminoglycan analogues possess appropriate fixed charge density, hydration and osmotic responsiveness, thereby displaying the capacity to restore disc height and function. Preliminary biomechanical tests using a degenerate explant model showed that the implant adapts to the space into which it is injected and restores stiffness. These hydrogels mimic the role taken by glycosaminoglycans in vivo and, unlike other hydrogels, provide an intrinsic swelling pressure, which can maintain disc hydration and height under the high and variable compressive loads encountered in vivo.
Collapse
|
38
|
Sharifi S, Bulstra SK, Grijpma DW, Kuijer R. Treatment of the degenerated intervertebral disc; closure, repair and regeneration of the annulus fibrosus. J Tissue Eng Regen Med 2014; 9:1120-32. [PMID: 24616324 DOI: 10.1002/term.1866] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 09/19/2013] [Accepted: 11/25/2013] [Indexed: 12/25/2022]
Abstract
Degeneration of the intervertebral disc (IVD) and disc herniation are two causes of low back pain. The aetiology of these disorders is unknown, but tissue weakening, which primarily occurs due to inherited genetic factors, ageing, nutritional compromise and loading history, is the basic factor causing disc degeneration. Symptomatic disc herniation mainly causes radicular pain. Current treatments of intervertebral disc degeneration and low back pain are based on alleviating the symptoms and comprise administration of painkillers or surgical methods such as spinal fusion. None of these methods is completely successful. Current research focuses on regeneration of the IVD and particularly on regeneration of the nucleus pulposus. Less attention has been directed to the repair or regeneration of the annulus fibrosus, although this is the key to successful nucleus pulposus, and therewith IVD, repair. This review focuses on the importance of restoring the function of the annulus fibrosus, as well as on the repair, replacement or regeneration of the annulus fibrosus in combination with restoration of the function of the nucleus pulposus, to treat low back pain.
Collapse
Affiliation(s)
- Shahriar Sharifi
- University of Groningen, University Medical Center Groningen, W. J. Kolff Institute, Department of Biomedical Engineering, Groningen, The Netherlands
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Sjoerd K Bulstra
- University of Groningen, University Medical Center Groningen, Department of Orthopaedic Surgery, Groningen, The Netherlands
| | - Dirk W Grijpma
- University of Groningen, University Medical Center Groningen, W. J. Kolff Institute, Department of Biomedical Engineering, Groningen, The Netherlands
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands
| | - Roel Kuijer
- University of Groningen, University Medical Center Groningen, W. J. Kolff Institute, Department of Biomedical Engineering, Groningen, The Netherlands
| |
Collapse
|
39
|
Zhao X. Multi-scale multi-mechanism design of tough hydrogels: building dissipation into stretchy networks. SOFT MATTER 2014; 10:672-87. [PMID: 24834901 PMCID: PMC4040255 DOI: 10.1039/c3sm52272e] [Citation(s) in RCA: 641] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As swollen polymer networks in water, hydrogels are usually brittle. However, hydrogels with high toughness play critical roles in many plant and animal tissues as well as in diverse engineering applications. Here we review the intrinsic mechanisms of a wide variety of tough hydrogels developed over the past few decades. We show that tough hydrogels generally possess mechanisms to dissipate substantial mechanical energy but still maintain high elasticity under deformation. The integrations and interactions of different mechanisms for dissipating energy and maintaining elasticity are essential to the design of tough hydrogels. A matrix that combines various mechanisms is constructed for the first time to guide the design of next-generation tough hydrogels. We further highlight that a particularly promising strategy for the design is to implement multiple mechanisms across multiple length scales into nano-, micro-, meso-, and macro-structures of hydrogels.
Collapse
Affiliation(s)
- Xuanhe Zhao
- Soft Active Materials Laboratory, Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA.
| |
Collapse
|
40
|
The application of fiber-reinforced materials in disc repair. BIOMED RESEARCH INTERNATIONAL 2013; 2013:714103. [PMID: 24383057 PMCID: PMC3870616 DOI: 10.1155/2013/714103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 11/18/2013] [Indexed: 01/08/2023]
Abstract
The intervertebral disc degeneration and injury are the most common spinal diseases with tremendous financial and social implications. Regenerative therapies for disc repair are promising treatments. Fiber-reinforced materials (FRMs) are a kind of composites by embedding the fibers into the matrix materials. FRMs can maintain the original properties of the matrix and enhance the mechanical properties. By now, there are still some problems for disc repair such as the unsatisfied static strength and dynamic properties for disc implants. The application of FRMs may resolve these problems to some extent. In this review, six parts such as background of FRMs in tissue repair, the comparison of mechanical properties between natural disc and some typical FRMs, the repair standard and FRMs applications in disc repair, and the possible research directions for FRMs' in the future are stated.
Collapse
|
41
|
Schroeder M, Viezens L, Schaefer C, Friedrichs B, Algenstaedt P, Rüther W, Wiesner L, Hansen-Algenstaedt N. Chemokine profile of disc degeneration with acute or chronic pain. J Neurosurg Spine 2013; 18:496-503. [PMID: 23473344 DOI: 10.3171/2013.1.spine12483] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECT Disc-related disorders such as herniation and chronic degenerative disc disease (DDD) are often accompanied by acute or chronic pain. Different mediators have been identified in the development of radicular pain and DDD. Previous studies have not analyzed individual cytokine profiles discriminating between acute sciatic and chronic painful conditions, nor have they distinguished between different anatomical locations within the disc. The aim of this study was to elucidate the protein biochemical mechanisms in DDD. METHODS The authors determined expression levels of matrix metalloproteinase-3, transforming growth factor-β (TGF-β), tumor necrosis factor-α, interleukin-1α, and pro-substance P using enzyme-linked immunosorbent assay and Western blot analyses in patients suffering from DDD (n = 7), acute back pain due to herniated discs with radiculopathy (n = 7), and a control group (n = 7). Disc tissue samples from the anulus fibrosus (AF) and nucleus pulposus (NP) were analyzed. Statistical analysis was performed using nonparametric tests. RESULTS A distinct distribution of cytokines was found in different anatomical regions of intervertebral discs in patients with DDD and herniated NP. Increased TGF-β levels were predominantly found in DDD. Matrix metalloproteinase-3 was increased in acute herniated disc material. Increased levels of substance P were found in patients suffering from DDD but not in patients with disc herniation. The data showed significantly higher levels of proinflammatory cytokines in the AF and NP of patients with DDD, and the expression levels in the AF were even higher than in the NP, suggesting that the inflammatory response initiates from the AF. CONCLUSIONS These results highlight the complex mechanisms involved during disc degeneration and the need to distinguish between acute and chronic processes as well as different anatomical regions, namely the AF and NP. They also highlight potential problems in disc nucleus replacement therapies because the results suggest a biochemical link between AF and NP cytokine expression.
Collapse
Affiliation(s)
- Malte Schroeder
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, Hamburg 20246, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Shoukry M, Li J, Pei M. Reconstruction of an in vitro niche for the transition from intervertebral disc development to nucleus pulposus regeneration. Stem Cells Dev 2013; 22:1162-76. [PMID: 23259403 DOI: 10.1089/scd.2012.0597] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The nucleus pulposus (NP) plays a prominent role in both the onset and progression of intervertebral disc degeneration. While autologous repair strategies have demonstrated some success, their in vitro culture system is outdated and insufficient for maintaining optimally functioning cells through the required extensive passaging. Consequently, the final population of cells may be unsuitable for the overwhelming task of repairing tissue in vivo and could result in subpar clinical outcomes. Recent work has identified synovium-derived stem cells (SDSCs) as a potentially important new candidate. This population of precursors can promote matrix regeneration and additionally restore the balance of catabolic and anabolic metabolism of surrounding cells. Another promising application is their ability to produce an extracellular matrix in vitro that can be modified via decellularization to produce a tissue-specific substrate for efficient cell expansion, while retaining chondrogenic potential. When combined with hypoxia, soluble factors, and other environmental regulators, the resultant complex microenvironment will more closely resemble the in vivo niche, which further improves the cell capacity, even after extensive passaging. In this review, the adaptive mechanisms NP cells utilize in vivo are considered for insight into what factors are important for constructing a tissue-specific in vitro niche. Evidence for the use of SDSCs for NP regeneration is also discussed. Many aspects of NP behavior are still unknown, which could lead to future work yielding key information on producing sufficient numbers of a high-quality NP-specific population that is able to regenerate deteriorated NP in vivo.
Collapse
Affiliation(s)
- Mark Shoukry
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, West Virginia 26506-9196, USA
| | | | | |
Collapse
|