1
|
Li M, Gong J, Yu Y, Xu J, Yin Y, Wang A, Wang J. Sericin/silk fibroin composite aerogel for hemostatic application. APPLIED MATERIALS TODAY 2024; 41:102514. [DOI: 10.1016/j.apmt.2024.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Hemocompatibility Evaluation of Thai Bombyx mori Silk Fibroin and Its Improvement with Low Molecular Weight Heparin Immobilization. Polymers (Basel) 2022; 14:polym14142943. [PMID: 35890719 PMCID: PMC9319666 DOI: 10.3390/polym14142943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/04/2023] Open
Abstract
Bombyx mori silk fibroin (SF), from Nangnoi Srisaket 1 Thai strain, has shown potential for various biomedical applications such as wound dressing, a vascular patch, bone substitutes, and controlled release systems. The hemocompatibility of this SF is one of the important characteristics that have impacts on such applications. In this study, the hemocompatibility of Thai SF was investigated and its improvement by low molecular weight heparin (LMWH) immobilization was demonstrated. Endothelial cell proliferation on the SF and LMWH immobilized SF (Hep/SF) samples with or without fibroblast growth factor-2 (FGF-2) was also evaluated. According to hemocompatibility evaluation, Thai SF did not accelerate clotting time, excess stimulate complement and leukocyte activation, and was considered a non-hemolysis material compared to the negative control PTFE sheet. Platelet adhesion of SF film was comparable to that of the PTFE sheet. For hemocompatibility enhancement, LMWH was immobilized successfully and could improve the surface hydrophilicity of SF films. The Hep/SF films demonstrated prolonged clotting time and slightly lower complement and leukocyte activation. However, the Hep/SF films could not suppress platelet adhesion. The Hep/SF films demonstrated endothelial cell proliferation enhancement, particularly with FGF-2 addition. This study provides fundamental information for the further development of Thai SF as a hemocompatible biomaterial.
Collapse
|
3
|
Zheng Z, Li X, Dai X, Ge J, Chen Y, Du C. Surface functionalization of anticoagulation and anti-nonspecific adsorption with recombinant hirudin modification. BIOMATERIALS ADVANCES 2022; 135:212741. [PMID: 35929214 DOI: 10.1016/j.bioadv.2022.212741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/14/2022] [Accepted: 02/26/2022] [Indexed: 06/15/2023]
Abstract
Surface functionalization to improve the blood compatibility is pivotal for the application of biomaterials. In this article, the surface of silicon was first functionalized with chemical groups, such as amino, quinone and phenol groups by the self-polymerization of dopamine, which were used to immobilize anticoagulant drugs hirudin. The detailed analysis and discussion about the grafting groups, morphology, wettability, the dynamic adsorption of proteins, the cytological property and the blood compatibility on the surfaces were carried on by the technology of contact angle, X-ray photoelectron spectroscopy, quartz crystal microbalance, endothelial cells culture and anticoagulant blood test in vivo. The surface with hirudin modification exhibited hydrophilic property and significantly inhibited the nonspecific adsorption of albumin, while it was more approachable to fibronectin. In vitro study displayed that the surface loaded with hirudin could promote the proliferation of endothelial cells. The evaluation of anticoagulant showed good anti-adhesion effect on platelets and the hemolysis rate decreased significantly to less than 0.4%. Activated partial thromboplastin time (APTT) of the silicon wafer loaded with hirudin can exceed 38 s, and the APTT prolongs as the hirudin concentration rises. This study suggested that such simple but effective surface functionalization technique, combining excellent anticoagulant activity together with reendothelialization potential due to the preferable fibronectin adsorption, provide great practical significance to the application of cardiovascular materials.
Collapse
Affiliation(s)
- Zhiwen Zheng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Xueyang Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Xin Dai
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Jianhui Ge
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Yunhua Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Chang Du
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials Science and Engineering, Ministry of Education, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
4
|
Li H, Song G, Tian W, Ding M, Sun X, Xu J, Dong F, Wang A, Ning P, Yin Y, Wang J. Motility and function of smooth muscle cells in a silk small-caliber tubular scaffold after replacement of rabbit common carotid artery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:110977. [DOI: 10.1016/j.msec.2020.110977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/06/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022]
|
5
|
Gao H, Huang C, Zhu Y, Ma X, Cao C. Facile synthesis of 3D silk fibroin scaffolds with tunable properties for regenerative medicine. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1272-1286. [DOI: 10.1080/09205063.2020.1758876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Haiying Gao
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, P.R. China
| | - Chenghui Huang
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, P.R. China
| | - Youqi Zhu
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, P.R. China
| | - Xilan Ma
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, P.R. China
| | - Chuanbao Cao
- School of Materials Science and Engineering, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications Institution, Beijing Institute of Technology, Beijing, P.R. China
| |
Collapse
|
6
|
Evaluation of the biomedical properties of a Ca+-conjugated silk fibroin porous material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:110003. [DOI: 10.1016/j.msec.2019.110003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 07/13/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
|
7
|
Steady-State Behavior and Endothelialization of a Silk-Based Small-Caliber Scaffold In Vivo Transplantation. Polymers (Basel) 2019; 11:polym11081303. [PMID: 31382650 PMCID: PMC6723494 DOI: 10.3390/polym11081303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/27/2019] [Accepted: 07/27/2019] [Indexed: 01/11/2023] Open
Abstract
A silk-based small-caliber tubular scaffold (SFTS), which is fabricated using a regenerated silk fibroin porous scaffold embedding a silk fabric core layer, has been proved to possess good cell compatibility and mechanical properties in vitro. In this study, the endothelialization ability and the steady-state blood flow of SFTSs were evaluated in vivo by implanting and replacing a common carotid artery in a rabbit. The results of the color doppler ultrasound and angiographies showed that the blood flow was circulated in the grafts without aneurysmal dilations or significant stenoses at any time point, and ran stronger and close to the autologous blood vessel from one month after implantation. The SFTSs presented an initial tridimensionality without being distorted or squashed. SEM and immunohistochemistry results showed that a clear and discontinuous endodermis appeared after one month of implantation; when implanted for three months, an endothelial layer fully covered the inner surface of SFTSs. RT-PCR results indicated that the gene expression level of CD31 in SFTSs was 45.8% and 75.3% by that of autologous blood vessels at 3 months and 12 months, respectively. The VEGF gene showed a high expression level that continued to increase after implantation.
Collapse
|
8
|
Shi P, Zhang L, Tian W, Li H, Wang Q, Yi H, Yin Y, Wang A, Ning P, Dong F, Wang J. Preparation and anticoagulant activity of functionalised silk fibroin. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
van Uden S, Vanerio N, Catto V, Bonandrini B, Tironi M, Figliuzzi M, Remuzzi A, Kock L, Redaelli ACL, Greco FG, Riboldi SA. A novel hybrid silk-fibroin/polyurethane three-layered vascular graft: towards in situ tissue-engineered vascular accesses for haemodialysis. ACTA ACUST UNITED AC 2019; 14:025007. [PMID: 30620939 DOI: 10.1088/1748-605x/aafc96] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinically available alternatives of vascular access for long-term haemodialysis-currently limited to native arteriovenous fistulae and synthetic grafts-suffer from several drawbacks and are associated to high failure rates. Bioprosthetic grafts and tissue-engineered blood vessels are costly alternatives without clearly demonstrated increased performance. In situ tissue engineering could be the ideal approach to provide a vascular access that profits from the advantages of vascular grafts in the short-term (e.g. early cannulation) and of fistulae in the long-term (e.g. high success rates driven by biointegration). Hence, in this study a three-layered silk fibroin/polyurethane vascular graft was developed by electrospinning to be applied as long-term haemodialysis vascular access pursuing a 'hybrid' in situ engineering approach (i.e. based on a semi-degradable scaffold). This Silkothane® graft was characterized concerning morphology, mechanics, physical properties, blood contact and vascular cell adhesion/viability. The full three-layered graft structure, influenced by the polyurethane presence, ensured mechanical properties that are a determinant factor for the success of a vascular access (e.g. vein-graft compliance matching). The Silkothane® graft demonstrated early cannulation potential in line with self-sealing commercial synthetic arteriovenous grafts, and a degradability driven by enzymatic activity. Moreover, the fibroin-only layers and extracellular matrix-like morphology, presented by the graft, revealed to be crucial in providing a non-haemolytic character, long clotting time, and favourable adhesion of human umbilical vein endothelial cells with increasing viability after 3 and 7 d. Accordingly, the proposed approach may represent a step forward towards an in situ engineered hybrid vascular access with potentialities for vein-graft anastomosis stability, early cannulation, and biointegration.
Collapse
Affiliation(s)
- Sebastião van Uden
- Bioengineering Laboratories S.r.l., Cantù, Italy. Dipartimento di Elettronica Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kang Z, Wang Y, Xu J, Song G, Ding M, Zhao H, Wang J. An RGD-Containing Peptide Derived from Wild Silkworm Silk Fibroin Promotes Cell Adhesion and Spreading. Polymers (Basel) 2018; 10:E1193. [PMID: 30961118 PMCID: PMC6290608 DOI: 10.3390/polym10111193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022] Open
Abstract
Arginine-Glycine-Aspartate (RGD) tripeptide can promote cell adhesion when present in the amino acid of proteins such as fibronectin. In order to demonstrate the bioactivity of an RGD-containing silk protein, a gene encoding the RGD motif-containing peptide GSGAGGRGDGGYGSGSS (⁻RGD⁻) derived from nonmulberry silk was designed and cloned, then multimerised and inserted into a commercial pGEX expression vector for recombinant expression of (⁻RGD⁻)n peptides. Herein, we focus on two glutathione-S-transferase (GST)-tagged fusion proteins, GST⁻(⁻RGD⁻)₄ and GST⁻(⁻RGD⁻)₈, which were expressed in Escherichia coli BL21, purified by GST affinity chromatography, and analyzed with sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry (MS). Target peptides (⁻RGD⁻)₄ and (⁻RGD⁻)₈ (6.03 and 11.5 kDa) were cleaved from the GST-tag by thrombin digestion, as verified with MS and SDS-PAGE. Isoelectric point analysis confirmed that target peptides were expressed and released in accordance with the original design. Target peptides self-assembled into a mainly α-helical structure, as determined by circular dichroism spectroscopy. Furthermore, (⁻RGD⁻)₄ and (⁻RGD⁻)₈ modified mulberry silk fibroin films were more effective for rapid cell adhesion, spreading and proliferative activity of L929 cells than some chemically synthesized RGD peptides modified and mulberry silk lacking the RGD motif.
Collapse
Affiliation(s)
- Zhao Kang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Yining Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, No. 111 Ren-ai Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Jingjing Xu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Guangzhou Song
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Mengyao Ding
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Huanrong Zhao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou 215123, China.
| | - Jiannan Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, No. 199 Ren-ai Road, Suzhou Industrial Park, Suzhou 215123, China.
| |
Collapse
|
11
|
Tu F, Liu Y, Li H, Shi P, Hao Y, Wu Y, Yi H, Yin Y, Wang J. Vascular Cell Co-Culture on Silk Fibroin Matrix. Polymers (Basel) 2018; 10:E39. [PMID: 30966074 PMCID: PMC6414862 DOI: 10.3390/polym10010039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/21/2023] Open
Abstract
Silk fibroin (SF), a natural polymer material possessing excellent biocompatibility and biodegradability, and has been widely used in biomedical applications. In order to explore the behavior of vascular cells by co-culturing on regenerated SF matrix for use as artificial blood vessels, human aorta vascular smooth muscle cells (HAVSMCs) were co-cultured with human arterial fibroblasts (HAFs) or human umbilical vein endothelial cells (HUVECs) on SF films and SF tubular scaffolds (SFTSs). Analysis of cell morphology and deoxyribonucleic acid (DNA) content showed that HUVECs, HAVSMCs and HAFs adhered and spread well, and exhibited high proliferative activity whether cultured alone or in co-culture. Immunofluorescence and scanning electron microscopy (SEM) analysis showed that HUVECs and HAFs co-existed well with HAVSMCs on SF films or SFTSs. Cytokine expression determined by reverse transcription-polymerase chain reaction (RT-PCR) indicated that the expression levels of α-smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SM-MHC) in HAVSMCs were inhibited on SF films or SFTSs, but expression could be obviously promoted by co-culture with HUVECs or HAFs, especially that of SM-MHC. On SF films, the expression of vascular endothelial growth factor (VEGF) and platelet endothelial cell adhesion molecule-1 (CD31) in HUVECs was promoted, and the expression levels of both increased obviously when co-cultured with HAVSMCs, with the expression levels of VEGF increasing with increasing incubation time. The expression levels of VEGF and CD31 in cells co-cultured on SFTSs improved significantly from day 3 compared with the mono-culture group. These results were beneficial to the mechanism analysis on vascular cell colonization and vascular tissue repair after in vivo transplantation of SFTSs.
Collapse
Affiliation(s)
- Fangfang Tu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yunfei Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Helei Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Pange Shi
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yunxia Hao
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yue Wu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Honggen Yi
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Yin Yin
- Laboratory Animal Research Center, Soochow University, Suzhou 215123, Jiangsu, China.
| | - Jiannan Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, Jiangsu, China.
- National Engineering Laboratory for Modern Silk, Soochow University, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
12
|
The effect of hirudin modification of silk fibroin on cell growth and antithrombogenicity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:237-246. [DOI: 10.1016/j.msec.2017.02.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/15/2016] [Accepted: 02/08/2017] [Indexed: 01/14/2023]
|
13
|
Silk fibroin as a non-thrombogenic biomaterial. Int J Biol Macromol 2016; 90:11-9. [DOI: 10.1016/j.ijbiomac.2016.01.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/15/2016] [Accepted: 01/22/2016] [Indexed: 02/06/2023]
|
14
|
Cai Y, Guo J, Chen C, Yao C, Chung SM, Yao J, Lee IS, Kong X. Silk fibroin membrane used for guided bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:148-154. [PMID: 27770874 DOI: 10.1016/j.msec.2016.08.070] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/22/2016] [Accepted: 08/26/2016] [Indexed: 10/21/2022]
Abstract
With the aim to develop a novel membrane with an appropriate mechanical property and degradation rate for guided bone tissue regeneration, lyophilized and densified silk fibroin membrane was fabricated and its mechanical behavior as well as biodegradation property were investigated. The osteoconductive potency of the silk fibroin membranes were evaluated in a defect rabbit calvarial model. Silk fibroin membrane showed the modulated biodegradable and mechanical properties via ethanol treatment with different concentration. The membrane could prevent soft tissue invasion from normal tissue healing, and the amounts of new bone and defect closure with silk fibroin membrane were similar to those of commercially available collagen membrane.
Collapse
Affiliation(s)
- Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology(Zhejiang), College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Junmao Guo
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology(Zhejiang), College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Cen Chen
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenxue Yao
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Sung-Min Chung
- Sung-Min Chung Genoss Co., Ltd., Suwon 443-270, Republic of Korea
| | - Juming Yao
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab for Textile Fiber Materials and Processing Technology(Zhejiang), College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - In-Seop Lee
- Institute of Natural Sciences, Yonsei University, 134 Shinchon-dong, Seodaemoon-gu, Seoul 120-749, Republic of Korea
| | - Xiangdong Kong
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
15
|
Wang X, Hu L, Li C, Gan L, He M, He X, Tian W, Li M, Xu L, Li Y, Chen Y. Improvement in physical and biological properties of chitosan/soy protein films by surface grafted heparin. Int J Biol Macromol 2016; 83:19-29. [DOI: 10.1016/j.ijbiomac.2015.11.052] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/25/2022]
|