1
|
Spaeth K, Nawaz Q, Schilling T, Goetz-Neunhoeffer F, Detsch R, Boccaccini AR, Hurle K. New Insights Into Application Relevant Properties of Cu 2+-Doped Brushite Cements. J Biomed Mater Res B Appl Biomater 2024; 112:e35479. [PMID: 39225415 DOI: 10.1002/jbm.b.35479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Doping of brushite cements with metal ions can entail many positive effects on biological and physicochemical properties. Cu2+ ions are known to exhibit antibacterial properties and can additionally have different positive effects on cells as trace elements, whereas high Cu2+ concentrations are cytotoxic. For therapeutical applications of bone cement, a combination of good biocompatibility and sufficient mechanical properties is required. Therefore, the aim of this study was to investigate different physicochemical and biological aspects, relevant for application, of a brushite cement with Cu2+-doped β-tricalcium phosphate, monocalcium phosphate monohydrate and phytic acid as setting retarder. Additionally, the ion release was compared with a cement with citric acid as setting retarder. The investigated cements showed good injectability coefficients, as well as compressive strength values sufficient for application. Furthermore, no antibacterial effects were detected irrespective of the Cu2+ concentration or the bacterial strain. The cell experiments with eluate samples showed that the viability of MC3T3-E1 cells tended to decrease with increasing Cu2+ concentration in the cement. It is suggested that these biological responses are caused by the difference in the Cu2+ release from the hardened cement depending on the solvent medium. Furthermore, the cements showed a steady release of Cu2+ ions to a lesser extent in comparison with a cement with citric acid as setting retarder, where a burst release of Cu2+ was observed. In conclusion, despite the anticipated antibacterial effect of Cu2+-doped cements was lacking and mammalian cell viability was slightly affected, Cu2+-concentrations maintained the physicochemical properties as well as the compressive strength of cements and the slow ion release from cements produced with phytic acid is considered advantageous compared to citric acid-based formulations.
Collapse
Affiliation(s)
- Karla Spaeth
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Qaisar Nawaz
- Department Materials Science and Engineering, Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tatjana Schilling
- Department for Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication, Julius-Maximilians-Universität Würzburg (JMU), Würzburg, Germany
| | | | - Rainer Detsch
- Department Materials Science and Engineering, Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Aldo R Boccaccini
- Department Materials Science and Engineering, Biomaterials, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katrin Hurle
- GeoZentrum Nordbayern, Mineralogy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
2
|
Lone SB, Zeeshan R, Khadim H, Khan MA, Khan AS, Asif A. Synthesis, monomer conversion, and mechanical properties of polylysine based dental composites. J Mech Behav Biomed Mater 2024; 151:106398. [PMID: 38237205 DOI: 10.1016/j.jmbbm.2024.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
OBJECTIVE The aim of this study was to synthesize a new bioactive and antibacterial composite by incorporating reactive calcium phosphate and antibacterial polylysine into a resin matrix and evaluate the effect of these fillers on structural analysis, degree of monomer conversion, mechanical properties, and bioactivity of these newly developed polypropylene based dental composites. METHODOLOGY Stock monomers were prepared by mixing urethane dimethacrylate and polypropylene glycol dimethacrylate and combined with 40 wt% silica to make experimental control (E-C). The other three experimental groups contained a fixed percentage of silica (40 wt%), monocalcium phosphate monohydrate, and β-tri calcium phosphate (5 wt% each) with varying amounts of polylysine (PL). These groups include E-CCP0 (0 wt% PL), E-CCP5 (5 wt% PL) and E-CCP10 (10 wt% PL). The commercial control used was Filtek™ Z250 3M ESPE. The degree of conversion was assessed by using Fourier transform infrared spectroscopy (FTIR). Compressive strength and Vicker's micro hardness testing were evaluated after 24 h of curing the samples. For bioactivity, prepared samples were placed in simulated body fluid for 0, 1, 7, and 28 days and were analyzed using a scanning electron microscope (SEM). SPSS 23 was used to analyze the data and one-way ANOVA and post hoc tukey's test were done, where the significant level was set ≤0.05. RESULTS Group E-C showed better mechanical properties than other experimental and commercial control groups. Group E-C showed the highest degree of conversion (72.72 ± 1.69%) followed by E-CCP0 (72.43 ± 1.47%), Z250 (72.26 ± 1.75%), E-CCP10 (71.07 ± 0.19%), and lowest value was shown by E-CCP5 (68.85 ± 7.23%). In shear bond testing the maximum value was obtained by E-C. The order in decreasing value of bond strength is E-C (8.13 ± 3.5 MPa) > Z250 (2.15 ± 1.1 MPa) > E-CCP10 (2.08 ± 2.1 MPa) > E-CCP5 (0.94 ± 0.8 MPa) > E-CCP0 (0.66 ± 0.2 MPa). In compressive testing, the maximum strength was observed by commercial control i.e., Z250 (210.36 ± 18 MPa) and E-C (206.55 ± 23 MPa), followed by E-CCP0 (108.06 ± 19 MPa), E-CCP5 (94.16 ± 9 MPa), and E-CCP10 (80.80 ± 13 MPa). The maximum number of hardness was shown by E-C (93.04 ± 8.23) followed by E-CCP0 (38.93 ± 9.21) > E-CCP10 (35.21 ± 12.31) > E-CCP5 (34.34 ± 12.49) > Z250 (25 ± 2.61). SEM images showed that the maximum apatite layer as shown by E-CCP10 and the order followed as E-CCP10 > E-CCP5 > E-CCP0 >Z250> E-C. CONCLUSION The experimental formulation showed an optimal degree of conversion with compromised mechanical properties when the polylysine percentage was increased. Apatite layer formation and polylysine at the interface may result in remineralization and ultimately lead to the prevention of secondary caries formation.
Collapse
Affiliation(s)
- Saadia Bano Lone
- Department of Dental Materials, Rashid Latif Dental College, Lahore, Pakistan
| | - Rabia Zeeshan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Hina Khadim
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Muhammad Adnan Khan
- Department of Dental Materials, Institute of Basic Medical Sciences, Khyber Medical University Peshawar, Peshawar, Pakistan
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Anila Asif
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.
| |
Collapse
|
3
|
Lukina Y, Safronova T, Smolentsev D, Toshev O. Calcium Phosphate Cements as Carriers of Functional Substances for the Treatment of Bone Tissue. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4017. [PMID: 37297151 PMCID: PMC10254876 DOI: 10.3390/ma16114017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Interest in calcium phosphate cements as materials for the restoration and treatment of bone tissue defects is still high. Despite commercialization and use in the clinic, the calcium phosphate cements have great potential for development. Existing approaches to the production of calcium phosphate cements as drugs are analyzed. A description of the pathogenesis of the main diseases of bone tissue (trauma, osteomyelitis, osteoporosis and tumor) and effective common treatment strategies are presented in the review. An analysis of the modern understanding of the complex action of the cement matrix and the additives and drugs distributed in it in relation to the successful treatment of bone defects is given. The mechanisms of biological action of functional substances determine the effectiveness of use in certain clinical cases. An important direction of using calcium phosphate cements as a carrier of functional substances is the volumetric incorporation of anti-inflammatory, antitumor, antiresorptive and osteogenic functional substances. The main functionalization requirement for carrier materials is prolonged elution. Various release factors related to the matrix, functional substances and elution conditions are considered in the work. It is shown that cements are a complex system. Changing one of the many initial parameters in a wide range changes the final characteristics of the matrix and, accordingly, the kinetics. The main approaches to the effective functionalization of calcium phosphate cements are considered in the review.
Collapse
Affiliation(s)
- Yulia Lukina
- National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Priorova 10, 127299 Moscow, Russia;
- Faculty of Digital Technologies and Chemical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047 Moscow, Russia
| | - Tatiana Safronova
- Department of Chemistry, Lomonosov Moscow State University, Building 3, Leninskie Gory 1, 119991 Moscow, Russia;
- Department of Materials Science, Lomonosov Moscow State University, Building 73, Leninskie Gory 1, 119991 Moscow, Russia;
| | - Dmitriiy Smolentsev
- National Medical Research Center for Traumatology and Orthopedics Named after N.N. Priorov, Ministry of Health of the Russian Federation, Priorova 10, 127299 Moscow, Russia;
| | - Otabek Toshev
- Department of Materials Science, Lomonosov Moscow State University, Building 73, Leninskie Gory 1, 119991 Moscow, Russia;
| |
Collapse
|
4
|
Zhao X, Ma H, Han H, Zhang L, Tian J, Lei B, Zhang Y. Precision medicine strategies for spinal degenerative diseases: Injectable biomaterials with in situ repair and regeneration. Mater Today Bio 2022; 16:100336. [PMID: 35799898 PMCID: PMC9254127 DOI: 10.1016/j.mtbio.2022.100336] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 11/23/2022] Open
Abstract
As the population ages, spinal degeneration seriously affects quality of life in middle-aged and elderly patients, and prevention and treatment remain challenging for clinical surgeons. In recent years, biomaterials-based injectable therapeutics have attracted much attention for spinal degeneration treatment due to their minimally invasive features and ability to perform precise repair of irregular defects. However, the precise design and functional control of bioactive injectable biomaterials for efficient spinal degeneration treatment remains a challenge. Although many injectable biomaterials have been reported for the treatment of spinal degeneration, there are few reviews on the advances and effects of injectable biomaterials for spinal degeneration treatment. This work reviews the current status of the design and fabrication of injectable biomaterials, including hydrogels, bone cements and scaffolds, microspheres and nanomaterials, and the current progress in applications for treating spinal degeneration. Additionally, registered clinical trials were also summarized and key challenges and clinical translational prospects for injectable materials for the treatment of spinal degenerative diseases are discussed.
Collapse
Affiliation(s)
- Xiaoming Zhao
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hongyun Ma
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Hao Han
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liuyang Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Jing Tian
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Bo Lei
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, Shaanxi, China
| | - Yingang Zhang
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
5
|
Li S, Cui Y, Liu H, Tian Y, Wang G, Fan Y, Wang J, Wu D, Wang Y. Application of bioactive metal ions in the treatment of bone defects. J Mater Chem B 2022; 10:9369-9388. [PMID: 36378123 DOI: 10.1039/d2tb01684b] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The treatment of bone defects is an important problem in clinical practice. The rapid development of bone tissue engineering (BTE) may provide a new method for bone defect treatment. Metal ions have been widely studied in BTE and demonstrated a significant effect in promoting bone tissue growth. Different metal ions can be used to treat bone defects according to specific conditions, including promoting osteogenic activity, inhibiting osteoclast activity, promoting vascular growth, and exerting certain antibacterial effects. Multiple studies have confirmed that metal ions-modified composite scaffolds can effectively promote bone defect healing. By studying current extensive research on metal ions in the treatment of bone defects, this paper reviews the mechanism of metal ions in promoting bone tissue growth, analyzes the loading mode of metal ions, and lists some specific applications of metal ions in different types of bone defects. Finally, this paper summarizes the advantages and disadvantages of metal ions and analyzes the future research trend of metal ions in BTE. This article can provide some new strategies and methods for future research and applications of metal ions in the treatment of bone defects.
Collapse
Affiliation(s)
- Shaorong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yutao Cui
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yuhang Tian
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Gan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yi Fan
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Jingwei Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Dankai Wu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| | - Yanbing Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, P. R. China.
| |
Collapse
|
6
|
Lu T, Wang J, Yuan X, Tang C, Wang X, He F, Ye J. Zinc-doped calcium silicate additive accelerates early angiogenesis and bone regeneration of calcium phosphate cement by double bioactive ions stimulation and immunoregulation. BIOMATERIALS ADVANCES 2022; 141:213120. [PMID: 36122428 DOI: 10.1016/j.bioadv.2022.213120] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Calcium phosphate cement (CPC), a popular injectable bone defect repairing material, has deficiencies in stimulating osteogenesis and angiogenesis. To overcome the weaknesses of CPC, zinc-doped calcium silicate (Zn-CS) which can release bioactive silicon (Si) and zinc (Zn) ions was introduced to CPC. The physicochemical and biological properties of CPC and its composites were evaluated. Firstly, the most effective addition content of calcium silicate (CaSiO3, CS) in promoting the in vitro osteogenesis was first sorted out. On this basis, the most effective Zn doping content in CS for improving osteogenic differentiation of CPC-based composites was screened out. Finally, the immunoregulation of CS/CPC and Zn-CS/CPC in promoting angiogenesis and osteogenesis was studied. The results showed that the most effective incorporation content of CS was 10 wt%. Zn at a doping content of 30 mol% in CS (30Zn-CS) further enhanced the osteogenic capacity of CS/CPC and simultaneously maintained excellent proangiogenic activity. CS/CPC and 30Zn-CS/CPC promoted the recruitment of macrophages and enhanced M2 polarization while inhibiting M1 polarization, which was beneficial to the early vascularization as well as subsequent new bone formation. When implanted into the femoral condylar defects of rabbits, 30Zn-CS/CPC showed high in vivo materials degradation rate, angiogenesis and osteogenesis, due to the synergistic effects of Si and Zn on bio-stimulation and immunoregulation. This study shed light on the synergistic effects of Si and Zn on regulating the angiogenic, osteogenic, and immunoregulatory activity, and 30Zn-CS/CPC is expected to repair the lacunar bone defects effectively.
Collapse
Affiliation(s)
- Teliang Lu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Jinchao Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Xinyuan Yuan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Chenyu Tang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China
| | - Xiaolan Wang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, PR China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510641, PR China.
| |
Collapse
|
7
|
Li J, Li J, Wei Y, Xu N, Li J, Pu X, Wang J, Huang Z, Liao X, Yin G. Ion release behavior of vanadium-doped mesoporous bioactive glass particles and the effect of the released ions on osteogenic differentiation of BMSCs via the FAK/MAPK signaling pathway. J Mater Chem B 2021; 9:7848-7865. [PMID: 34586154 DOI: 10.1039/d1tb01479j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Vanadium is an important trace element in bone and is involved in bone metabolism, bone formation, and bone growth, but the roles of various vanadium ions, especially of pentavalent vanadium, in bone tissue regenerative repair have been underestimated and even misinterpreted for a long time. The main purposes of this study are to investigate the release profile of Si, Ca, P, and V ions from vanadium doped mesoporous bioactive glass (V-MBG) particles and to explore the effect of pentavalent vanadium ions on proliferation and osteogenic differentiation of BMSCs as well as the corresponding osteogenic signaling pathway. On the basis of preparations of V-MBG particles with different pentavalent vanadium contents, the ion release behavior from V-MBG in distilled water and simulated body fluid was systemically investigated. Furthermore, the cytocompatibility and osteogenic effect of V-MBG extracts were studied in rBMSCs, and the related molecular mechanisms were preliminarily discussed. The results of dissolution experiments showed that the V ionic concentration exhibited a burst increase and then a sustained slow increase in the two media. The resultant V ions from 1.0V-MBG, 4.0V-MBG and 10.0V-MBG at 21 days were about 1.1, 5.8, and 12.5 mg L-1 in water, respectively, and 1.6, 4.8 and 12.8 mg L-1 in SBF, respectively. The release behaviors of Si, Ca, P, and V ions were evidently affected by high contents of incorporated vanadium. The cellular results indicated that compared to the control and MBG groups, the V(V) ions in V-MBG extracts at about 19.4 μM markedly promoted the proliferation, the gene and protein expression of BMP-2 and COL-I, and the ALP activity of rBMSCs in non-osteoinductive media, but insignificantly stimulated the OCN protein synthesis. More deeply, V(V) ions at about 19.4 μM significantly upregulated the gene and protein expressions of Itga 2b, FAK, and pERK1/2, demonstrating that V(V) ions could regulate osteogenic differentiation of rBMSCs through the activation of the Itga 2b-FAK-MAPK (pERK1/2) signaling pathway. The in vivo results further confirmed that V-MBG induced and promoted new bone formation in the defect area compared to the PGC and PGC/V-M0 groups. These results would contribute to modify the perception about the biocompatibility and osteogenic promotion of pentavalent vanadium at an appropriate concentration.
Collapse
Affiliation(s)
- Jiangfeng Li
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu, 610065, P. R. China.
| | - Junying Li
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu, 610065, P. R. China.
| | - Yuhao Wei
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Na Xu
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu, 610065, P. R. China.
| | - Jingtao Li
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu, 610065, P. R. China.
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu, 610065, P. R. China.
| | - Zhongbing Huang
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu, 610065, P. R. China.
| | - Xiaoming Liao
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu, 610065, P. R. China.
| | - Guangfu Yin
- College of Biomedical Engineering, Sichuan University, No. 24, South 1st Section, 1st Ring Road, Chengdu, 610065, P. R. China.
| |
Collapse
|
8
|
Hurle K, Oliveira J, Reis R, Pina S, Goetz-Neunhoeffer F. Ion-doped Brushite Cements for Bone Regeneration. Acta Biomater 2021; 123:51-71. [PMID: 33454382 DOI: 10.1016/j.actbio.2021.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/11/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Decades of research in orthopaedics has culminated in the quest for formidable yet resorbable biomaterials using bioactive materials. Brushite cements most salient features embrace high biocompatibility, bioresorbability, osteoconductivity, self-setting characteristics, handling, and injectability properties. Such type of materials is also effectively applied as drug delivery systems. However, brushite cements possess limited mechanical strength and fast setting times. By means of incorporating bioactive ions, which are incredibly promising in directing cell fate when incorporated within biomaterials, it can yield biomaterials with superior mechanical properties. Therefore, it is a key to develop fine-tuned regenerative medicine therapeutics. A comprehensive overview of the current accomplishments of ion-doped brushite cements for bone tissue repair and regeneration is provided herein. The role of ionic substitution on the cements physicochemical properties, such as structural, setting time, hydration products, injectability, mechanical behaviour and ion release is discussed. Cell-material interactions, osteogenesis, angiogenesis, and antibacterial activity of the ion-doped cements, as well as its potential use as drug delivery carriers are also presented. STATEMENT OF SIGNIFICANCE: Ion-doped brushite cements have unbolted a new era in orthopaedics with high clinical interest to restore bone defects and facilitate the healing process, owing its outstanding bioresorbability and osteoconductive/osteoinductive features. Ion incorporation expands their application by increasing the osteogenic and neovascularization potential of the materials, as well as their mechanical performance. Recent accomplishments of brushite cements incorporating bioactive ions are overviewed. Focus was placed on the role of ions on the physicochemical and biological properties of the biomaterials, namely their structure, setting time, injectability and handling, mechanical behaviour, ion release and in vivo osteogenesis, angiogenesis and vascularization. Antibacterial activity of the cements and their potential use for delivery of drugs are also highlighted herein.
Collapse
|
9
|
Bosch-Rué E, Diez-Tercero L, Giordano-Kelhoffer B, Delgado LM, Bosch BM, Hoyos-Nogués M, Mateos-Timoneda MA, Tran PA, Gil FJ, Perez RA. Biological Roles and Delivery Strategies for Ions to Promote Osteogenic Induction. Front Cell Dev Biol 2021; 8:614545. [PMID: 33520992 PMCID: PMC7841204 DOI: 10.3389/fcell.2020.614545] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Bone is the most studied tissue in the field of tissue regeneration. Even though it has intrinsic capability to regenerate upon injury, several pathologies and injuries could hamper the highly orchestrated bone formation and resorption process. Bone tissue engineering seeks to mimic the extracellular matrix of the tissue and the different biochemical pathways that lead to successful regeneration. For many years, the use of extrinsic factors (i.e., growth factors and drugs) to modulate these biological processes have been the preferred choice in the field. Even though it has been successful in some instances, this approach presents several drawbacks, such as safety-concerns, short release profile and half-time life of the compounds. On the other hand, the use of inorganic ions has attracted significant attention due to their therapeutic effects, stability and lower biological risks. Biomaterials play a key role in such strategies where they serve as a substrate for the incorporation and release of the ions. In this review, the methodologies used to incorporate ions in biomaterials is presented, highlighting the osteogenic properties of such ions and the roles of biomaterials in controlling their release.
Collapse
Affiliation(s)
- Elia Bosch-Rué
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Leire Diez-Tercero
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Luis M. Delgado
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Begoña M. Bosch
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Mireia Hoyos-Nogués
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Phong A. Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Francisco Javier Gil
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Roman A. Perez
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Barcelona, Spain
| |
Collapse
|
10
|
Raucci MG, D'Amora U, Ronca A, Ambrosio L. Injectable Functional Biomaterials for Minimally Invasive Surgery. Adv Healthc Mater 2020; 9:e2000349. [PMID: 32484311 DOI: 10.1002/adhm.202000349] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Injectable materials represent very attractive ready-to-use biomaterials for application in minimally invasive surgical procedures. It is shown that this approach to treat, for example, vertebral fracture, craniofacial defects, or tumor resection has significant clinical potential in the biomedical field. In the last four decades, calcium phosphate cements have been widely used as injectable materials for orthopedic surgery due to their excellent properties in terms of biocompatibility and osteoconductivity. However, few clinical studies have demonstrated certain weaknesses of these cements, which include high viscosity, long degradation time, and difficulties being manipulated. To overcome these limitations, the use of sol-gel technology has been investigated, which has shown good results for synthesis of injectable calcium phosphate-based materials. In the last few decades, injectable hydrogels have gained increasing attention owing to their structural similarities with the extracellular matrix, easy process conditions, and potential applications in minimally invasive surgery. However, the need to protect cells during injection leads to the development of double network injectable hydrogels that are capable of being cross-linked in situ. This review will provide the current state of the art and recent advances in the field of injectable biomaterials for minimally invasive surgery.
Collapse
Affiliation(s)
- Maria Grazia Raucci
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Ugo D'Amora
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Alfredo Ronca
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and BiomaterialsNational Research Council (IPCB‐CNR) Viale J.F. Kennedy 54, Mostra d'Oltremare Pad.20 Naples 80125 Italy
| |
Collapse
|
11
|
Lin Z, Cao Y, Zou J, Zhu F, Gao Y, Zheng X, Wang H, Zhang T, Wu T. Improved osteogenesis and angiogenesis of a novel copper ions doped calcium phosphate cement. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111032. [PMID: 32993975 DOI: 10.1016/j.msec.2020.111032] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022]
Abstract
Improving the angio1genesis potential of bone-repairing materials is vital for the repair of cancerous bone defects. It can further facilitate the delivery of active substances with osteogenesis and anti-tumor functions, ultimately promoting the formation of new bone tissues. Copper ions (Cu2+) have been proved to be beneficial to angiogenesis. This study developed a new type of Cu-containing calcium phosphate cement (Cu-CPC) by incorporating with copper phosphate (CuP) nanoparticles with a photothermal anti-tumor effect. The results revealed that the main phases of all hydrated CPCs were hydroxyapatite, unreacted tricalcium phosphate and calcium carbonate. But the hydration products of CPC became thinner after the incorporation of Cu2+. With the increase of CuP concentration, the setting time of CPC was prolonged while the injectability and the compressive strength were increased. The release concentration of Cu2+in vitro was among 0.01 to 0.74 mg/mL, which showed a positive relation with CuP content. Mouse bone marrow stromal cells (mBMSCs) displayed higher adhesion activity, proliferation performance and expression of osteogenic genes and proteins on CPC with 0.01 wt% CuP (0.01Cu-CPC) and 0.05 wt% CuP (0.05Cu-CPC). When human umbilical vein endothelial cells were co-cultured with 0.01Cu-CPC and 0.05Cu-CPC extracts, the proliferation and angiogenesis-related gene and protein expression were significantly increased, and the in vitro tube formation capacity was promoted. However, higher CuP content inhibited the proliferation of mBMSCs. In conclusion, CPC with 0.01 wt% and 0.05 wt% CuP nanoparticles has the potential to promote bone formation around cancerous bone defects, which would be promising for bone regeneration and treatment of bone tumors.
Collapse
Affiliation(s)
- Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China
| | - Yannan Cao
- Department of Stomatology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Jianming Zou
- Department of Stomatology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Fangyong Zhu
- Department of Stomatology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Yufeng Gao
- Department of Stomatology, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Xiaofei Zheng
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Huajun Wang
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, Guangzhou 510010, China.
| | - Tingting Wu
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, the First Affiliated Hospital, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Zhang F, Zhou M, Gu W, Shen Z, Ma X, Lu F, Yang X, Zheng Y, Gou Z. Zinc-/copper-substituted dicalcium silicate cement: advanced biomaterials with enhanced osteogenesis and long-term antibacterial properties. J Mater Chem B 2020; 8:1060-1070. [PMID: 31939984 DOI: 10.1039/c9tb02691f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of bioactive Ca-silicate-based cements which may simultaneously suppress infection is promising for periapical therapy or alveolar bone defect repair. While these treatments are usually effective in the short term, many of these cements have not been designed to have an affinity with dental tissue in a prolonged anti-infectious manner and are only high alkaline in the early stages. This can lead to less favorable long-term outcomes, such as in bone repair or secondary therapy. Inspired by the strong antibacterial activity of zinc and copper ions, we developed a nonstoichiometric dicalcium silicate (C2S) substituted by 5% or 10% Zn or Cu to endow it with appropriate multifunctions. It was found that the foreign ion substitution could inhibit free CaO content and increase the pH value in the initial ∼6 h. The C2S cement only showed antibacterial activity in the early stage (6-72 h), but the C2S displayed appreciable long-term antibacterial potential against P. aeruginosa, E. faecalis and E. coli (>6 h) and S. aureus (>72 h). Moreover, the enhanced new bone regeneration by Zn substitution in C2S was confirmed in a maxillofacial bone defect model in rabbits. The increases in new bone formation adjacent to C2S-10Zn and C2S after 16 weeks of implantation were 32% and 20%, respectively. And the Tb.N values in the C2S-10Zn and C2S-10Cu groups (∼5.7 and 4.9 mm-1) were over two-fold higher than in the C2S group (∼2.0 mm-1). It is considered that Zn- or Cu-substitution in C2S is promising for applications to infectious bone repair.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Stomatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China.
| | - Mingming Zhou
- Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Weizhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Zheng Shen
- Center of Laboratory Testing, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Xiaohui Ma
- Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310003, China
| | - Fengling Lu
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xianyan Yang
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| | - Youyang Zheng
- Department of Stomatology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou 310008, China
| | - Zhongru Gou
- Bio-nanomaterials and Regenerative Medicine Research Division, Zhejiang-California International Nanosystem Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Su Y, Cockerill I, Zheng Y, Tang L, Qin YX, Zhu D. Biofunctionalization of metallic implants by calcium phosphate coatings. Bioact Mater 2019; 4:196-206. [PMID: 31193406 PMCID: PMC6529680 DOI: 10.1016/j.bioactmat.2019.05.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/26/2019] [Accepted: 05/14/2019] [Indexed: 01/07/2023] Open
Abstract
Metallic materials have been extensively applied in clinical practice due to their unique mechanical properties and durability. Recent years have witnessed broad interests and advances on surface functionalization of metallic implants for high-performance biofunctions. Calcium phosphates (CaPs) are the major inorganic component of bone tissues, and thus owning inherent biocompatibility and osseointegration properties. As such, they have been widely used in clinical orthopedics and dentistry. The new emergence of surface functionalization on metallic implants with CaP coatings shows promise for a combination of mechanical properties from metals and various biofunctions from CaPs. This review provides a brief summary of state-of-art of surface biofunctionalization on implantable metals by CaP coatings. We first glance over different types of CaPs with their coating methods and in vitro and in vivo performances, and then give insight into the representative biofunctions, i.e. osteointegration, corrosion resistance and biodegradation control, and antibacterial property, provided by CaP coatings for metallic implant materials.
Collapse
Affiliation(s)
- Yingchao Su
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Irsalan Cockerill
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, China
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Yi-Xian Qin
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| |
Collapse
|
14
|
Xiong K, Zhang J, Zhu Y, Chen L, Ye J. Zinc doping induced differences in the surface composition, surface morphology and osteogenesis performance of the calcium phosphate cement hydration products. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110065. [PMID: 31546449 DOI: 10.1016/j.msec.2019.110065] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 11/16/2018] [Accepted: 08/08/2019] [Indexed: 11/27/2022]
Abstract
In order to investigate the influence of Zn on the hydration reaction of calcium phosphate cement (CPC), the incompletely hydrated CPC tablets were kept soaking in varying zinc-containing tris-(hydroxymethyl)-aminomethane/hydrochloric acid (Zn-Tris-HCl) buffers. It was found that Zn could retard the CPC hydration, the inhibitory effect was in direct proportional to the Zn content in the Zn-Tris-HCl buffer, and overhigh concentration of Zn (≧800 μM) caused the CPC hydration products having different phase composition and surface morphology. Cell culture experimental results revealed the CPC tablets which were soaked in the Zn-Tris-HCl buffer containing relative low Zn content (≦320 μM) favored the mouse bone mesenchymal stem cells (mBMSCs) spreading. When Zn-doped CPC tablets released 10.91 to 27.15 μM of zinc ions into the cell culture medium, it greatly contributed to the improvement of the proliferation ability and the alkaline phosphatase (ALP) activity of the mBMSCs. In the same case, the expression of osteogenesis related genes such as collagen I and runt-related transcription factor 2 was remarkably up-regulated as well. However, the release of high concentration of Zn (128.58 μM) would significantly reduce the ALP activity of the mBMSCs. Therefore, Zn not only facilitates osteogenesis but also affects the CPC hydration behavior, and the CPC with suitable Zn dosage concentration has great potentials to be used for clinical bone repairing.
Collapse
Affiliation(s)
- Kun Xiong
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jing Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China; Medprin Institute of Technology, Guangzhou 510663, China
| | - Yunyao Zhu
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Chen
- State Key Laboratory for Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jiandong Ye
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
15
|
Roffi A, Kon E, Perdisa F, Fini M, Di Martino A, Parrilli A, Salamanna F, Sandri M, Sartori M, Sprio S, Tampieri A, Marcacci M, Filardo G. A Composite Chitosan-Reinforced Scaffold Fails to Provide Osteochondral Regeneration. Int J Mol Sci 2019; 20:ijms20092227. [PMID: 31067635 PMCID: PMC6539239 DOI: 10.3390/ijms20092227] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/23/2022] Open
Abstract
Several biomaterials have recently been developed to address the challenge of osteochondral regeneration. Among these, chitosan holds promises both for cartilage and bone healing. The aim of this in vivo study was to evaluate the regeneration potential of a novel hybrid magnesium-doped hydroxyapatite (MgHA), collagen, chitosan-based scaffold, which was tested in a sheep model to ascertain its osteochondral regenerative potential, and in a rabbit model to further evaluate its ability to regenerate bone tissue. Macroscopic, microtomography, histology, histomorphometry, and immunohistochemical analysis were performed. In the sheep model, all analyses did not show significant differences compared to untreated defects (p > 0.05), with no evidence of cartilage and subchondral bone regeneration. In the rabbit model, this bone scaffold provided less ability to enhance tissue healing compared with a commercial bone scaffold. Moreover, persistence of scaffold material and absence of integration with connective tissue around the scaffolds were observed. These results raised some concerns about the osteochondral use of this chitosan composite scaffold, especially for the bone layer. Further studies are needed to explore the best formulation of chitosan-reinforced composites for osteochondral treatment.
Collapse
Affiliation(s)
- Alice Roffi
- Applied and Translational Research (ATR) Center, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elizaveta Kon
- Knee Joint Reconstruction Center-3rd Orthopedic Division, Humanitas Clinical Institute, 20089 Rozzano, Italy.
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20090 Milan, Italy.
| | - Francesco Perdisa
- Hip and Knee Replacement Department, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Alessandro Di Martino
- II Orthopedic and Traumatologic Clinic; IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Annapaola Parrilli
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Francesca Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council (ISTEC-CNR), 48018 Faenza, Italy.
| | - Maria Sartori
- Laboratory of Preclinical and Surgical Studies, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council (ISTEC-CNR), 48018 Faenza, Italy.
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council (ISTEC-CNR), 48018 Faenza, Italy.
| | - Maurilio Marcacci
- Knee Joint Reconstruction Center-3rd Orthopedic Division, Humanitas Clinical Institute, 20089 Rozzano, Italy.
- Department of Biomedical Sciences, Humanitas University, Rozzano, 20090 Milan, Italy.
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS-Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| |
Collapse
|
16
|
Meininger S, Moseke C, Spatz K, März E, Blum C, Ewald A, Vorndran E. Effect of strontium substitution on the material properties and osteogenic potential of 3D powder printed magnesium phosphate scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1145-1158. [PMID: 30812998 DOI: 10.1016/j.msec.2019.01.053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/27/2022]
Abstract
3D powder printing is a versatile method for the fabrication of individual bone implants and was used for the processing of in vivo degradable ceramic scaffolds based on ammonium magnesium phosphate hexahydrate (struvite). In this study, synergetic effects could be achieved by the substitution of magnesium phosphate cements with strontium carbonate. This substitution resulted in 8.2 wt%, 16.4 wt%, and 24.6 wt% Sr2+ doped scaffolds, with a 1.9-3.1 times increased radiopacity compared to pure struvite. The maximal compressive strength of (16.1 ± 1.1) MPa found for strontium substituted magnesium phosphate was in the range of cancelleous bone, which makes these 3D printed structures suitable for medical application in low-load-bearing bone areas. In an ion release study over a course of 18 days, the release of strontium, magnesium, calcium, and phosphate ions from scaffolds was analyzed by means of inductively coupled plasma mass spectrometry. Independent of the scaffold composition the Mg2+ concentrations (83-499 mg/l) continuously increased in the cell media. The Sr2+ release varied between 4.3 μg/day and 15.1 μg/day per g scaffold, corresponding to a Sr2+ concentration in media between 1.14 mg/l and 7.24 mg/l. Moreover, decreasing calcium and phosphate concentrations indicated the precipitation of an amorphous calcium phosphate phase. The superior osteogenic properties of strontium substituted magnesium phosphate, e.g. the increase of osteoblast activity and cell number and the simultaneous suppression of osteoclast differentiation could be verified in vitro by means of WST-assay, TRAP-staining, and SEM imaging.
Collapse
Affiliation(s)
- Susanne Meininger
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Claus Moseke
- Institute for Biomedical Engineering (IBMT), University of Applied Sciences Mittelhessen (THM), Gießen, Germany
| | - Kerstin Spatz
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Emilie März
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Carina Blum
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Andrea Ewald
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany
| | - Elke Vorndran
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Germany.
| |
Collapse
|
17
|
Shi H, Ye X, Zhang J, Ye J. Enhanced Osteogenesis of Injectable Calcium Phosphate Bone Cement Mediated by Loading Chondroitin Sulfate. ACS Biomater Sci Eng 2018; 5:262-271. [PMID: 33405854 DOI: 10.1021/acsbiomaterials.8b00871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Toward repairing critical-sized bone defects, calcium phosphate cement (CPC) has been well recognized as a fairly promising bone graft because of its properties of injectability, self-setting, biocompatibility, and osteoconductivity. However, poor osteogenic capacity of CPC still limits its applications for meeting the demands of bone healing. In this work, chondroitin sulfate (CS), as an important component of the extracellular matrix network, was introduced into CPC to enhance its osteogenesis ability. Incorporation of CS had no evident effect on the phase, morphology, apparent porosity, and compressive strength of hydrated cement products, but it notably enhanced the injectability and improved the antiwashout property of the cement pastes. CS was able to be sustainably released from CS-CPCs in a CS-dose-dependent manner and supposed to have a long-term release potential for constant biological stimulation. CS-CPCs markedly accelerated the preferential adsorption of fibronectin. Furthermore, CS-CPCs significantly improved the adhesion, proliferation, and osteogenic differentiation of bone mesenchymal stem cells, which was synergistically mediated by the adhesion events of cells on the hydrated cements and the stimulation effects of CS molecules. Herein, utilization of CS is supposed to endow injectable calcium phosphate bone cements with enhanced osteogenic capacity and suitable physicochemical properties for numerous promising orthopedic applications.
Collapse
Affiliation(s)
- Haishan Shi
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xiaoling Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Jing Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Jiandong Ye
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
18
|
Lee HJ, Kim B, Padalhin AR, Lee BT. Incorporation of chitosan-alginate complex into injectable calcium phosphate cement system as a bone graft material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:385-392. [PMID: 30423721 DOI: 10.1016/j.msec.2018.09.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 08/04/2018] [Accepted: 09/12/2018] [Indexed: 11/17/2022]
Abstract
Calcium phosphate brushite type of cements have been used to replace bone graft materials because of their biocompatibility and other attractive features. Especially, injectability of cement allows easy handling of minimally invasive surgical techniques. New calcium phosphate cement (CPC) system, brushite based cement incorporated into polyelectrolyte complex, was developed in this study. Chitosan-alginate complex produced by an interaction between a cationic polymer (chitosan) and an anionic polymer (alginate) was loaded in the cement. This improved the functional properties and biocompatibility of the final cement. We optimized the liquid/solid (L/S) ratio of the cement components and investigated the compressive strength, setting time, pH change of CPC0 (with only citric acid) and CPC0.5, 1, and 1.5 (0.5, 1, and 1.5 v/v % chitosan-alginate complex in citric acid solution, respectively). The L/S ratio did not affect structural formation, while the addition of polymer complex showed new formation of macro-pores within CPC. However, a lower L/S ratio and higher amount of added polymer complex shortened the setting time and improved the compressive strength. The appropriate conditions for the injectable bone substitute were CPC1 with an L/S ratio of 0.45. To investigate the effect of the chitosan-alginate complex on CPC system in physiological conditions, CPC0 and CPC1 were implanted in a rabbit femoral head defect model for 1 and 3 months. Micro-computed tomography revealed improved bone formation in CPC1 compared to CPC0 3 months after implantation. Histological analysis revealed newly formed bone tissues around the peripheral sides of CPC0 and CPC1. The results indicate the potential value of the CPC system containing polymer complex as an injectable bone substitute. The study of the CPC-polymer complex system incorporating drugs or cells can be further developed into a controlled release system for faster bone regeneration.
Collapse
Affiliation(s)
- Hyun-Jung Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea
| | - Boram Kim
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, South Korea
| | - Andrew R Padalhin
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, South Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, South Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, South Korea.
| |
Collapse
|
19
|
Filardo G, Perdisa F, Gelinsky M, Despang F, Fini M, Marcacci M, Parrilli AP, Roffi A, Salamanna F, Sartori M, Schütz K, Kon E. Novel alginate biphasic scaffold for osteochondral regeneration: an in vivo evaluation in rabbit and sheep models. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:74. [PMID: 29804259 DOI: 10.1007/s10856-018-6074-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
Current therapeutic strategies for osteochondral restoration showed a limited regenerative potential. In fact, to promote the growth of articular cartilage and subchondral bone is a real challenge, due to the different functional and anatomical properties. To this purpose, alginate is a promising biomaterial for a scaffold-based approach, claiming optimal biocompatibility and good chondrogenic potential. A previously developed mineralized alginate scaffold was investigated in terms of the ability to support osteochondral regeneration both in a large and medium size animal model. The results were evaluated macroscopically and by microtomography, histology, histomorphometry, and immunohistochemical analysis. No evidence of adverse or inflammatory reactions was observed in both models, but limited subchondral bone formation was present, together with a slow scaffold resorption time.The implantation of this biphasic alginate scaffold provided partial osteochondral regeneration in the animal model. Further studies are needed to evaluate possible improvement in terms of osteochondral tissue regeneration for this biomaterial.
Collapse
Affiliation(s)
- Giuseppe Filardo
- Nano-Biotechnology (NABI) Laboratory, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Francesco Perdisa
- Nano-Biotechnology (NABI) Laboratory, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy.
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 73, Dresden, 01307, Germany
| | - Florian Despang
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 73, Dresden, 01307, Germany
| | - Milena Fini
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
- Laboratory of Preclinical and Surgical Studies, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Maurilio Marcacci
- Knee Joint Reconstruction Center - 3rd Orthopaedic Division, Humanitas Clinical Institute, Via Alessandro Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan, Italy
| | - Anna Paola Parrilli
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Alice Roffi
- Nano-Biotechnology (NABI) Laboratory, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Francesca Salamanna
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Maria Sartori
- Laboratory of Biocompatibility, Innovative Technologies and Advanced Therapies, Rizzoli RIT Department, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, Bologna, 40136, Italy
| | - Kathleen Schütz
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 73, Dresden, 01307, Germany
| | - Elizaveta Kon
- Knee Joint Reconstruction Center - 3rd Orthopaedic Division, Humanitas Clinical Institute, Via Alessandro Manzoni 56, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Via Manzoni 113, Rozzano, Milan, Italy
| |
Collapse
|
20
|
Bonazza V, Borsani E, Buffoli B, Parolini S, Inchingolo F, Rezzani R, Rodella LF. In vitro treatment with concentrated growth factors (CGF) and sodium orthosilicate positively affects cell renewal in three different human cell lines. Cell Biol Int 2017; 42:353-364. [DOI: 10.1002/cbin.10908] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Veronica Bonazza
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences; University of Brescia; V.le Europa 11 Brescia 25123 Italy
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences; University of Brescia; V.le Europa 11 Brescia 25123 Italy
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”; University of Brescia; Brescia 25123 Italy
| | - Barbara Buffoli
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences; University of Brescia; V.le Europa 11 Brescia 25123 Italy
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”; University of Brescia; Brescia 25123 Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine; University of Brescia; Brescia 25123 Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine; University of Bari “Aldo Moro”; Bari 70121 Italy
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences; University of Brescia; V.le Europa 11 Brescia 25123 Italy
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”; University of Brescia; Brescia 25123 Italy
| | - Luigi Fabrizio Rodella
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences; University of Brescia; V.le Europa 11 Brescia 25123 Italy
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs-(ARTO)”; University of Brescia; Brescia 25123 Italy
| |
Collapse
|
21
|
The role of new zinc incorporated monetite cements on osteogenic differentiation of human mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:485-494. [PMID: 28576013 DOI: 10.1016/j.msec.2017.04.086] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 11/20/2022]
Abstract
β-Tricalcium phosphate particles were sintered in the presence of different amounts (0-0.72mol) of zinc oxide (ZnO) to prepare zinc doped β-TCP (Znβ-TCP) particles for further use in novel monetite (DCPA: CaHPO4) zinc incorporated bone cements with osteogenic differentiation potential towards human mesenchymal stem cells (hMSCs). XRD analysis of zinc incorporated cements prepared with β-TCP reagent particles doped with different amount of ZnO (i.e. 0.03, 0.09 and 0.18mol ZnO) revealed the presence of unreacted Znβ-TCP and monetite. Furthermore, it was shown that zinc ions preferentially occupied the β-TCP crystal lattice rather than the monetite one. Release experiments indicated a burst release of ions from the different fabricated cements during the first 24h of immersion with zinc concentrations ranging between 85 and 100% of the total concentration released over a period of 21days. Cell proliferation significantly increased (P<0.05) on zinc incorporated monetite respect to control samples (Zinc-free cement) at 7 and 14days post seeding. The expression of Runx-2 was significantly up regulated (P<0.05) in the case of cells seeded on monetite prepared with β-TCP doped with 0.03 moles of ZnO. On the other hand, the cell mineralization as well as the expression of osteogenic marker genes ALP and OSC decreased significantly (P<0.05) at 14days post cell seeding. In conclusion, these results suggest that the zinc ions released from the cements during the first 24h of culture played a critical role in regulating the osteogenic differentiation of hMSCs.
Collapse
|