1
|
Wu L, Tan Y, Zhang H, Guo P, Yang D. A laser free self-luminous nanosystem for photodynamic therapy of cervical cancer cells. Photodiagnosis Photodyn Ther 2023; 44:103756. [PMID: 37604218 DOI: 10.1016/j.pdpdt.2023.103756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Photodynamic therapy is a tumor treatment strategy. However, most of the photodynamic therapies rely on laser irradiation triggering, which limits their application in deep tissues. This study designed a self-luminescent nano system, hybrid protein oxygen nanocarrier coated graphene quantum dots (GQDs@HPOC) and mesoporous silica nanoparticles coated Luminol (L@MSNs), which self-assembled into GQDs@HPOC/L@MSNs without laser irradiation. The system utilized the weak acidic environment of tumors to trigger the release of Luminol and the chemiluminescence was catalyzed by HPOC. Next CRET occurred between Luminol and GQDs, producing 1O2, which could generate photodynamic damage to cervical cancer cells without the need for external laser irradiation. The system achieved the peak uptake in primary cervical cancer cells in 3 h, and had good biosafety before self-assembly. The system could significantly kill cells at a concentration of 16 μg/ml. The system will be further applied in in vivo experiments to investigate its therapeutic ability, providing a new strategy for the clinical treatment of cervical cancer.
Collapse
Affiliation(s)
- Lin Wu
- Jiangyin Hospital of Traditional Chinese Medicine, Wuxi, Jiangsu 214400, PR China
| | - Yiping Tan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Huaiyin Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Pengyue Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, PR China.
| |
Collapse
|
2
|
Pelinescu D, Anastasescu M, Bratan V, Maraloiu VA, Negrila C, Mitrea D, Calderon-Moreno J, Preda S, Gîfu IC, Stan A, Ionescu R, Stoica I, Anastasescu C, Zaharescu M, Balint I. Antibacterial Activity of PVA Hydrogels Embedding Oxide Nanostructures Sensitized by Noble Metals and Ruthenium Dye. Gels 2023; 9:650. [PMID: 37623105 PMCID: PMC10454060 DOI: 10.3390/gels9080650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Nanostructured oxides (SiO2, TiO2) were synthesized using the sol-gel method and modified with noble metal nanoparticles (Pt, Au) and ruthenium dye to enhance light harvesting and promote the photogeneration of reactive oxygen species, namely singlet oxygen (1O2) and hydroxyl radical (•OH). The resulting nanostructures were embedded in a transparent polyvinyl alcohol (PVA) hydrogel. Morphological and structural characterization of the bare and modified oxides was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-Vis spectroscopy, and X-ray photoelectron spectroscopy (XPS). Additionally, electrokinetic potential measurements were conducted. Crystallinity data and elemental analysis of the investigated systems were obtained through X-ray diffraction and X-ray fluorescence analyses, while the chemical state of the elements was determined using XPS. The engineered materials, both as simple powders and embedded in the hydrogel, were evaluated for their ability to generate reactive oxygen species (ROS) under visible and simulated solar light irradiation to establish a correlation with their antibacterial activity against Staphylococcus aureus. The generation of singlet oxygen (1O2) by the samples under visible light exposure can be of significant importance for their potential use in biomedical applications.
Collapse
Affiliation(s)
- Diana Pelinescu
- Faculty of Biology, Intrarea Portocalilor 1–3, Sector 5, 060101 Bucharest, Romania; (D.P.); (I.S.)
| | - Mihai Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Veronica Bratan
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Valentin-Adrian Maraloiu
- National Institute of Materials Physics, 405A Atomistilor St., 077125 Magurele, Ilfov, Romania; (V.-A.M.); (C.N.)
| | - Catalin Negrila
- National Institute of Materials Physics, 405A Atomistilor St., 077125 Magurele, Ilfov, Romania; (V.-A.M.); (C.N.)
| | - Daiana Mitrea
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Jose Calderon-Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Silviu Preda
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Ioana Catalina Gîfu
- National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Adrian Stan
- Techir Cosmetics SRL, Plantelor Str., 907015 Agigea, Romania;
| | - Robertina Ionescu
- Faculty of Biology, Intrarea Portocalilor 1–3, Sector 5, 060101 Bucharest, Romania; (D.P.); (I.S.)
| | - Ileana Stoica
- Faculty of Biology, Intrarea Portocalilor 1–3, Sector 5, 060101 Bucharest, Romania; (D.P.); (I.S.)
| | - Crina Anastasescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Maria Zaharescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| | - Ioan Balint
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.A.); (V.B.); (D.M.); (M.Z.); (I.B.)
| |
Collapse
|
3
|
Moore JV, Wylie MP, Andrews GP, McCoy CP. Photosensitiser-incorporated microparticles for photodynamic inactivation of bacteria. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112671. [PMID: 36870247 DOI: 10.1016/j.jphotobiol.2023.112671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/27/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023]
Abstract
Antimicrobial resistance is an ever-growing global concern, making the development of alternative antimicrobial agents and techniques an urgent priority to protect public health. Antimicrobial photodynamic therapy (aPDT) is one such promising alternative, which harnesses the cytotoxic action of reactive oxygen species (ROS) generated upon irradiation of photosensitisers (PSs) with visible light to destroy microorganisms. In this study we report a convenient and facile method to produce highly photoactive antimicrobial microparticles, exhibiting minimal PS leaching, and examine the effect of particle size on antimicrobial activity. A ball milling technique produced a range of sizes of anionic p(HEMA-co-MAA) microparticles, providing large surface areas available for electrostatic attachment of the cationic PS, Toluidine Blue O (TBO). The TBO-incorporated microparticles showed a size-dependent effect on antimicrobial activity, with a decrease in microparticle size resulting in an increase in the bacterial reductions achieved when irradiated with red light. The >6 log10Pseudomonas aeruginosa and Staphylococcus aureus reductions (>99.9999%) achieved within 30 and 60 min, respectively, by TBO-incorporated >90 μm microparticles were attributed to the cytotoxic action of the ROS generated by TBO molecules bound to the microparticles, with no PS leaching from these particles detected over this timeframe. TBO-incorporated microparticles capable of significantly reducing the bioburden of solutions with short durations of low intensity red light irradiation and minimal leaching present an attractive platform for various antimicrobial applications.
Collapse
Affiliation(s)
- Jessica V Moore
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Matthew P Wylie
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Gavin P Andrews
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
4
|
Roy D, Jenkins B, Ali A, Herschmann JR, Harris M, Zamadar M, Simington L, Odunuga O, Adhikari P, Pradhan P, Sarkar S, Pattabiram M, Sengupta B. Multi-component redox system for selective and potent antineoplastic activity towards ovarian cancer cells. Biochem Biophys Res Commun 2022; 592:38-43. [PMID: 35026603 PMCID: PMC8959003 DOI: 10.1016/j.bbrc.2022.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/30/2022]
Abstract
Ovarian cancer is the deadliest gynecological cancer which rarely causes symptoms, and goes undetected until reaching the advanced stage of drug-resistant metastases. The cationic porphyrin meso-tetra(4-N-methylpyridyl)porphine (TMPyP) is a well-known photosensitizer (PS) used in photodyamic therapy (PDT) for curing cancer due to its strong affinity for DNA and high yield of reactive oxygen species (ROS) upon light activation. The practicality to irradiate tumor cells alone in the physiological system being slim (due to the close proximity of healthy cells and tumors), we looked for a variation in the PDT using a mixture of TMPyP with 1,5-dihydroxynapthalene (DHN) and Fe(III) ions at a mole ratio of 1:20:17 (drug combo) respectively in aqueous solution. The drug combo needs no photoactivation in H2O2 rich environment (mimicking the microenvironment of cancer/tumor), where it generates ȮH and juglone, the latter being a known potent anticancer agent. In vitro studies of the drug combo in drug resistant and sensitive ovarian cancer cell lines showed drastic growth inhibition and cell death compared to normal epithelial cells. The drug combo provides an effective and non-invasive alternative to conventional PDT, exploiting the cytosolic carcinogenic H2O2 to produce an efficient anticancer treatment. The unique action of cancer-specific cytotoxicity arises from the redox chemistry involving activation of Fe(III) as the oxidizing agent to generate juglone, which utilizes the cytosolic ROS in cancer cells against itself.
Collapse
Affiliation(s)
- Debarshi Roy
- Department of Biological Sciences, Alcorn State University, Lorman, MS, USA.
| | - Brenita Jenkins
- Department of Biological Sciences, Alcorn State University, Lorman, MS, USA
| | - Aqeeb Ali
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Jacob R. Herschmann
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Michele Harris
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Matibur Zamadar
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA.
| | - Laken Simington
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Odutayo Odunuga
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA
| | - Prakash Adhikari
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS, USA
| | - Prabhakar Pradhan
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS, USA
| | - Sanjay Sarkar
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mahesh Pattabiram
- Department of Chemistry, University of Nebraska Kearney, Kearney, NE, USA
| | - Bidisha Sengupta
- Department of Chemistry and Biochemistry, Stephen F. Austin State University, Nacogdoches, TX, USA.
| |
Collapse
|
5
|
Zhong Y, Zhang L, Sun S, Zhou Z, Ma Y, Hong H, Yang D. Sequential drug delivery by injectable macroporous hydrogels for combined photodynamic-chemotherapy. J Nanobiotechnology 2021; 19:333. [PMID: 34688292 PMCID: PMC8542336 DOI: 10.1186/s12951-021-01066-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
With hollow mesoporous silica (hMSN) and injectable macroporous hydrogel (Gel) used as the internal and external drug-loading material respectively, a sequential drug delivery system DOX-CA4P@Gel was constructed, in which combretastatin A4 phosphate (CA4P) and doxorubicin (DOX) were both loaded. The anti-angiogenic drug, CA4P was initially released due to the degradation of Gel, followed by the anti-cell proliferative drug, DOX, released from hMSN in tumor microenvironment. Results showed that CA4P was mainly released at the early stage. At 48 h, CA4P release reached 71.08%, while DOX was only 24.39%. At 144 h, CA4P was 78.20%, while DOX release significantly increased to 61.60%, showing an obvious sequential release behavior. Photodynamic properties of porphyrin endow hydrogel (ϕΔ(Gel) = 0.91) with enhanced tumor therapy effect. In vitro and in vivo experiments showed that dual drugs treated groups have better tumor inhibition than solo drug under near infrared laser irradiation, indicating the effectivity of combined photodynamic-chemotherapy.
Collapse
Affiliation(s)
- Yuanyuan Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shian Sun
- Xuzhou Air Force College, Xuzhou, 221000, Jiangsu, China
| | - Zhenghao Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yunsu Ma
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hao Hong
- Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
6
|
Korpusik AB, Tan Y, Garrison JB, Tan W, Sumerlin BS. Aptamer-Conjugated Micelles for Targeted Photodynamic Therapy Via Photoinitiated Polymerization-Induced Self-Assembly. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Angie B. Korpusik
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Yan Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
| | - John B. Garrison
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, P. R. China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Development of a high-level light-activated disinfectant for hard surfaces and medical devices. Int J Antimicrob Agents 2021; 58:106360. [PMID: 33992750 DOI: 10.1016/j.ijantimicag.2021.106360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/30/2021] [Accepted: 05/01/2021] [Indexed: 11/23/2022]
Abstract
BACKGROUND Bacterial spores are an important consideration in healthcare decontamination, with cross-contamination highlighted as a major route of transmission due to their persistent nature. Their containment is extremely difficult due to the toxicity and cost of first-line sporicides. METHODS Susceptibility of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli to phenothiazinium photosensitizers and cationic surfactants under white- or red-light irradiation was assessed by determination of minimum inhibitory concentrations, minimum bactericidal concentrations and time-kill assays. B. subtilis spore eradication was assessed via time-kill assays, with and without nutrient and non-nutrient germinant supplementation of photosensitizer, surfactant and photosensitizer-surfactant solutions in the presence and absence of light. RESULTS Under red-light irradiation, >5-log10 colony-forming units/mL reduction of vegetative bacteria was achieved within 10 min with toluidine blue O (TBO) and methylene blue (MB). Cationic surfactant addition did not significantly enhance spore eradication by photosensitizers (P>0.05). However, addition of a nutrient germinant mixture to TBO achieved a 6-log10 reduction after 20 min of irradiation, while providing 1-2 log10 improvement in spore eradication for MB and pyronin Y. CONCLUSIONS Light-activated photosensitizer solutions in the presence of surfactants and germination-promoting agents provide a highly effective method to eradicate dormant and vegetative bacteria. These solutions could provide a useful alternative to traditional chemical agents used for high-level decontamination and infection control within health care.
Collapse
|
8
|
|
9
|
Yang M, Lu X, Tang L, Fu Y, Yang P. Thermosensitive nanocomposite gel loaded zinc phthalocyanine for photodynamic therapy. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02253-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Wound therapy via a photo-responsively antibacterial nano-graphene quantum dots conjugate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 210:111978. [PMID: 32771913 DOI: 10.1016/j.jphotobiol.2020.111978] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/13/2020] [Accepted: 07/21/2020] [Indexed: 01/17/2023]
Abstract
Common bacterial pathogens have become resistant to traditional antibiotics, representing an indispensable public health crisis. Photodynamic therapy (PDT), especially when common visible light sources are used as photodynamic power, is a promising bactericidal method. Based on the special photodynamic properties triggered by commonly available light emitting diode (LED) lamps, a kind of graphene quantum dots (GQDs) based composite system (termed GQDs@hMSN(EM)) was prepared through loading both GQDs and erythromycin (EM) into the hollow mesoporous silica nanoparticle (hMSN), aiming to achieve joint antimicrobial effect. Bacterial density experiments confirmed that GQDs@hMSN(EM) had combined antimicrobial effects from photodynamic effect and drug release on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). In animal models, the healing degree of wounds infected by bacteria also confirmed that GQDs@hMSN(EM) group had the best therapeutic effect, with the significantly reduced inflammatory factors in blood. Different from traditional GQDs synthesized by solvothermal method, the as-prepared GQDs@hMSN can produce singlet oxygen (1O2) under light exposure to destroy the structure of bacteria, thus achieving highly efficient antimicrobial effect. The GQDs@hMSN(EM) in this work possesses good antimicrobial activity, sufficient drug loading, and controllable drug release ability, which provides a new opportunity for GQDs-based nanoplatform to enhance antimicrobial effect and reduce their drug resistance.
Collapse
|
11
|
Khurana B, Gierlich P, Meindl A, Gomes-da-Silva LC, Senge MO. Hydrogels: soft matters in photomedicine. Photochem Photobiol Sci 2019; 18:2613-2656. [PMID: 31460568 DOI: 10.1039/c9pp00221a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT), a shining beacon in the realm of photomedicine, is a non-invasive technique that utilizes dye-based photosensitizers (PSs) in conjunction with light and oxygen to produce reactive oxygen species to combat malignant tissues and infectious microorganisms. Yet, for PDT to become a common, routine therapy, it is still necessary to overcome limitations such as photosensitizer solubility, long-term side effects (e.g., photosensitivity) and to develop safe, biocompatible and target-specific formulations. Polymer based drug delivery platforms are an effective strategy for the delivery of PSs for PDT applications. Among them, hydrogels and 3D polymer scaffolds with the ability to swell in aqueous media have been deeply investigated. Particularly, hydrogel-based formulations present real potential to fulfill all requirements of an ideal PDT platform by overcoming the solubility issues, while improving the selectivity and targeting drawbacks of the PSs alone. In this perspective, we summarize the use of hydrogels as carrier systems of PSs to enhance the effectiveness of PDT against infections and cancer. Their potential in environmental and biomedical applications, such as tissue engineering photoremediation and photochemistry, is also discussed.
Collapse
Affiliation(s)
- Bhavya Khurana
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland.
| | - Piotr Gierlich
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and CQC, Coimbra Chemistry Department, University of Coimbra, Coimbra, Portugal
| | - Alina Meindl
- Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | | | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany and Institute for Advanced Study (TUM-IAS), Technische Universität München, Lichtenberg-Str. 2a, 85748 Garching, Germany
| |
Collapse
|
12
|
Physical Insights into Molecular Sensors, Molecular Logic Gates, and Photosensitizers in Photodynamic Therapy. J CHEM-NY 2019. [DOI: 10.1155/2019/6793490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In this article, the importance of charge/electron transfer in two rapidly growing areas of science is highlighted. In the field of molecular sensors, it plays a considerable role on the detection of molecular systems to serve as fluorescence sensors, switches, and molecular logic gates (MLG) replacing the semiconductor electronics, while in the field of photodynamic therapy, it acts competitive. On these scientific fields, a lot of research has been conducted in the last decades to find out potential candidates. In the field of fluorescent sensors, switches, and molecular logic gates, the fluorescent photo-induced electron transfer switching principle is responsible for the quenching of fluorescence. The manipulation of the quenching can lead to the design of an ideal candidate for complicated molecular logic operation. In the field of photodynamic therapy (PDT), the intersystem crossings occurring between excited singlet and triplet states are the key for an ideal photosensitizer (PS) candidate. The triplets must present relatively long lifetimes, and they must lie near or above the energy which is needed for the excitation of molecular oxygen. It this case, charge/electron phenomena can act competitive, and they are not desirable. However, there are a few complexes which are good PSs of singlet oxygen despite the charge transfer (CT) nature of their lowest excited state.
Collapse
|
13
|
Targeted photodynamic-induced singlet oxygen production by peptide-conjugated biodegradable nanoparticles for treatment of skin melanoma. Photodiagnosis Photodyn Ther 2018; 23:181-189. [DOI: 10.1016/j.pdpdt.2018.05.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/15/2018] [Accepted: 05/31/2018] [Indexed: 01/30/2023]
|
14
|
González-Delgado JA, Castro PM, Machado A, Araújo F, Rodrigues F, Korsak B, Ferreira M, Tomé JP, Sarmento B. Hydrogels containing porphyrin-loaded nanoparticles for topical photodynamic applications. Int J Pharm 2016; 510:221-31. [DOI: 10.1016/j.ijpharm.2016.06.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 10/21/2022]
|
15
|
De Baróid ÁT, McCoy CP, Craig RA, Carson L, Andrews GP, Jones DS, Gorman SP. Optimization of singlet oxygen production from photosensitizer-incorporated, medically relevant hydrogels. J Biomed Mater Res B Appl Biomater 2015; 105:320-326. [PMID: 26505264 PMCID: PMC5244673 DOI: 10.1002/jbm.b.33562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/05/2015] [Accepted: 10/11/2015] [Indexed: 11/12/2022]
Abstract
Photodynamic therapy and photodynamic antimicrobial chemotherapy are widely used, but despite this, the relationships between fluence, wavelength of irradiation and singlet oxygen (1O2) production are poorly understood. To establish the relationships between these factors in medically relevant materials, the effect of fluence on 1O2 production from a tetrakis(4‐N‐methylpyridyl)porphyrin (TMPyP)‐incorporated 2‐hydroxyethyl methacrylate: methyl methacrylate: methacrylic acid (HEMA: MMA:MAA) copolymer, a total energy of 50.48 J/cm2, was applied at varying illumination power, and times. 1O2 production was characterized using anthracene‐9,10‐dipropionic acid, disodium salt (ADPA) using a recently described method. Using two light sources, a white LED array and a white halogen source, the LED array was found to produce less 1O2 than the halogen source when the same power (over 500 − 600 nm) and time conditions were applied. Importantly, it showed that the longest wavelength Q band (590 nm) is primarily responsible for 1O2 generation, and that a linear relationship exists between increasing power and time and the production of singlet oxygen. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 320–326, 2017.
Collapse
Affiliation(s)
- Áine T De Baróid
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Colin P McCoy
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Rebecca A Craig
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Louise Carson
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Gavin P Andrews
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - David S Jones
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Sean P Gorman
- School of Pharmacy, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|