1
|
Zhao HR, Zhao JZ, Zhao N, Xue LF, Xu YX, Yue J, Xiao WL. CA1 induced dental follicle stem cells co-culture with dental pulp stem cells and loaded three-dimensional printed PCL/β-TCP scaffold: a novel strategy for alveolar cleft bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2025; 36:37. [PMID: 40278949 PMCID: PMC12031973 DOI: 10.1007/s10856-025-06889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/06/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Bone tissue engineering for alveolar clefts is in the early stages of development, and more research is needed to determine the optimal cell types, growth factors and delivery methods for the therapy. METHODS We co-cultured Carbonic anhydrase 1 (CA1) induced dental follicle stem cells (DFSCs) with dental pulp stem cells (DPSCs). In vitro, the Lentivirus vector overexpressing CA1 (LV-CA1) gene was constructed, transfected into DFSCs, and co-cultured with DPSCs indirectly. Osteoblast biomarkers in differentiated DFSCs were detected using quantitative real-time polymerase chain reaction and Western blotting. In vivo, establish a rat alveolar cleft model, transplanted stem cell Polycaprolactone/β-tricalcium phosphate (PCL/β-TCP) three-dimensional printed composite scaffold and samples were collected at 4 and 8 weeks postoperatively. The osteogenic effect was evaluated through micro computed tomography and histomorphometric analysis. RESULTS In vitro, the activity of DFSCs in the LV-CA1+Co-culture group was increased, and the mRNA and protein expressions of CA1, Alkaline phosphatase (ALP), Bone morphogenetic proteins 2 (BMP2), and Runt-related transcription factor 2 (RUNX2) were amplified to varying degrees (P < 0.05). In vivo, micro-CT displayed at 4 and 8 weeks postoperatively, the LV-CA1+Co-culture group had a considerably higher percentage of new bone development (39.1% and 56.9%) (P < 0.05) than the other two groups. Histomorphometric analysis displayed the LV-CA1+Co-culture group had more newly formed bone trabeculae and immature collagen. CONCLUSION A strategy based on a novel osteogenic gene CA1 and dental-derived mesenchymal stem cells co-culture is applied to the alveolar cleft, providing a novel idea for the application of bone tissue engineering in alveolar cleft bone grafting.
Collapse
Affiliation(s)
- Hao-Ran Zhao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jin-Ze Zhao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Ning Zhao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Ling-Fa Xue
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Yao-Xiang Xu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Jin Yue
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
- School of Stomatology, Qingdao University, Qingdao, 266023, China
| | - Wen-Lin Xiao
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
- School of Stomatology, Qingdao University, Qingdao, 266023, China.
| |
Collapse
|
2
|
Miao X, Chen T, Lang Z, Wu Y, Wu X, Zhu Z, Xu RX. Design, fabrication, and application of bioengineering vascular networks based on microfluidic strategies. J Mater Chem B 2025; 13:1252-1269. [PMID: 39691980 DOI: 10.1039/d4tb02047b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Vascularization is a critical component of tissue engineering research and is essential for enhancing the success rate of tissue construction and function. Over the past decade, researchers have explored various methods to construct in vitro vascular networks, including 3D printing, cell sphere technology, and microfluidics. Microfluidic technology has garnered significant attention due to its notable advantages in precision, controllability, flexibility, and applicability. It can be primarily classified into two modes: (i) the pre-designed mode, which involves creating vascular networks by pre-designing vascular channels and seeding endothelial cells, encompassing microfluidic chips and microfluidic spinning technologies; and (ii) the self-assembly mode, where cell spheres are fabricated using microfluidic technology and subsequently self-assemble into vascular networks. In this review, we first provide a brief overview of the normal physiological and pathological characteristics of vascular networks, followed by a discussion of the factors to be considered in designing in vitro vascular networks, and conclude with an examination of the classification of technologies for the preparation of microfluidic vascular networks and recent advancements. It is anticipated that in vitro vascular network models will soon be successfully applied in regenerative medicine and drug development.
Collapse
Affiliation(s)
- Xiaoping Miao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhongliang Lang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
| | - Yongqi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Xizhi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| | - Zhiqiang Zhu
- Department of Plastic Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P. R. China.
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ronald X Xu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
3
|
Wang F, Wei S, He J, Xing A, Zhang Y, Li Z, Lu X, Zhao B, Sun B. Flowable Oxygen-Release Hydrogel Inhibits Bacteria and Treats Periodontitis. ACS OMEGA 2024; 9:47585-47596. [PMID: 39651069 PMCID: PMC11618394 DOI: 10.1021/acsomega.4c06642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 12/11/2024]
Abstract
Periodontitis, the chronic inflammation of the periodontal tissues caused by bacteria in plaque, is the leading cause of tooth loss in adults in the world. Currently, periodontitis is effectively treated with mechanical cleaning and the use of antibiotics. However, these treatments only temporarily remove plaque, which can rapidly proliferate and multiply in periodontal pockets over time. Although antibiotics have positive antimicrobial effects, their long-term use increases the risk of the emergence of drug-resistant strains. The emergence of resistant strains reduces the effectiveness of periodontitis treatment and makes the disease more difficult to control. Herein, this paper reports the development of an injectable self-oxygenating composite hydrogel for periodontal therapy, which was produced by loading CaO2 nanoparticles and ascorbic acid into an injectable alginate hydrogel. CaO2 can improve the periodontal pocket microenvironment by reacting with water to generate oxygen, calcium ions can be used as a bone regeneration material, and ascorbic acid protects cells. The authors further showed that the composite hydrogel inhibited growth and colonization of anaerobic bacteria, reduced the degree of inflammation, and promoted alveolar bone regeneration. In conclusion, these findings suggest that the composite hydrogel can be used as a biocompatible, convenient, and effective method for periodontitis treatment.
Collapse
Affiliation(s)
- Feng Wang
- Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130041, China
- Jilin Provincial
Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130041, China
| | - Shengnan Wei
- Department
of Nuclear Medicine, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Jingya He
- Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130041, China
- Jilin Provincial
Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130041, China
| | - Aili Xing
- Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130041, China
- Jilin Provincial
Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130041, China
| | - Yuan Zhang
- Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130041, China
| | - Zhongrui Li
- Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130041, China
| | - Xiangxiang Lu
- Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130041, China
| | - Bin Zhao
- Jilin Provincial
Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130041, China
- Department
of Periodontology, Hospital of Stomatology, Jilin University, Changchun 130041, China
| | - Bin Sun
- Department
of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun 130041, China
| |
Collapse
|
4
|
Zhu Z, Chen T, Wu Y, Wu X, Lang Z, Huang F, Zhu P, Si T, Xu RX. Microfluidic strategies for engineering oxygen-releasing biomaterials. Acta Biomater 2024; 179:61-82. [PMID: 38579919 DOI: 10.1016/j.actbio.2024.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/29/2024] [Indexed: 04/07/2024]
Abstract
In the field of tissue engineering, local hypoxia in large-cell structures (larger than 1 mm3) poses a significant challenge. Oxygen-releasing biomaterials supply an innovative solution through oxygen delivery in a sustained and controlled manner. Compared to traditional methods such as emulsion, sonication, and agitation, microfluidic technology offers distinct benefits for oxygen-releasing material production, including controllability, flexibility, and applicability. It holds enormous potential in the production of smart oxygen-releasing materials. This review comprehensively covers the fabrication and application of microfluidic-enabled oxygen-releasing biomaterials. To begin with, the physical mechanism of various microfluidic technologies and their differences in oxygen carrier preparation are explained. Then, the distinctions among diverse oxygen-releasing components in regards for oxygen-releasing mechanism, oxygen-carrying capacity, and duration of oxygen release are presented. Finally, the present obstacles and anticipated development trends are examined together with the application outcomes of oxygen-releasing biomaterials based on microfluidic technology in the biomedical area. STATEMENT OF SIGNIFICANCE: Oxygen is essential for sustaining life, and hypoxia (a condition of low oxygen) is a significant challenge in various diseases. Microfluidic-based oxygen-releasing biomaterials offer precise control and outstanding performance, providing unique advantages over traditional approaches for tissue engineering. However, comprehensive reviews on this topic are currently lacking. In this review, we provide a comprehensive analysis of various microfluidic technologies and their applications for developing oxygen-releasing biomaterials. We compare the characteristics of organic and inorganic oxygen-releasing biomaterials and highlight the latest advancements in microfluidic-enabled oxygen-releasing biomaterials for tissue engineering, wound healing, and drug delivery. This review may hold the potential to make a significant contribution to the field, with a profound impact on the scientific community.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China; Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Tianao Chen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Yongqi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Xizhi Wu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Zhongliang Lang
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| | - Fangsheng Huang
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pingan Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Ting Si
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Ronald X Xu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China; Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China; School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
5
|
Maleki M, Karimi-Soflou R, Karkhaneh A. Raspberry-like PLA/PGS biodegradable microparticles with urethane linkages: Unlocking tailored release of magnesium ions and oxygen for bone tissue engineering. Int J Pharm 2024; 651:123760. [PMID: 38163525 DOI: 10.1016/j.ijpharm.2023.123760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Designing biodegradable microparticles with finely controlled release properties for tissue engineering systems remains a significant scientific challenge. This study introduces a novel approach by fabricating urethane-linked PLA/PGS microparticles loaded with magnesium peroxide. The microparticles offer potential applications in bone tissue engineering due to their ability to provide a controlled release of oxygen and magnesium ions while maintaining physiological pH. The PGS pre-polymer was synthesized via polycondensation and characterized using FTIR, 1H NMR, and GPC. Microparticle morphology transformed from smooth to raspberry-like upon incorporation of PGS, as observed by SEM. Microparticle size was tuned by varying PGS and PLA concentrations. FTIR analysis confirmed the successful formation of urethane links within the microparticles. MgO2-loaded PLA/PGS microparticles exhibited sustained release of dissolved oxygen and magnesium ions for 21 days while maintaining physiological pH better than PLA microparticles. Cell viability assays confirmed microparticle cytocompatibility, and ALP and Alizarin red assays demonstrated their ability to induce osteogenic differentiation. These findings highlight the potential of pH-controlled MgO2-loaded microparticles as an effective system for bone tissue engineering. In conclusion, this study presents a novel approach to designing biodegradable microparticles with adjustable release properties for bone tissue engineering. The urethane-based MgO2-loaded microparticles provide controlled release of oxygen and magnesium ions and regulate the environment's pH, making them a promising system for bone tissue engineering applications.
Collapse
Affiliation(s)
- Mina Maleki
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Reza Karimi-Soflou
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran.
| |
Collapse
|
6
|
Zhao J, Zhou C, Xiao Y, Zhang K, Zhang Q, Xia L, Jiang B, Jiang C, Ming W, Zhang H, Long H, Liang W. Oxygen generating biomaterials at the forefront of regenerative medicine: advances in bone regeneration. Front Bioeng Biotechnol 2024; 12:1292171. [PMID: 38282892 PMCID: PMC10811251 DOI: 10.3389/fbioe.2024.1292171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024] Open
Abstract
Globally, an annual count of more than two million bone transplants is conducted, with conventional treatments, including metallic implants and bone grafts, exhibiting certain limitations. In recent years, there have been significant advancements in the field of bone regeneration. Oxygen tension regulates cellular behavior, which in turn affects tissue regeneration through metabolic programming. Biomaterials with oxygen release capabilities enhance therapeutic effectiveness and reduce tissue damage from hypoxia. However, precise control over oxygen release is a significant technical challenge, despite its potential to support cellular viability and differentiation. The matrices often used to repair large-size bone defects do not supply enough oxygen to the stem cells being used in the regeneration process. Hypoxia-induced necrosis primarily occurs in the central regions of large matrices due to inadequate provision of oxygen and nutrients by the surrounding vasculature of the host tissues. Oxygen generating biomaterials (OGBs) are becoming increasingly significant in enhancing our capacity to facilitate the bone regeneration, thereby addressing the challenges posed by hypoxia or inadequate vascularization. Herein, we discussed the key role of oxygen in bone regeneration, various oxygen source materials and their mechanism of oxygen release, the fabrication techniques employed for oxygen-releasing matrices, and novel emerging approaches for oxygen delivery that hold promise for their potential application in the field of bone regeneration.
Collapse
Affiliation(s)
- Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Yang Xiao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Kunyan Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Qiang Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Linying Xia
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
7
|
Moghassemi S, Dadashzadeh A, Jafari H, Ghaffari-Bohlouli P, Shavandi A, Amorim CA. Liposomal oxygen-generating hydrogel for enhancing cell survival under hypoxia condition. Colloids Surf B Biointerfaces 2023; 231:113562. [PMID: 37774524 DOI: 10.1016/j.colsurfb.2023.113562] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
The inadequate oxygen supply to engineered tissues has been a persistent challenge in tissue engineering and regenerative medicine. To overcome this limitation, we developed a scaffold combined with an oxygen-releasing liposomal system comprising catalase-loaded liposomes (CAT@Lip) and H2O2-loaded liposomes (H2O2@Lip). This oxygenation system has shown high cytocompatibility when they were applied to human stromal cells. Under hypoxic conditions, the cell viability enclosed in the oxygen-releasing liposomal alginate hydrogel (94.62 ± 3.46 %) was significantly higher than that of cells enclosed in hydrogel without liposomes (47.18 ± 9.68 %). There was no significant difference in cell viability and apoptosis rate compared to normoxia conditions after three days, indicating the effectiveness of the oxygen-releasing approach in hypoxic conditions. In conclusion, our study demonstrates that the use of liposomal oxygen-releasing scaffolds can overcome the oxygen diffusion challenge in tissue implant fabrication, providing a simple solution for cellular oxygenation that could be a crucial element in tissue engineering.
Collapse
Affiliation(s)
- Saeid Moghassemi
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Hafez Jafari
- BioMatter unit - École polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Pejman Ghaffari-Bohlouli
- BioMatter unit - École polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Amin Shavandi
- BioMatter unit - École polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Christiani A Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
8
|
Al Mamun A, Ullah A, Chowdhury MEH, Marei HE, Madappura AP, Hassan M, Rizwan M, Gomes VG, Amirfazli A, Hasan A. Oxygen releasing patches based on carbohydrate polymer and protein hydrogels for diabetic wound healing: A review. Int J Biol Macromol 2023; 250:126174. [PMID: 37558025 DOI: 10.1016/j.ijbiomac.2023.126174] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
Diabetic wounds are among the major healthcare challenges, consuming billions of dollars of resources and resulting in high numbers of morbidity and mortality every year. Lack of sufficient oxygen supply is one of the most dominant causes of impaired healing in diabetic wounds. Numerous clinical and experimental studies have demonstrated positive outcomes as a result of delivering oxygen at the diabetic wound site, including enhanced angiogenesis, antibacterial and cell proliferation activities. However, prolonged and sustained delivery of oxygen to improve the wound healing process has remained a major challenge due to rapid release of oxygen from oxygen sources and limited penetration of oxygen into deep skin tissues. Hydrogels made from sugar-based polymers such as chitosan and hyaluronic acid, and proteins such as gelatin, collagen and hemoglobin have been widely used to deliver oxygen in a sustained delivery mode. This review presents an overview of the recent advances in oxygen releasing hydrogel based patches as a therapeutic modality to enhance diabetic wound healing. Various types of oxygen releasing wound healing patch have been discussed along with their fabrication method, release profile, cytocompatibility and in vivo results. We also briefly discuss the challenges and prospects related to the application of oxygen releasing biomaterials as wound healing therapeutics.
Collapse
Affiliation(s)
- Abdulla Al Mamun
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Asad Ullah
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | | | - Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Alakananda Parassini Madappura
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Mahbub Hassan
- School of Chemical & Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
| | | | - Vincent G Gomes
- School of Chemical & Biomolecular Engineering, The University of Sydney, NSW 2006, Australia; Sydney Nano Institute, Sydney, NSW 2006, Australia
| | - Alidad Amirfazli
- Department of Mechanical Engineering, York University, Toronto, ON, Canada
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar; Biomedical Research Center (BRC), Qatar University, Doha, Qatar.
| |
Collapse
|
9
|
Zhang Q, Inagaki NF, Ito T. Recent advances in micro-sized oxygen carriers inspired by red blood cells. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2223050. [PMID: 37363800 PMCID: PMC10288928 DOI: 10.1080/14686996.2023.2223050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Supplementing sufficient oxygen to cells is always challenging in biomedical engineering fields such as tissue engineering. Originating from the concept of a 'blood substitute', nano-sized artificial oxygen carriers (AOCs) have been studied for a long time for the optimization of the oxygen supplementation and improvement of hypoxia environments in vitro and in vivo. When circulating in our bodies, micro-sized human red blood cells (hRBCs) feature a high oxygen capacity, a unique biconcave shape, biomechanical and rheological properties, and low frictional surfaces, making them efficient natural oxygen carriers. Inspired by hRBCs, recent studies have focused on evolving different AOCs into microparticles more feasibly able to achieve desired architectures and morphologies and to obtain the corresponding advantages. Recent micro-sized AOCs have been developed into additional categories based on their principal oxygen-carrying or oxygen-releasing materials. Various biomaterials such as lipids, proteins, and polymers have also been used to prepare oxygen carriers owing to their rapid oxygen transfer, high oxygen capacity, excellent colloidal stability, biocompatibility, suitable biodegradability, and long storage. In this review, we concentrated on the fabrication techniques, applied biomaterials, and design considerations of micro-sized AOCs to illustrate the advances in their performances. We also compared certain recent micro-sized AOCs with hRBCs where applicable and appropriate. Furthermore, we discussed existing and potential applications of different types of micro-sized AOCs.
Collapse
Affiliation(s)
- Qiming Zhang
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
| | - Natsuko F. Inagaki
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| | - Taichi Ito
- Department of Chemical System Engineering, The University of Tokyo, Tokyo, Japan
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
He Y, Chang Q, Lu F. Oxygen-releasing biomaterials for chronic wounds breathing: From theoretical mechanism to application prospect. Mater Today Bio 2023; 20:100687. [PMID: 37334187 PMCID: PMC10276161 DOI: 10.1016/j.mtbio.2023.100687] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Chronic wounds have always been considered as "gordian knots" in medicine, in which hypoxia plays a key role in blocking healing. To address this challenge, although tissue reoxygenation therapy based on hyperbaric oxygen therapy (HBOT) has been performed clinically for several years, the bench to bedside still urges the evolution of oxygen-loading and -releasing strategies with explicit benefits and consistent outcome. The combination of various oxygen carriers with biomaterials has gained momentum as an emerging therapeutic strategy in this field, exhibiting considerable application potential. This review gives an overview of the essential relationship between hypoxia and delayed wound healing. Further, detailed characteristics, preparation methods and applications of various oxygen-releasing biomaterials (ORBMs) will be elaborated, including hemoglobin, perfluorocarbon, peroxide, and oxygen-generating microorganisms, those biomaterials are applied to load, release or generate a vast of oxygen to relieve the hypoxemia and bring the subsequent cascade effect. The pioneering papers regarding to the ORBMs practice are presented and trends toward hybrid and more precise manipulation are summarized.
Collapse
|
11
|
Mohammed A, Saeed A, Elshaer A, Melaibari AA, Memić A, Hassanin H, Essa K. Fabrication and Characterization of Oxygen-Generating Polylactic Acid/Calcium Peroxide Composite Filaments for Bone Scaffolds. Pharmaceuticals (Basel) 2023; 16:627. [PMID: 37111384 PMCID: PMC10143609 DOI: 10.3390/ph16040627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The latest advancements in bone scaffold technology have introduced novel biomaterials that have the ability to generate oxygen when implanted, improving cell viability and tissue maturation. In this paper, we present a new oxygen-generating polylactic acid (PLA)/calcium peroxide (CPO) composite filament that can be used in 3D printing scaffolds. The composite material was prepared using a wet solution mixing method, followed by drying and hot melting extrusion. The concentration of calcium peroxide in the composite varied from 0% to 9%. The prepared filaments were characterized in terms of the presence of calcium peroxide, the generated oxygen release, porosity, and antibacterial activities. Data obtained from scanning electron microscopy and X-ray diffraction showed that the calcium peroxide remained stable in the composite. The maximum calcium and oxygen release was observed in filaments with a 6% calcium peroxide content. In addition, bacterial inhibition was achieved in samples with a calcium peroxide content of 6% or higher. These results indicate that an optimized PLA filament with a 6% calcium peroxide content holds great promise for improving bone generation through bone cell oxygenation and resistance to bacterial infections.
Collapse
Affiliation(s)
- Abdullah Mohammed
- School of Engineering, University of Birmingham, Birmingham B15 2TT, UK
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdu Saeed
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amr Elshaer
- Drug Discovery, Delivery and Patient Care, School of Life Sciences, Kingston University London, Kingston Upon Thames KT1 2EE, UK
| | - Ammar A. Melaibari
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Mechanical Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hany Hassanin
- School of Engineering, Canterbury Christ Church University, Canterbury CT1 1QU, UK
| | - Khamis Essa
- School of Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
12
|
Hosseini FS, Abedini AA, Chen F, Whitfield T, Ude CC, Laurencin CT. Oxygen-Generating Biomaterials for Translational Bone Regenerative Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50721-50741. [PMID: 36988393 DOI: 10.1021/acsami.2c20715] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Successful regeneration of critical-size defects remains one of the significant challenges in regenerative engineering. These large-scale bone defects are difficult to regenerate and are often reconstructed with matrices that do not provide adequate oxygen levels to stem cells involved in the regeneration process. Hypoxia-induced necrosis predominantly occurs in the center of large matrices since the host tissue's local vasculature fails to provide sufficient nutrients and oxygen. Indeed, utilizing oxygen-generating materials can overcome the central hypoxic region, induce tissue in-growth, and increase the quality of life for patients with extensive tissue damage. This article reviews recent advances in oxygen-generating biomaterials for translational bone regenerative engineering. We discussed different oxygen-releasing and delivery methods, fabrication methods for oxygen-releasing matrices, biology, oxygen's role in bone regeneration, and emerging new oxygen delivery methods that could potentially be used for bone regenerative engineering.
Collapse
Affiliation(s)
- Fatemeh S Hosseini
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, UConn Health, Farmington, Connecticut 06030, United States
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut 06030, United States
| | - Amir Abbas Abedini
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Feiyang Chen
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
| | - Taraje Whitfield
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, UConn Health, Farmington, Connecticut 06030, United States
| | - Chinedu C Ude
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut 06030, United States
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, UConn Health, Farmington, Connecticut 06030, United States
- Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering Sciences, UConn Health, Farmington, Connecticut 06030, United States
- Department of Skeletal Biology and Regeneration, UConn Health, Farmington, Connecticut 06030, United States
- Department of Orthopedic Surgery, UConn Health, Farmington, Connecticut 06030, United States
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Bimolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
13
|
Müller-Heupt LK, Wiesmann-Imilowski N, Schröder S, Groß J, Ziskoven PC, Bani P, Kämmerer PW, Schiegnitz E, Eckelt A, Eckelt J, Ritz U, Opatz T, Al-Nawas B, Synatschke CV, Deschner J. Oxygen-Releasing Hyaluronic Acid-Based Dispersion with Controlled Oxygen Delivery for Enhanced Periodontal Tissue Engineering. Int J Mol Sci 2023; 24:ijms24065936. [PMID: 36983008 PMCID: PMC10059003 DOI: 10.3390/ijms24065936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Periodontitis is a chronic biofilm-associated inflammatory disease of the tooth-supporting tissues that causes tooth loss. It is strongly associated with anaerobic bacterial colonization and represents a substantial global health burden. Due to a local hypoxic environment, tissue regeneration is impaired. Oxygen therapy has shown promising results as a potential treatment of periodontitis, but so far, local oxygen delivery remains a key technical challenge. An oxygen (O2)-releasing hyaluronic acid (HA)-based dispersion with a controlled oxygen delivery was developed. Cell viability of primary human fibroblasts, osteoblasts, and HUVECs was demonstrated, and biocompatibility was tested using a chorioallantoic membrane assay (CAM assay). Suppression of anaerobic growth of Porphyromonas gingivalis was shown using the broth microdilution assay. In vitro assays showed that the O2-releasing HA was not cytotoxic towards human primary fibroblasts, osteoblasts, and HUVECs. In vivo, angiogenesis was enhanced in a CAM assay, although not to a statistically significant degree. Growth of P. gingivalis was inhibited by CaO2 concentrations higher than 256 mg/L. Taken together, the results of this study demonstrate the biocompatibility and selective antimicrobial activity against P. gingivalis for the developed O2-releasing HA-based dispersion and the potential of O2-releasing biomaterials for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lena Katharina Müller-Heupt
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Nadine Wiesmann-Imilowski
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeck Str. 1, 55131 Mainz, Germany
| | - Sofia Schröder
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Pablo Cores Ziskoven
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Philipp Bani
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Peer Wolfgang Kämmerer
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Eik Schiegnitz
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Anja Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - John Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Bilal Al-Nawas
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | | | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| |
Collapse
|
14
|
Bîrcă AC, Chircov C, Niculescu AG, Hildegard H, Baltă C, Roșu M, Mladin B, Gherasim O, Mihaiescu DE, Vasile BȘ, Grumezescu AM, Andronescu E, Hermenean AO. H2O2-PLA-(Alg)2Ca Hydrogel Enriched in Matrigel® Promotes Diabetic Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15030857. [PMID: 36986719 PMCID: PMC10057140 DOI: 10.3390/pharmaceutics15030857] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/17/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Hydrogel-based dressings exhibit suitable features for successful wound healing, including flexibility, high water-vapor permeability and moisture retention, and exudate absorption capacity. Moreover, enriching the hydrogel matrix with additional therapeutic components has the potential to generate synergistic results. Thus, the present study centered on diabetic wound healing using a Matrigel-enriched alginate hydrogel embedded with polylactic acid (PLA) microspheres containing hydrogen peroxide (H2O2). The synthesis and physicochemical characterization of the samples, performed to evidence their compositional and microstructural features, swelling, and oxygen-entrapping capacity, were reported. For investigating the three-fold goal of the designed dressings (i.e., releasing oxygen at the wound site and maintaining a moist environment for faster healing, ensuring the absorption of a significant amount of exudate, and providing biocompatibility), in vivo biological tests on wounds of diabetic mice were approached. Evaluating multiple aspects during the healing process, the obtained composite material proved its efficiency for wound dressing applications by accelerating wound healing and promoting angiogenesis in diabetic skin injuries.
Collapse
Affiliation(s)
- Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Adelina Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Herman Hildegard
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Cornel Baltă
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Marcel Roșu
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Correspondence:
| | - Anca Oana Hermenean
- “Aurel Ardelean” Institute of Life Sciences, “Vasile Goldis” Western University of Arad, 310025 Arad, Romania
| |
Collapse
|
15
|
Augustine R, Gezek M, Seray Bostanci N, Nguyen A, Camci-Unal G. Oxygen-Generating Scaffolds: One Step Closer to the Clinical Translation of Tissue Engineered Products. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 455:140783. [PMID: 36644784 PMCID: PMC9835968 DOI: 10.1016/j.cej.2022.140783] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The lack of oxygen supply in engineered constructs has been an ongoing challenge for tissue engineering and regenerative medicine. Upon implantation of an engineered tissue, spontaneous blood vessel formation does not happen rapidly, therefore, there is typically a limited availability of oxygen in engineered biomaterials. Providing oxygen in large tissue-engineered constructs is a major challenge that hinders the development of clinically relevant engineered tissues. Similarly, maintaining adequate oxygen levels in cell-laden tissue engineered products during transportation and storage is another hurdle. There is an unmet demand for functional scaffolds that could actively produce and deliver oxygen, attainable by incorporating oxygen-generating materials. Recent approaches include encapsulation of oxygen-generating agents such as solid peroxides, liquid peroxides, and fluorinated substances in the scaffolds. Recent approaches to mitigate the adverse effects, as well as achieving a sustained and controlled release of oxygen, are discussed. Importance of oxygen-generating materials in various tissue engineering approaches such as ex vivo tissue engineering, in situ tissue engineering, and bioprinting are highlighted in detail. In addition, the existing challenges, possible solutions, and future strategies that aim to design clinically relevant multifunctional oxygen-generating biomaterials are provided in this review paper.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Angelina Nguyen
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, Massachusetts 01854, United States
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, Massachusetts 01854, United States
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
16
|
Nanostructured Electrospun Polycaprolactone-Propolis Mats Composed of Different Morphologies for Potential Use in Wound Healing. Molecules 2022; 27:molecules27165351. [PMID: 36014590 PMCID: PMC9413572 DOI: 10.3390/molecules27165351] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate different types of morphologies obtained using the electrospinning process to produce a material that enables wound healing while performing a controlled release. Using benign solvents, the authors prepared and characterised electrospun polycaprolactone mats loaded with propolis, a popular extract in traditional medicine with potential for skin repair. Different morphologies were obtained from distinct storage periods of the solution before electrospinning to investigate the effect of PCL hydrolysis (average diameters of fibres and beads: 159.2-280.5 nm and 1.9-5.6 μm, respectively). Phytochemical and FTIR analyses of the extract confirmed propolis composition. GPC and viscosity analyses showed a decrease in polymer molecular weight over the storage period (about a 70% reduction over 14 days) and confirmed that it was responsible for the nanostructure diversity. Moreover, propolis acted as a lubricant agent, affecting the spun solutions' viscosity and the thermal properties and hydrophilicity of the mats. All samples were within the value range of the water vapour transpiration rate of the commercial products (1263.08 to 2179.84 g/m2·day). Even though the presence of beads did not affect the propolis release pattern, an in vitro wound-healing assay showed that propolis-loaded mats composed of beaded fibres increased the cell migration process. Thus, these films could present the potential for use in wound dressing applications.
Collapse
|
17
|
Wang B, Zheng S, Huang Z, Hu Y, Zhu K. Fabrication of H 2O 2 slow-releasing composites for simultaneous Microcystis mitigation and phosphate immobilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149164. [PMID: 34325137 DOI: 10.1016/j.scitotenv.2021.149164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2O2) is a widely accepted algicide in controlling cyanobacterial blooms. However, this method includes two disadvantages: 1) a low H2O2 concentration (<5 mg L-1) is required; 2) H2O2-induced cell lysis causes phosphorus (P) contamination. To overcome the drawbacks, a H2O2 slow-releasing composite (HSRC) based on calcium peroxide (CaO2) was fabricated to substitute liquid H2O2. According to the results, a higher CaO2 dose increased H2O2 yield and releasing rate. H2O2 yield of 160 mg L-1 CaO2 in HSRC reached 32.9 mg L-1 and its releasing rate was 0.407 h-1. In addition, a higher temperature decreased H2O2 yield and increased H2O2-releasing rate. Besides, HSRC endowed with a remarkable ability to immobilize P. Higher CaO2 dose, pH value, and temperature increased the rate of P immobilization. The highest rate was 0.185 h-1, which occurred with 160 mg L-1 CaO2 in HSRC at 25 °C and pH 8.0. Toxicity assays showed that HSRC exerted sustaining oxidative stress on Microcystis aeruginosa. Accumulation of intracellular reactive oxygen species resulted in the disruption of enzymatic systems and inactivation of photosystem. Tracking the variations of cell growth and H2O2 concentration during HSRC treatments, it suggested that the lethal effect on Microcystis aeruginosa was achieved with a super-low H2O2 concentration (<0.3 mg L-1). In addition, cell lysis did not cause a sudden rise in P concentration due to the P immobilization by HSRC. Therefore, HSRC successfully offsets the drawbacks of liquid H2O2 in mitigating cyanobacterial blooms. It may be a novel and promising algicide that not only kills cyanobacteria but also reduces eutrophication momentarily.
Collapse
Affiliation(s)
- Binliang Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Shuaibo Zheng
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Zongken Huang
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China
| | - Yiwei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, PR China.
| | - Kongxian Zhu
- Changjiang River Scientific Research Institute, Wuhan 430000, PR China
| |
Collapse
|
18
|
Maciel MM, Correia TR, Henriques M, Mano JF. Microparticles orchestrating cell fate in bottom-up approaches. Curr Opin Biotechnol 2021; 73:276-281. [PMID: 34597880 DOI: 10.1016/j.copbio.2021.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 12/30/2022]
Abstract
The modulation of cells in tissue formation is still one of the hardest tasks to achieve in Tissue Engineering. To control the cell response when undergoing their normal functions such as adhesion, differentiation, assembly, or maturation is vital the development of more successful solutions. Herein, we discuss how microparticles are being overlooked in their potential for controlling the cellular response. Until now, their role was quite often restricted to a reservoir of chemical compounds or as carriers for cell expansion. Nevertheless, microparticles design with the introduction of biophysical and biochemical cues can effectively modulate cell response.
Collapse
Affiliation(s)
- Marta M Maciel
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Tiago R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana Henriques
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Complexo de Laboratórios Tecnológicos, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
19
|
Oxygen Delivery Approaches to Augment Cell Survival After Myocardial Infarction: Progress and Challenges. Cardiovasc Toxicol 2021; 22:207-224. [PMID: 34542796 DOI: 10.1007/s12012-021-09696-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Myocardial infarction (MI), triggered by blockage of a coronary artery, remains the most common cause of death worldwide. After MI, the capability of providing sufficient blood and oxygen significantly decreases in the heart. This event leads to depletion of oxygen from cardiac tissue and consequently leads to massive cardiac cell death due to hypoxemia. Over the past few decades, many studies have been carried out to discover acceptable approaches to treat MI. However, very few have addressed the crucial role of efficient oxygen delivery to the injured heart. Thus, various strategies were developed to increase the delivery of oxygen to cardiac tissue and improve its function. Here, we have given an overall discussion of the oxygen delivery mechanisms and how the current technologies are employed to treat patients suffering from MI, including a comprehensive view on three major technical approaches such as oxygen therapy, hemoglobin-based oxygen carriers (HBOCs), and oxygen-releasing biomaterials (ORBs). Although oxygen therapy and HBOCs have shown promising results in several animal and clinical studies, they still have a few drawbacks which limit their effectiveness. More recent studies have investigated the efficacy of ORBs which may play a key role in the future of oxygenation of cardiac tissue. In addition, a summary of conducted studies under each approach and the remaining challenges of these methods are discussed.
Collapse
|
20
|
Nejati S, Karimi‐Soflou R, Karkhaneh A. Influence of process parameters on the characteristics of oxygen‐releasing poly (lactic acid) microparticles: A multioptimization strategy. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sara Nejati
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Reza Karimi‐Soflou
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Akbar Karkhaneh
- Biomedical Engineering Department Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
21
|
Peng Z, Wang C, Liu C, Xu H, Wang Y, Liu Y, Hu Y, Li J, Jin Y, Jiang C, Liu L, Guo J, Zhu L. 3D printed polycaprolactone/beta-tricalcium phosphate/magnesium peroxide oxygen releasing scaffold enhances osteogenesis and implanted BMSCs survival in repairing the large bone defect. J Mater Chem B 2021; 9:5698-5710. [PMID: 34223587 DOI: 10.1039/d1tb00178g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ischemia and hypoxia in the bone defect area remain an intractable problem when treating large bone defects. Thus, oxygen-releasing biomaterials have been widely researched in recent years. Magnesium peroxide (MgO2) can release oxygen (O2), and magnesium ions (Mg2+), simultaneously, which is seen to have significant potential in bone substitutes. In this study, we used 3D printing technology to fabricate a MgO2-contained composite scaffold, which was composed of polycaprolactone (PCL), beta-tricalcium phosphate (β-TCP) and magnesium peroxide (MgO2). Physical properties and O2/Mg2+ releasing behavior of the scaffold were studied. Then, we evaluated the effects of the scaffold on cell survival, proliferation, migration, adhesion and osteogenic differentiation by the co-culture of bone marrow mesenchymal stem cells (BMSCs) and scaffold under normoxia and hypoxia in vitro. Finally, the osteogenic properties of the scaffold in vivo were evaluated via the rat femoral condylar bone defect model. The PCL/β-TCP/MgO2 scaffold showed good mechanical properties and sustained O2 and Mg2+ release for about three weeks. Meanwhile, the scaffold showed appreciable promotion on the survival, proliferation, migration and osteogenic differentiation of BMSCs under hypoxia compared with control groups. The results of imaging studies and histological analysis showed that implantation of PCL/β-TCP/MgO2 scaffold could promote seed cell survival and significantly increased new bone formation. In sum, the PCL/β-TCP/MgO2 scaffold is promising with great potential for treating large bone defects.
Collapse
Affiliation(s)
- Ziyue Peng
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Haixia Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yihan Wang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yang Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China. and Xiang Yang Central Hospital, Affiliated Hospital of Hubei University of Art and Science, Xiang Yang 441400, China
| | - Yunteng Hu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Jianjun Li
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yanglei Jin
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Cong Jiang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Jiasong Guo
- Department of Histology and Embryology, Southern Medical University, Guangzhou 510515, China. and Key Laboratory of Tissue Construction and Detection of Guangdong Province, Guangzhou 510515, China and Institute of Bone Biology, Academy of Orthopaedics, Guangdong Province, Guangzhou 510665, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
22
|
Morais AIS, Wang X, Vieira EG, Viana BC, Silva-Filho EC, Osajima JA, Afewerki S, Corat MAF, Silva HS, Marciano FR, Ruiz-Esparza GU, Stocco TD, de Paula MMM, Lobo AO. Electrospraying Oxygen-Generating Microparticles for Tissue Engineering Applications. Int J Nanomedicine 2020; 15:1173-1186. [PMID: 32110015 PMCID: PMC7037066 DOI: 10.2147/ijn.s237334] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The facile preparation of oxygen-generating microparticles (M) consisting of Polycaprolactone (PCL), Pluronic F-127, and calcium peroxide (CPO) (PCL-F-CPO-M) fabricated through an electrospraying process is disclosed. The biological study confirmed the positive impact from the oxygen-generating microparticles on the cell growth with high viability. The presented technology could work as a prominent tool for various tissue engineering and biomedical applications. METHODS The oxygen-generated microparticles fabricated through electrospraying processes were thoroughly characterization through various methods such as X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) analysis, and scanning electron microscopy (SEM)/SEM-Energy Dispersive Spectroscopy (EDS) analysis. RESULTS The analyses confirmed the presence of the various components and the porous structure of the microparticles. Spherical shape with spongy characteristic microparticles were obtained with negative charge surface (ζ = -16.9) and a size of 17.00 ± 0.34 μm. Furthermore, the biological study performed on rat chondrocytes demonstrated good cell viability and the positive impact of increasing the amount of CPO in the PCL-F-CPO-M. CONCLUSION This technological platform could work as an important tool for tissue engineering due to the ability of the microparticles to release oxygen in a sustained manner for up to 7 days with high cell viability.
Collapse
Affiliation(s)
- Alan IS Morais
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI-Federal University of Piauí, Teresina, PICEP 64049-550, Brazil
| | - Xichi Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430022, People’s Republic of China
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham & Women´s Hospital, Cambridge, MA02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, MIT, Cambridge, MA02139, USA
| | - Ewerton G Vieira
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI-Federal University of Piauí, Teresina, PICEP 64049-550, Brazil
| | - Bartolomeu C Viana
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI-Federal University of Piauí, Teresina, PICEP 64049-550, Brazil
- Department of Physics, UFPI-Federal University of Piauí, Teresina, PICEP 64049-550, Brazil
| | - Edson C Silva-Filho
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI-Federal University of Piauí, Teresina, PICEP 64049-550, Brazil
| | - Josy A Osajima
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI-Federal University of Piauí, Teresina, PICEP 64049-550, Brazil
| | - Samson Afewerki
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham & Women´s Hospital, Cambridge, MA02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, MIT, Cambridge, MA02139, USA
| | - Marcus AF Corat
- Multidisciplinary Center for Biological Research, University of Campinas (UNICAMP), Campinas13083-877, Brazil
| | - Heurison S Silva
- Department of Physics, UFPI-Federal University of Piauí, Teresina, PICEP 64049-550, Brazil
| | - Fernanda R Marciano
- Department of Physics, UFPI-Federal University of Piauí, Teresina, PICEP 64049-550, Brazil
| | - Guillermo U Ruiz-Esparza
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham & Women´s Hospital, Cambridge, MA02139, USA
- Harvard-MIT Division of Health Science and Technology, Massachusetts Institute of Technology, MIT, Cambridge, MA02139, USA
| | - Thiago D Stocco
- Multidisciplinary Center for Biological Research, University of Campinas (UNICAMP), Campinas13083-877, Brazil
- Faculty of Physiotherapy, Santo Amaro University, São Paulo04829-300, Brazil
| | - Mirian MM de Paula
- Multidisciplinary Center for Biological Research, University of Campinas (UNICAMP), Campinas13083-877, Brazil
| | - Anderson O Lobo
- LIMAV-Interdisciplinary Laboratory for Advanced Materials, Materials Science and Engineering Graduate Program, UFPI-Federal University of Piauí, Teresina, PICEP 64049-550, Brazil
| |
Collapse
|