1
|
Jangra N, Singla A, Puri V, Dheer D, Chopra H, Malik T, Sharma A. Herbal bioactive-loaded biopolymeric formulations for wound healing applications. RSC Adv 2025; 15:12402-12442. [PMID: 40248229 PMCID: PMC12005159 DOI: 10.1039/d4ra08604j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Recent advancements in wound healing technologies focus on incorporating herbal bioactives into biopolymeric formulations. A biocompatible matrix that promotes healing is provided by biopolymeric wound dressings. These dressings use components such as ulvan, hyaluronic acid, starch, cellulose, chitosan, alginate, gelatin, and pectin. These natural polymers assist in three crucial processes, namely, cell adhesion, proliferation, and moisture retention, all of which are necessary for effective wound repair. Curcumin, quercetin, Aloe vera, Vinca alkaloids, and Centella asiatica are some of the herbal bioactives that are included in biopolymeric formulations. They have powerful anti-inflammatory, antibacterial, and antioxidant activities. Chitosan, cellulose, collagen, alginate, and hyaluronic acid are some of the biopolymers that have shown promise in clinical trials for wound healing. These trials have also confirmed the safety and functional performance of these materials. Their recent advancements in wound care can be understood by the increasing number of patents linked to these formulations. These innovative dressings improve healing outcomes in acute and chronic wounds while minimizing adverse effects by incorporating biopolymers with herbal bioactives in an efficient manner. This review emphasizes that the development of next-generation wound care products can be facilitated via the integration of natural materials and bioactive substances.
Collapse
Affiliation(s)
- Nitin Jangra
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Aakanksha Singla
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences Chennai - 602105 Tamil Nadu India
| | - Tabarak Malik
- Department of Biomedical Sciences, Jimma University Jimma Oromia Ethiopia
- Division of Research & Development, Lovely Professional University Phagwara Punjab 144401 India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University Baddi 174103 Himachal Pradesh India
| |
Collapse
|
2
|
Khazaei M, Kadivarian S, Nabi DQ, Rezakhani L. Innovation in ovary decellularization methods: Chemical and herbal detergents. Regen Ther 2025; 28:573-581. [PMID: 40027991 PMCID: PMC11872455 DOI: 10.1016/j.reth.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/19/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
The ovary provides an ideal environment for egg survival due to its distinct structure that directly contributes to the growth and maintenance of the follicle. The purpose of this study is to compare ovarian decellularization with herbal and chemical detergents. Sheep ovarian was used in this study. 1 % sodium dodecyl sulfate (SDS) as a chemical detergent and 1, 2.5, and 5 % Acanthophyllum (ACP) were used as herbal agents for decellularization. DNA content, histological characteristics, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), biocompatibility, antibacterial test, hemocompatibility, and scanning electron microscope (SEM) were investigated. The results showed the DNA content in decellularization scaffolds with 1 % SDS and 5 % ACP was reduced suitably. Also, histological observations confirmed this finding, and the nuclei were completely removed in these two groups. Disorganization of collagen fibers and tissue architecture was observed more in the SDS group than in the ACP group. No group reported cytotoxicity and the best blood compatibility in decellularization with herbal agents was reported. Protein bands are largely conserved in all methods. Higher antibacterial properties were observed in the decellularization technique with ACP. Decellularization with 5%ACP, in addition to being able to completely remove cells in the tissue, can help preserve the ultrastructure of the ovary. Therefore, this plant agent can be introduced as a decellularization method for studies in this field.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepideh Kadivarian
- Student Research Committee, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Diyar Qadir Nabi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
3
|
Cai D, Liu T, Weng W, Zhu X. Research Progress on Extracellular Matrix-Based Composite Materials in Antibacterial Field. Biomater Res 2025; 29:0128. [PMID: 39822928 PMCID: PMC11735711 DOI: 10.34133/bmr.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/07/2024] [Accepted: 12/14/2024] [Indexed: 01/19/2025] Open
Abstract
Due to their exceptional cell compatibility, biodegradability, and capacity to trigger tissue regeneration, extracellular matrix (ECM) materials have drawn considerable attention in tissue healing and regenerative medicine. Interestingly, these materials undergo continuous degradation and release antimicrobial peptides (AMPs) while simultaneously promoting tissue regeneration, thereby exerting a potent antibacterial effect. On this basis, a variety of basic properties of ECM materials, such as porous adsorption, hydrophilic adsorption, group crosslinking, and electrostatic crosslinking, can be used to facilitate the integration of ECM materials and antibacterial agents through physical and chemical approaches in order to enhance the antibacterial efficacy. This article reviews the recent advancements in the study of ECM antibacterial materials, including the antibacterial function and antibacterial mechanism of free-standing ECM materials and ECM-based composite materials. In addition, the urgent challenges and future research prospects of ECM materials in the anti-infection industry are discussed.
Collapse
Affiliation(s)
- Dan Cai
- Department of Orthopedics, The First People’s Hospital of Huzhou,
First Affiliated Hospital of Huzhou University, Zhejiang 313000, China
| | - Tuoqin Liu
- Intensive Care Unit, People’s Hospital of Wuxing District, Wuxing District Maternal and Child Health Hospital, Huzhou, Zhejiang 313000, China
| | - Wei Weng
- Department of Orthopedics, The First People’s Hospital of Huzhou,
First Affiliated Hospital of Huzhou University, Zhejiang 313000, China
| | - Xinhong Zhu
- Department of Orthopedics, The First People’s Hospital of Huzhou,
First Affiliated Hospital of Huzhou University, Zhejiang 313000, China
| |
Collapse
|
4
|
Mojahedi M, Heydari P, Kharazi AZ. Preparation and characterization of an antibacterial CMC/PCL hydrogel films containing CIP/Cur: In vitro and in vivo evaluation of wound healing activity. Int J Biol Macromol 2024; 282:136570. [PMID: 39414208 DOI: 10.1016/j.ijbiomac.2024.136570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/06/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Wound healing process significantly impeded by prolonged inflammation responses, infection at the wound site, and insufficient angiogenesis. The sustained release of anti-inflammation and anti-bacterial drugs has the potential to control immune responses, improve angiogenesis, accelerate wound healing, and re-epithelialization. In this research a multifunctional hydrogel containing carboxy methyl cellulose (CMC) and polycaprolactone (PCL), along with Ciprofloxacin (CIP) and Curcumin (Cur) was developed. Physicochemical characteristics as well a biological one such as antibacterial and drug release properties, Collagen deposition, inflammatory responses, angiogenesis, and epidermal regenerated thickness were investigated via in vitro and in vivo assay. The results revealed that the CMC/PCL-based wound dressing has the potential to provide an appropriate level of water absorption (∼300 %) to absorb wound exudate and ideal WVTR in range of 2279-2363 g/m2 for wound healing application. Addition of CIP and Cur to CMC/PCL hydrogel improved the skin cell proliferation, cell migration, and antibacterial activity. It also led to superior Collagen I synthesis (∼2-4 times), controlled pro-inflammatory and improved anti-inflammatory cytokine secretion of macrophages, and accelerated wound healing in comparison to CMC/PCL hydrogel. In conclusion, the engineered multifunctional hydrogel showed a potential effect for accelerating wound healing and skin regeneration.
Collapse
Affiliation(s)
- Maryam Mojahedi
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parisa Heydari
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Biomaterials Nanotechnology and Tissue Engineering Faculty, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Sallehuddin N, Hao LQ, Wen APY, Fadilah NIM, Maarof M, Fauzi MB. Thymoquinone-Incorporated CollaGee Biomatrix: A Promising Approach for Full-Thickness Wound Healing. Pharmaceutics 2024; 16:1440. [PMID: 39598563 PMCID: PMC11597209 DOI: 10.3390/pharmaceutics16111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Wound infection is the leading cause of delayed wound healing. Despite ongoing research, the ideal treatment for full-thickness skin wounds is yet to be achieved. Skin tissue engineering provides an alternative treatment, with the potential for skin regeneration. Background/Objectives: Previously, we characterized a collagen-gelatin-elastin (CollaGee) acellular skin substitute and evaluated its cytocompatibility. The assessments revealed good physicochemical properties and cytocompatibility with human dermal fibroblasts (HDF). This study aimed to incorporate thymoquinone (TQ) as the antibacterial agent into CollaGee biomatrices and evaluate their cytocompatibility in vitro. Methods: Briefly, dose-response and antibacterial studies were conducted to confirm the antimicrobial activity and identify the suitable concentration for incorporation; 0.05 and 0.1 mg/mL concentrations were selected. Then, the cytocompatibility was evaluated quantitatively and qualitatively. Results: Cytocompatibility analysis revealed no toxicity towards HDFs, with 81.5 + 0.7% cell attachment and 99.27 + 1.6% cell viability. Specifically, the 0.05 mg/mL TQ concentration presented better viability, but the differences were not significant. Immunocytochemistry staining revealed the presence of collagen I, vinculin, and alpha smooth muscle actin within the three-dimensional biomatrices. Conclusions: These results suggest that TQ-incorporated CollaGee biomatrices are a promising candidate for enhancing the main key player, HDF, to efficiently regenerate the dermal layer in full-thickness skin wound healing. Further investigations are needed for future efficiency studies in animal models.
Collapse
Affiliation(s)
- Nusaibah Sallehuddin
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Looi Qi Hao
- My Cytohealth Sdn. Bhd., Hive 5, Taman Teknologi, MRANTI, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Adzim Poh Yuen Wen
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| | - Mh B. Fauzi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, University Kebangsaan Malaysia, Bangi 43600, Malaysia
| |
Collapse
|
6
|
Khazaei M, Khazaei MR, Kadivarian S, Hama SM, Hussein HH, Haghighimanesh H, Rezakhani L. Vitamin A-loaded decellularized kidney capsule promoted wound healing in rat. Regen Ther 2024; 26:867-878. [PMID: 39687052 PMCID: PMC11648314 DOI: 10.1016/j.reth.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/14/2024] [Accepted: 09/26/2024] [Indexed: 12/18/2024] Open
Abstract
Tissue regeneration in many skin defects is progressing with new treatments in recent years. Tissue engineering with the use of scaffolds offers more versatile and faster solutions in treatment. Extracellular matrix (ECM) and its three-dimensional (3D) network structure as a biological bond by imitating the tissue microstructure has been used for tissue repair, which can answer many existing challenges. Vitamin A, which comes in several forms such as retinols, retinals, and retinoic acids, is a necessary vitamin that is crucial for wound healing. In this research, sheep kidney capsule tissue decellularized with sodium dodecyl sulfate (SDS) containing different doses of vitamin A has been used as an ECM in skin tissue engineering. The above scaffold was evaluated in terms of properties such as biocompatibility, analysis of mechanical properties, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), hydrophilicity, antibacterial, and cell adhesion. The findings reported suitable properties for wound dressing, especially at a dose of 15,000 U/ml vitamin A for this scaffold. Then, the above scaffold was evaluated on the full-thickness wound model in rat, which showed good wound contraction, and increased VEGF factor. It showed a decrease in IL-1β level. Therefore, the use of the above-mentioned decellularized scaffold in combination with medicinal agents effective in wound healing can be introduced for further pre-clinical studies.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepideh Kadivarian
- Student Research Committee, Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shahid Muhsin Hama
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hevar Hassan Hussein
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hojjat Haghighimanesh
- Department of Plastic & Reconstructive Surgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Khazaei MR, Ibrahim R, Faris R, Bozorgi A, Khazaei M, Rezakhani L. Decellularized kidney capsule as a three-dimensional scaffold for tissue regeneration. Cell Tissue Bank 2024; 25:721-734. [PMID: 38671187 DOI: 10.1007/s10561-024-10136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024]
Abstract
Tissue regeneration is thought to have considerable promise with the use of scaffolds designed for tissue engineering. Although polymer-based scaffolds for tissue engineering have been used extensively and developed quickly, their ability to mimic the in-vivo milieu, overcome immunogenicity, and have comparable mechanical or biochemical properties has limited their capability for repair. Fortunately, there is a compelling method to get around these challenges thanks to the development of extracellular matrix (ECM) scaffolds made from decellularized tissues. We used ECM decellularized sheep kidney capsule tissue in our research. Using detergents such as Triton-X100 and sodium dodecyl sulfate (SDS), these scaffolds were decellularized. DNA content, histology, mechanical properties analysis, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), biocompatibility, hemocompatibility and scanning electron microscope (SEM) imaging were measured. The results showed that the three-dimensional (3D) structure of the ECM remained largely intact. The scaffolds mentioned above had several hydrophilic properties. The best biocompatibility and blood compatibility properties were reported in the SDS method of 0.5%. The best decellularization scaffold was introduced with 0.5% SDS. Therefore, it can be proposed as a scaffold that has ECM like natural tissue, for tissue engineering applications.
Collapse
Affiliation(s)
- Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rawa Ibrahim
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rayan Faris
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
8
|
Zhao Y, Peng H, Sun L, Tong J, Cui C, Bai Z, Yan J, Qin D, Liu Y, Wang J, Wu X, Li B. The application of small intestinal submucosa in tissue regeneration. Mater Today Bio 2024; 26:101032. [PMID: 38533376 PMCID: PMC10963656 DOI: 10.1016/j.mtbio.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The distinctive three-dimensional architecture, biological functionality, minimal immunogenicity, and inherent biodegradability of small intestinal submucosa extracellular matrix materials have attracted considerable interest and found wide-ranging applications in the domain of tissue regeneration engineering. This article presents a comprehensive examination of the structure and role of small intestinal submucosa, delving into diverse preparation techniques and classifications. Additionally, it proposes approaches for evaluating and modifying SIS scaffolds. Moreover, the advancements of SIS in the regeneration of skin, bone, heart valves, blood vessels, bladder, uterus, and urethra are thoroughly explored, accompanied by their respective future prospects. Consequently, this review enhances our understanding of the applications of SIS in tissue and organ repair and keeps researchers up-to-date with the latest research advancements in this area.
Collapse
Affiliation(s)
- Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Hongyi Peng
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jiahui Tong
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Chenying Cui
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Ziyang Bai
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jingyu Yan
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Danlei Qin
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Yingyu Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Jue Wang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, Shanxi, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
9
|
Deepak T, Bajhaiya D, Babu AR. Impact of the Different Chemical-Based Decellularization Protocols on the Properties of the Caprine Pericardium. Cardiovasc Eng Technol 2024; 15:279-289. [PMID: 38347340 DOI: 10.1007/s13239-024-00712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 01/02/2024] [Indexed: 07/13/2024]
Abstract
PURPOSE This study aims to decellularized caprine pericardium tissue with varied non-ionic surfactant and anionic detergent concentrations. METHODS Protocol A consists of 1%, 0.5%, and 0.25% (w/v) sodium dodecyl sulphate (SDS). Protocol B uses 1%, 0.5%, and 0.25% (w/v) Triton X-100. Protocol C comprised 0.5% SDS + 0.5% Triton X-100, 0.5% + 0.25%, and 0.25% SDS + 0.5% Triton X-100. RESULTS Protocol B left a few countable cells in the pericardium tissue, but treatments A and C removed all cells. DNA quantification also demonstrated that protocol B had the most leftover DNA after decellularization. The pericardium tissue treated with an equal combination of anionic detergent and non-ionic surfactant preserves the matrix. However, changing the anionic detergent-non-ionic surfactant ratio disrupted the microstructure. Protocol A decreased pericardium tissue secant modulus (p < 0.05). Protocol B-treated pericardium tissue matched native tissue secant modulus and ultimate tensile stress. Protocol C strengthened pericardium tissue. CONCLUSION The intact extracellular matrix and biomechanical properties like native tissues require optimal chemical doses and combinations.
Collapse
Affiliation(s)
- Thirumalai Deepak
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Deepak Bajhaiya
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Anju R Babu
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|
10
|
Khazaei M, Alizadeh M, Rezakhani L. Resveratrol-loaded decellularized ovine pericardium: ECM introduced for tissue engineering. Biotechnol Appl Biochem 2024; 71:387-401. [PMID: 38082540 DOI: 10.1002/bab.2547] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/25/2023] [Indexed: 04/11/2024]
Abstract
An ideal scaffold for skin tissue engineering should have a suitable potential for antibacterial activity, no hemolysis, sufficient porosity for air exchange, water retention capacity, and a suitable swelling rate to maintain tissue moisture. Considering this issue, our study used decellularized ovine pericardial tissue's extracellular matrix (ECM). These scaffolds were decellularized with sodium dodecyl sulfate (SDS) and sodium deoxycholate (SD) detergents along with vacuum methods. Following imaging with scanning electron microscopy (SEM), analysis of the mechanical properties, and the measurement of the amount of DNA, collagen, and glycosaminoglycan (GAG), our study observed that the three-dimensional (3D) structure of ECM was largely preserved. Resveratrol (RES) 400 µg/µL was loaded into the above scaffold, and analysis revealed that scaffolds containing RES and with vacuum reported higher antibacterial properties, a higher swelling rate, and increased water retention capacity. The biocompatibility and hemocompatibility properties of the above scaffolds also reported a significant difference between methods of decellularization.
Collapse
Affiliation(s)
- Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
11
|
Singh H, Dhanka M, Yadav I, Gautam S, Bashir SM, Mishra NC, Arora T, Hassan S. Technological Interventions Enhancing Curcumin Bioavailability in Wound-Healing Therapeutics. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:230-253. [PMID: 37897069 DOI: 10.1089/ten.teb.2023.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Wound healing has been a challenge in the medical field. Tremendous research has been carried out to expedite wound healing by fabricating various formulations, some of which are now commercially available. However, owing to their natural source, people have been attracted to advanced formulations with herbal components. Among various herbs, curcumin has been the center of attraction from ancient times for its healing properties due to its multiple therapeutic effects, including antioxidant, antimicrobial, anti-inflammatory, anticarcinogenic, neuroprotective, and radioprotective properties. However, curcumin has a low water solubility and rapidly degrades into inactive metabolites, which limits its therapeutic efficacy. Henceforth, a carrier system is needed to carry curcumin, guard it against degradation, and keep its bioavailability and effectiveness. Different formulations with curcumin have been synthesized, and exist in the form of various synthetic and natural materials, including nanoparticles, hydrogels, scaffolds, films, fibers, and nanoemulgels, improving its bioavailability dramatically. This review discusses the advances in different types of curcumin-based formulations used in wound healing in recent times, concentrating on its mechanisms of action and discussing the updates on its application at several stages of the wound healing process. Impact statement Curcumin is a herbal compound extracted from turmeric root and has been used since time immemorial for its health benefits including wound healing. In clinical formulations, curcumin shows low bioavailability, which mainly stems from the way it is delivered in the body. Henceforth, a carrier system is needed to carry curcumin, guard it against degradation, while maintaining its bioavailability and therapeutic efficacy. This review offers an overview of the advanced technological interventions through tissue engineering approaches to efficiently utilize curcumin in different types of wound healing applications.
Collapse
Affiliation(s)
- Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
- Department of Biology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates
- Advanced Materials Chemistry Center, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates
| | - Mukesh Dhanka
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, India
| | - Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sneh Gautam
- Department of Molecular Biology & Genetic Engineering, G. B. Pant University of Agriculture & Technology, Pantnagar, India
| | - Showkeen Muzamil Bashir
- Biochemistry and Molecular Biology Lab Division, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Taruna Arora
- Reproductive Health Division of RBMCH, Indian Council of Medical Research, New Delhi, India
| | - Shabir Hassan
- Department of Biology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates
- Advanced Materials Chemistry Center, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates
| |
Collapse
|
12
|
Darban Z, Singh H, Singh U, Bhatia D, Gaur R, Kuddushi M, Dhanka M, Shahabuddin S. β-Carotene laden antibacterial and antioxidant gelatin/polyglyceryl stearate nano-hydrogel system for burn wound healing application. Int J Biol Macromol 2024; 255:128019. [PMID: 37952802 DOI: 10.1016/j.ijbiomac.2023.128019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Worldwide, burn wounds are severe health issues prone to bacterial infections and challenging to treat with traditional wound dressings. Therefore, a highly desirable biological macromolecules-based wound dressing with good antioxidant, antibacterial, biocompatible, and a large surface area is required. Herein, aim to develop a biological macromolecules-based physically cross-linked gelatin/polyglyceryl stearate/graphene oxide (GPGO) hydrogel to treat burn wounds. Four sets of hydrogels were prepared by varying GO concentrations. FT-IR, FE-SEM, viscosity analysis, mechanical and thermal stability confirmed the successful preparation of hydrogels with desired properties. Further, β-carotene (0.5 mg/mL) was encapsulated in hydrogels to enhance the antioxidant activity, and a cumulative release as well as kinetics at pH 6.4 and 7.4 was performed. With an increase in GO concentration, hydrogels showed sustained release of β-carotene. Among all, GPGO-3 β hydrogel showed the highest antioxidant potency (57.75 %), hemocompatible (<5 %), cytocompatible (viable with NIH 3T3 cells), cell migration, proliferation, and in vitro wound healing. Also, GPGO-3 β hydrogel showed efficient antibacterial activity (%inhibition of 85.5 % and 80.2 % and zone of 11 mm and 9.8 mm against S. aureus and E. coli). These results demonstrated the ability of GPGO-3 β hydrogel as a promising candidate for burn wound healing applications.
Collapse
Affiliation(s)
- Zenab Darban
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gujarat 382426, India
| | - Hemant Singh
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Udisha Singh
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Dhiraj Bhatia
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Rama Gaur
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gujarat 382426, India.
| | - Muzammil Kuddushi
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India
| | - Mukesh Dhanka
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Syed Shahabuddin
- Department of Chemistry, School of Energy Technology, Pandit Deendayal Energy University, Raisan, Gujarat 382426, India.
| |
Collapse
|
13
|
Singh H, Hassan S, Nabi SU, Mishra NC, Dhanka M, Purohit SD, Ganai NA, Bhaskar R, Han SS, Qurashi AUH, Bashir SM. Multicomponent decellularized extracellular matrix of caprine small intestine submucosa based bioactive hydrogel promoting full-thickness burn wound healing in rabbits. Int J Biol Macromol 2024; 255:127810. [PMID: 37952796 DOI: 10.1016/j.ijbiomac.2023.127810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Effective treatment for full-thickness burn wounds has remained challenging for clinicians. Among various strategies, extracellular gel-based dressing materials have gained attention to promote effective and rapid wound healing. These gel-based materials are porous and have antioxidant, antibacterial, hydrophilic, biodegradation, and biocompatible properties and hence can be used to alleviate burn wound healing. In concurrence with these findings, the present study evaluates thermo-responsive and self-assembled decellularized extracellular matrix (ECM) of caprine small intestine submucosa (DG-SIS) gel-based dressing material for burn wound healing. To expedite healing and efficiently tackle excessive free radicals and bioburden at the burn wound site, DG-SIS gel is fortified with antibacterial components (zinc oxide nanoparticles; ZnO) and a potent antioxidant agent (Vitamin-C;Vt-C). ZnO- and Vt-C-enriched DG-SIS (DG-SIS/ZnO/Vt-C) gels significantly increased the antioxidant and antibacterial activity of the therapeutic hydrogel. Additionally, the fabricated DG-SIS/ZnO/Vt-C bioactive gel resulted in significant full-thickness burn wound contraction (97.75 % in 14 days), a lower inflammatory effect, and enhanced angiogenesis with the highest collagen synthesis (1.22 μg/mg in 14 days) at the wound site. The outcomes from this study demonstrate a synergistic effect of ZnO/Vt-C in the bioactive gel as an effective and inexpensive therapeutic approach for full-thickness burn wound treatment.
Collapse
Affiliation(s)
- Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India; Department of Biology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates
| | - Shabir Hassan
- Department of Biology, Khalifa University, Main Campus, Abu Dhabi, United Arab Emirates; Advanced Materials Chemistry Center, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
| | - Showket Ul Nabi
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Sciences & Animal Husbandary Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| | - Mukesh Dhanka
- Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Shiv Dutt Purohit
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Nazir Ahmad Ganai
- Molecular Genetics Laboratory, Division of Animal Genetics and Breeding, Faculty of Veterinary Sciences and Animal Husbandry Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Ahsan Ul Haq Qurashi
- Advanced Materials Chemistry Center, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates; Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates
| | - Showkeen Muzamil Bashir
- Biochemistry and Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry Shuhama, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Jammu and Kashmir, India.
| |
Collapse
|
14
|
Nalband DM, Sarker P, Khan SA, Freytes DO. Characterization and biological evaluation of a novel flavonoid-collagen antioxidant hydrogel with cytoprotective properties. J Biomed Mater Res B Appl Biomater 2024; 112:e35321. [PMID: 37715569 DOI: 10.1002/jbm.b.35321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023]
Abstract
Reactive oxygen species (ROS) play a critical and important role during wound healing but excess ROS at the wound site can lead to cellular damage and sub-optimal healing. Minimizing oxidative damage to the wound site and any supplemental therapeutic cells can be achieved by delivering exogenous antioxidants. Collagen hydrogels are ideal wound care materials due to their biocompatibility, high water content, and porous, three-dimensional architecture. Yet, they lack the inherent antioxidant activity that could help mitigate excess ROS at a wound site. This work formulates and evaluates the in vitro biocompatibility and antioxidant capabilities of collagen-fibroblast hydrogels combined with the polyphenolic antioxidant luteolin. Collagen solutions mixed with luteolin readily assembled into robust hydrogels with increasing gel strength due to increasing concentrations of luteolin. SEM images confirmed a mean pore size of 2.2 μm and a drastically different macromolecular ultrastructure with extensive fine crosslinking relative to collagen. Adequate cell viability and metabolic activity of dermal fibroblasts cultured within the gels were measured across all formulations, resulting in higher antioxidant activity and more than double the protection to cells from oxidative damage than traditional collagen hydrogels. Given these results, luteolin-collagen hydrogels demonstrate the potential for superior wound-healing properties when compared to collagen alone.
Collapse
Affiliation(s)
- Danielle M Nalband
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Prottasha Sarker
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Saad A Khan
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Donald O Freytes
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
15
|
Bhaskar R, Pandey SP, Kumar U, Kim H, Jayakodi SK, Gupta MK, Han SS. Nanobionics for sustainable crop production: Recent development to regulate plant growth and protection strategies from pests. OPENNANO 2024; 15:100198. [DOI: 10.1016/j.onano.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
16
|
Xu P, Kankala RK, Wang S, Chen A. Decellularized extracellular matrix-based composite scaffolds for tissue engineering and regenerative medicine. Regen Biomater 2023; 11:rbad107. [PMID: 38173774 PMCID: PMC10761212 DOI: 10.1093/rb/rbad107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Despite the considerable advancements in fabricating polymeric-based scaffolds for tissue engineering, the clinical transformation of these scaffolds remained a big challenge because of the difficulty of simulating native organs/tissues' microenvironment. As a kind of natural tissue-derived biomaterials, decellularized extracellular matrix (dECM)-based scaffolds have gained attention due to their unique biomimetic properties, providing a specific microenvironment suitable for promoting cell proliferation, migration, attachment and regulating differentiation. The medical applications of dECM-based scaffolds have addressed critical challenges, including poor mechanical strength and insufficient stability. For promoting the reconstruction of damaged tissues or organs, different types of dECM-based composite platforms have been designed to mimic tissue microenvironment, including by integrating with natural polymer or/and syntenic polymer or adding bioactive factors. In this review, we summarized the research progress of dECM-based composite scaffolds in regenerative medicine, highlighting the critical challenges and future perspectives related to the medical application of these composite materials.
Collapse
Affiliation(s)
- Peiyao Xu
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Ranjith Kumar Kankala
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Shibin Wang
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| | - Aizheng Chen
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
- Fujian Provincial Key Laboratory of Biochemical Technology (Huaqiao University), Xiamen, Fujian 361021, PR China
| |
Collapse
|
17
|
Downer M, Berry CE, Parker JB, Kameni L, Griffin M. Current Biomaterials for Wound Healing. Bioengineering (Basel) 2023; 10:1378. [PMID: 38135969 PMCID: PMC10741152 DOI: 10.3390/bioengineering10121378] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Wound healing is the body's process of injury recovery. Skin healing is divided into four distinct overlapping phases: hemostasis, inflammation, proliferation, and remodeling. Cell-to-cell interactions mediated by both cytokines and chemokines are imperative for the transition between these phases. Patients can face difficulties in the healing process due to the wound being too large, decreased vascularization, infection, or additional burdens of a systemic illness. The field of tissue engineering has been investigating biomaterials as an alternative for skin regeneration. Biomaterials used for wound healing may be natural, synthetic, or a combination of both. Once a specific biomaterial is selected, it acts as a scaffold for skin regeneration. When the scaffold is applied to a wound, it allows for the upregulation of distinct molecular signaling pathways important for skin repair. Although tissue engineering has made great progress, more research is needed in order to support the use of biomaterials for wound healing for clinical translation.
Collapse
Affiliation(s)
- Mauricio Downer
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
| | - Charlotte E. Berry
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
| | - Jennifer B. Parker
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lionel Kameni
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
| | - Michelle Griffin
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA; (M.D.); (C.E.B.); (J.B.P.); (L.K.)
- Hagey Laboratory for Pediatric Regenerative Medicine, 257 Campus Drive, MC 5148, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Singh H, Yadav I, Sheikh WM, Dan A, Darban Z, Shah SA, Mishra NC, Shahabuddin S, Hassan S, Bashir SM, Dhanka M. Dual cross-linked gellan gum/gelatin-based multifunctional nanocomposite hydrogel scaffold for full-thickness wound healing. Int J Biol Macromol 2023; 251:126349. [PMID: 37591426 DOI: 10.1016/j.ijbiomac.2023.126349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/31/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Biological macromolecules are excellent materials for wound dressing owing to their similar structure to the extracellular matrix and adjustable physicochemical properties. This research focuses on fabricating biological macromolecule-based hydrogel with desirable antibacterial, antioxidant, controlled drug release, cytocompatibility, and wound healing properties. Herein, different concentrations of nanoceria (NC) and flurbiprofen (FLU) drug-loaded gellan gum/gelatin (GG/Ge) based dual crosslinked (Ionic and EDC/NHS coupling) hydrogels were engineered. All fabricated hydrogels were hydrophilic, biodegradable, good strength, porous, antioxidant, hemocompatible and cytocompatible. Among all, hydrogel loaded with 500 μg/ml NC (GG/Ge/NC@FLU) exhibited desirable antioxidant, antibacterial (killed Staphylococcus aureus and Escherichia coli within 12 h), hemocompatible, cytocompatible, supports oxidative-stressed L929 cell growth and acted as a controlled release matrix for FLU, following Fickian diffusion, Peppas Sahlin and Korsmeyer-Peppas drug release models. Furthermore, nanocomposite hydrogel (GG/Ge/NC@FLU)-treated wounds of rats on day 14 demonstrated significantly higher collagen synthesis, nearly 100 % wound contractions, and efficiently decreased the expression of TNF-α and IL-1 while increasing the production of IL-10 and TNF-ß3, indicating antiinflammatory activity, and effectively reduced the expression of VEGF gene indicating effective angiogenesis than all other controls. In conclusion, the fabricated multifunctional GG/Ge/NC@FLU nanocomposite hydrogel shows promising potential for effectively treating full-thickness wound healing in a rat model.
Collapse
Affiliation(s)
- Hemant Singh
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Indu Yadav
- Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Aniruddha Dan
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Zenab Darban
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Showkat Ahmad Shah
- Division of Veterinary Pathology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Narayan Chandra Mishra
- Polymer and Process Engineering, Indian Institute of Technology Roorkee, Uttarakhand, India.
| | - Syed Shahabuddin
- Department of Chemistry, Pandit Deendayal Energy University, Gandhinagar, Gujarat, India
| | - Shabir Hassan
- Department of Biology, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India.
| | - Mukesh Dhanka
- Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India.
| |
Collapse
|
19
|
Sun Z, Xiong H, Lou T, Liu W, Xu Y, Yu S, Wang H, Liu W, Yang L, Zhou C, Fan C. Multifunctional Extracellular Matrix Hydrogel with Self-Healing Properties and Promoting Angiogenesis as an Immunoregulation Platform for Diabetic Wound Healing. Gels 2023; 9:gels9050381. [PMID: 37232972 DOI: 10.3390/gels9050381] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Treating chronic wounds is a global challenge. In diabetes mellitus cases, long-time and excess inflammatory responses at the injury site may delay the healing of intractable wounds. Macrophage polarization (M1/M2 types) can be closely associated with inflammatory factor generation during wound healing. Quercetin (QCT) is an efficient agent against oxidation and fibrosis that promotes wound healing. It can also inhibit inflammatory responses by regulating M1-to-M2 macrophage polarization. However, its limited solubility, low bioavailability, and hydrophobicity are the main issues restricting its applicability in wound healing. The small intestinal submucosa (SIS) has also been widely studied for treating acute/chronic wounds. It is also being extensively researched as a suitable carrier for tissue regeneration. As an extracellular matrix, SIS can support angiogenesis, cell migration, and proliferation, offering growth factors involved in tissue formation signaling and assisting wound healing. We developed a series of promising biosafe novel diabetic wound repair hydrogel wound dressings with several effects, including self-healing properties, water absorption, and immunomodulatory effects. A full-thickness wound diabetic rat model was constructed for in vivo assessment of QCT@SIS hydrogel, in which hydrogels achieved a markedly increased wound repair rate. Their effect was determined by the promotion of the wound healing process, the thickness of granulation tissue, vascularization, and macrophage polarization during wound healing. At the same time, we injected the hydrogel subcutaneously into healthy rats to perform histological analyses of sections of the heart, spleen, liver, kidney, and lung. We then tested the biochemical index levels in serum to determine the biological safety of the QCT@SIS hydrogel. In this study, the developed SIS showed convergence of biological, mechanical, and wound-healing capabilities. Here, we focused on constructing a self-healing, water-absorbable, immunomodulatory, and biocompatible hydrogel as a synergistic treatment paradigm for diabetic wounds by gelling the SIS and loading QCT for slow drug release.
Collapse
Affiliation(s)
- Zhenghua Sun
- Graduate School, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Hao Xiong
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Tengfei Lou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Weixuan Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Yi Xu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Shiyang Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Hui Wang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Wanjun Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
| | - Liang Yang
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Chao Zhou
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| | - Cunyi Fan
- Graduate School, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai 200233, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Building 3, Langu Science and Technology Park, Lane 70, Haiji 6th Road, Shanghai 201306, China
| |
Collapse
|
20
|
Cai X, He Y, Cai L, Zhan J, Li Q, Zhong S, Hou H, Wang W, Qiu X. An injectable elastic hydrogel crosslinked with curcumin-gelatin nanoparticles as a multifunctional dressing for the rapid repair of bacterially infected wounds. Biomater Sci 2023; 11:3227-3240. [PMID: 36935633 DOI: 10.1039/d2bm02126a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Injectable self-healing hydrogel dressings with excellent elasticity and multifunctional repair effects have been in high demand in wound healing applications, while maintaining stable elasticity in injectable multifunctional hydrogel dressings is still a challenge. Based on carboxymethyl chitosan (CMCS), curcumin-gelatin nanoparticles (CG NPs), and sodium alginate oxide (OSA), we developed a double-crosslinking injectable elastic self-healing hydrogel without any chemical cross-linking agent as a multifunctional wound healing dressing. CG NPs were more stable than pure curcumin (Cur) nanoparticles and could regulate the cross-linking of injectable hydrogels for high elasticity and rapid self-healing. We found that the CG NPs endowed the injectable hydrogel with good anti-inflammatory, antibacterial, and reactive oxygen scavenging activities and could significantly shorten the wound healing time in infected full-thickness skin defect rats by promoting the polarization of M2-type macrophages, reducing oxidative damage, accelerating collagen deposition, enhancing granulation formation, and elevating angiogenesis. Taken together, the tunable elastic injectable hydrogel dressing exhibited a long-term service life with sustained repair function and can be taken as an optimal candidate for bacteria-infected wound healing.
Collapse
Affiliation(s)
- Xiaohui Cai
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Yutong He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Liu Cai
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jiamian Zhan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Qian Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Saiqiong Zhong
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P. R. China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Wenya Wang
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
21
|
Surgical cotton microfibers loaded with proteins and apatite: A potential platform for bone tissue engineering. Int J Biol Macromol 2023; 236:123812. [PMID: 36854368 DOI: 10.1016/j.ijbiomac.2023.123812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/28/2023]
Abstract
Tissue engineering has emerged as the best alternative to replacing damaged tissue/organs. However, the cost of scaffold materials continues to be a significant obstacle; thus, developing inexpensive scaffolds is strongly encouraged. In this study, cellulose microfibers (C), gelatin (G), egg white (EW), and nanohydroxyapatite (nHA) were assembled into a quaternary scaffold using EDC-NHS crosslinking, followed by freeze-drying method. Cellulose microfibers as a scaffold have only received a limited amount of research due to the absence of an intrinsic three-dimensional structure. Gelatin, more likely to interact chemically with collagen, was used to provide a stable structure to the cellulose microfibers. EW was supposed to provide the scaffold with numerous cell attachment sites. nHA was chosen to enhance the scaffold's bone-bonding properties. Physico-chemical, mechanical, and biological characterization of scaffolds were studied. In-vitro using MG-63 cells and in-ovo studies revealed that all scaffolds were biocompatible. The results of the DPPH assay demonstrate the ability of CGEWnHA to reduce free radicals. The CGEWnHA scaffold exhibits the best properties with 56.84 ± 28.45 μm average pore size, 75 ± 1.4 % porosity, 39.23 % weight loss, 109.19 ± 0.98 kPa compressive modulus, and 1.72 Ca/P ratio. As a result, the constructed CGEWnHA scaffold appears to be a viable choice for BTE applications.
Collapse
|
22
|
Curcumin Release from Biomaterials for Enhanced Tissue Regeneration Following Injury or Disease. Bioengineering (Basel) 2023; 10:bioengineering10020262. [PMID: 36829756 PMCID: PMC9951943 DOI: 10.3390/bioengineering10020262] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Curcumin, a bioactive phenol derived from turmeric, is an antioxidant, anti-inflammatory, and antibacterial molecule. Although curcumin exhibits beneficial effects in its innate form, it is highly hydrophobic, which leads to poor water solubility and, consequently, low bioavailability. The lack of bioavailability limits curcumin's effectiveness as a treatment and restricts its use in clinical applications. Furthermore, to achieve beneficial, clinically relevant results, high doses of curcumin are required for systemic administration. Many researchers have utilized biomaterial carriers, including electrospun fibers, nanoparticles, hydrogels, and composite scaffolds, to overcome curcumin's principle therapeutic limitation of low bioavailability. By using biomaterials to deliver curcumin directly to injury sites, researchers have harnessed the beneficial natural properties of curcumin while providing scaffolding to support tissue regeneration. This review will provide an in-depth overview of the literature that utilizes biomaterial delivery of curcumin for tissue regeneration in injury and disease models.
Collapse
|
23
|
McInnes AD, Moser MAJ, Chen X. Preparation and Use of Decellularized Extracellular Matrix for Tissue Engineering. J Funct Biomater 2022; 13:jfb13040240. [PMID: 36412881 PMCID: PMC9680265 DOI: 10.3390/jfb13040240] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
The multidisciplinary fields of tissue engineering and regenerative medicine have the potential to revolutionize the practise of medicine through the abilities to repair, regenerate, or replace tissues and organs with functional engineered constructs. To this end, tissue engineering combines scaffolding materials with cells and biologically active molecules into constructs with the appropriate structures and properties for tissue/organ regeneration, where scaffolding materials and biomolecules are the keys to mimic the native extracellular matrix (ECM). For this, one emerging way is to decellularize the native ECM into the materials suitable for, directly or in combination with other materials, creating functional constructs. Over the past decade, decellularized ECM (or dECM) has greatly facilitated the advance of tissue engineering and regenerative medicine, while being challenged in many ways. This article reviews the recent development of dECM for tissue engineering and regenerative medicine, with a focus on the preparation of dECM along with its influence on cell culture, the modification of dECM for use as a scaffolding material, and the novel techniques and emerging trends in processing dECM into functional constructs. We highlight the success of dECM and constructs in the in vitro, in vivo, and clinical applications and further identify the key issues and challenges involved, along with a discussion of future research directions.
Collapse
Affiliation(s)
- Adam D. McInnes
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Correspondence: ; Tel.: +1-306-966-5435
| | - Michael A. J. Moser
- Department of Surgery, Health Sciences Building, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
- Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
24
|
Katiyar S, Singh D, Kumari S, Srivastava P, Mishra A. Novel strategies for designing regenerative skin products for accelerated wound healing. 3 Biotech 2022; 12:316. [PMID: 36276437 PMCID: PMC9547767 DOI: 10.1007/s13205-022-03331-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 11/01/2022] Open
Abstract
Healthy skin protects from pathogens, water loss, ultraviolet rays, and also maintains homeostasis conditions along with sensory perceptions in normal circumstances. Skin wound healing mechanism is a multi-phased biodynamic process that ultimately triggers intercellular and intracellular mechanisms. Failure to implement the normal and effective healing process may result in chronic injuries and aberrant scarring. Chronic wounds lead to substantial rising healthcare expenditure, and innovative methods to diagnose and control severe consequences are urgently needed. Skin tissue engineering (STE) has achieved several therapeutic accomplishments during the last few decades, demonstrating tremendous development. The engineered skin substitutes provide instant coverage for extensive wounds and facilitate the prevention of microbial infections and fluid loss; furthermore, they help in fighting inflammation and allow rapid neo-tissue formation. The current review primarily focused on the wound recovery and restoration process and the current conditions of STE with various advancements and complexities associated with different strategies such as cell sources, biopolymers, innovative fabrication techniques, and growth factors delivery systems.
Collapse
Affiliation(s)
- Soumya Katiyar
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Divakar Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Shikha Kumari
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Pradeep Srivastava
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| |
Collapse
|
25
|
In silico and biological exploration of greenly synthesized curcumin-incorporated isoniazid Schiff base and its ruthenium complexes. Struct Chem 2022. [DOI: 10.1007/s11224-022-02065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Ye K, He A, Wu M, Qiu X, Chen Z, Yin J, Song Q, Huang Y, Xu K, Huang Y, Wei P. In vitro study of decellularized rat tissues for nerve regeneration. Front Neurol 2022; 13:986377. [PMID: 36188412 PMCID: PMC9520319 DOI: 10.3389/fneur.2022.986377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Peripheral nerve injuries cause an absence or destruction of nerves. Decellularized nerves, acting as a replacement for autografts, have been investigated in the promotion of nerve repair and regeneration, always being incorporated with stem cells or growth factors. However, such a strategy is limited by size availability. The potential application in heterotopic transplantation of other decellularized tissues needs to be further explored. In this study, rat decellularized kidney (dK) was selected to be compared with decellularized peripheral nerve (dN), since dK has aboundant ECM components and growth factors. The PC-12 cells were cultured on dK and dN scaffolds, as shown in the similar behaviors of cell metabolism and viability, but have a more regular arrangement on dN compared to dK, indicating that the natural structure plays an important role in guiding cell extension. However, we found significant upregulation of axon–growth–associated genes and proteins of PC-12 cells in the dK group compared to the dN group by qRT-PCR, immunofluorescence, and western blotting. Furthermore, various neurotrophic factors and growth factors of acellular kidney and nerve were evaluated by ELISA assay. The lower expression of neurotrophic factors but higher expression of growth factors such as VEGF and HGF from dK suggests that axon growth and extension for PC-12 cells may be partially mediated by VEGF and HGF expression from decellularized kidney, which further points to a potential application in nerve repair and regeneration.
Collapse
Affiliation(s)
- Kai Ye
- School of Medicine, Ningbo University, Ningbo, China
| | - Andong He
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, China
| | - Miaoben Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Xiaodong Qiu
- Department of Surgery, Beilun Binhai New City Hospital, Ningbo, China
| | - Zhiwu Chen
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Qinghua Song
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
| | - Yi Huang
- Medical Research Center, Ningbo First Hospital, Ningbo, China
| | - Kailei Xu
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, China
- Central Laboratory, Center for Medical and Engineering Innovation, Ningbo First Hospital, Ningbo, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, China
- Kailei Xu
| | - Yuye Huang
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
- Central Laboratory, Center for Medical and Engineering Innovation, Ningbo First Hospital, Ningbo, China
- Yuye Huang
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo, China
- *Correspondence: Peng Wei
| |
Collapse
|
27
|
Al-Bishari AM, Al-Shaaobi BA, Al-Bishari AA, Al-Baadani MA, Yu L, Shen J, Cai L, Shen Y, Deng Z, Gao P. Vitamin D and curcumin-loaded PCL nanofibrous for engineering osteogenesis and immunomodulatory scaffold. Front Bioeng Biotechnol 2022; 10:975431. [PMID: 36003534 PMCID: PMC9393239 DOI: 10.3389/fbioe.2022.975431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 12/23/2022] Open
Abstract
The accelerating bone healing process is still a major challenge in clinical orthopedics, especially in critical-sized bone defects. Recently, Nanofiber membranes are showing increasing attention in the biomedical field due to their good biocompatibility, mechanical stability, and the ability to work as a drug carrier to achieve localized and sustained drug delivery. Herein, a multifunction nanofiber membrane loaded with vitamin D (Vit D) and curcumin (Cur) was successfully fabricated using electrospinning technology. In addition, we innovatively modified Vit D with PEG to improve the hydrophilicity of PCL nanofibers. The vitro results of CCK-8, alkaline phosphatase (ALP) and mineralization demonstrated that the PCL/Vit D-Cur membrane had great potential for enhancing the proliferation/differentiation of osteoblasts. Moreover, the synergistic effect of Vit D-Cur loaded PCL nanofiber membrane showed a superior ability to improve the anti-inflammatory activity through M2 polarization. Furthermore, in vivo results confirmed that the defect treated with PCL/Vit D-Cur nanofiber membrane was filled with the newly formed bone after 1 month. These results indicate that the Vit D/Cur loaded membrane can be applied for potential bone regeneration therapy.
Collapse
Affiliation(s)
| | - Bilal A. Al-Shaaobi
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | | | | | - Liang Yu
- School Hospital of Stomatology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiating Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lei Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yiding Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhennan Deng, ; Peng Gao,
| | - Peng Gao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Zhennan Deng, ; Peng Gao,
| |
Collapse
|
28
|
Yilmaz İ, Karaarslan N, Somay H, Ozbek H, Ates O. Curcumin-Impregnated Drug Delivery Systems May Show Promise in the Treatment of Diseases Secondary to Traumatic Brain Injury: Systematic Review. J Pharmacol Pharmacother 2022. [DOI: 10.1177/0976500x221112479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a major social health problem, especially in young adults, and progresses with advanced functional losses. In this study, curcumin was directed to the damaged brain tissue by crossing the blood–brain barrier through drug delivery systems. Thus, the study asked whether it can be effective in the treatment of TBI, which has not had a radical treatment method in clinics yet. Methods A comprehensive and systematic literature search in the PubMed electronic database was performed. Descriptive statistics were used to evaluate the data obtained. The results were presented as frequency and percentage (%) or amount. Results Two clinical trials investigated curcumin for the treatment of TBI. One study tested curcumin in living mammalian subjects using an amyloLipid nanovesicle. In three studies, curcumin was investigated together with the drug delivery system for the treatment of TBI. Conclusion Drug delivery systems prepared with nanomaterials may have a potential therapeutic effect in treating TBI by increasing neuroprotection because they can penetrate the central nervous system more rapidly.
Collapse
Affiliation(s)
- İbrahim Yilmaz
- Ministry of Health, Dr Ismail Fehmi Cumalioglu City Hospital, Unit of Pharmacovigilance and Rational Use of Drugs, Tekirdag, Turkey
- Department of Medical Services and Techniques, Vocational School of Health Services, Istanbul Rumeli University, Istanbul, Istanbul, Turkey
| | - Numan Karaarslan
- Department of Neurosurgery, Halic University School of Medicine, Istanbul, Istanbul, Turkey
| | - Hakan Somay
- Department of Neurosurgery, Kadikoy Medicana Hospital, Istanbul, Istanbul, Turkey
| | - Hanefi Ozbek
- Department of Medical Pharmacology, İzmir Bakırçay University School of Medicine, Izmir, Izmir, Turkey
| | - Ozkan Ates
- Department of Neurosurgery, Istanbul Koc University School of Medicine, Istanbul, Istanbul, Turkey
| |
Collapse
|
29
|
Tissue engineering approaches for the in vitro production of spermatids to treat male infertility: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Ekambaram R, Saravanan S, Dharmalingam S. Strategically designed SPEEK nanofibrous scaffold with tailored delivery of resveratrolfor skin wound regeneration. Biomed Phys Eng Express 2022; 8. [PMID: 35772389 DOI: 10.1088/2057-1976/ac7d76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022]
Abstract
Electro-spinnable polymeric materials can easily form two-dimensional (2D) nanofibrous scaffolds improving biochemical functionalities specially in the area of skin wound healing and nanomedicine, but it has been hard to achieve this on a highly mechanically stable biopolymer, Poly ether ether ketone (PEEK), due to its intrinsic hydrophobicity and chemical inertness. Herein, we demonstrated a novel nanomedicine healing system consisting of sulphonated poly ether ether ketone combined withresveratrol(SPEEK+RSV), which could act as an effective 2D nano bio-materialin vitroandin vivo, without observable cytotoxicity. The fabricated nanocomposites exhibited enriched skin cell proliferation and adhesion as confirmed from the results of MTT, cell adhesion and live-dead assay. Results of SEM analysis showed a uniform nano-sized distribution with adequate pore size and porosity % facilitating a desired breathable environment at the wound site. The results of FT-IR, tensile studies and TGA analyses confirmed the presence of appropriate bonds and improved mechanical stability of theRSVincorporated nanofibrous scaffold. Results of anti-microbial analysis portrayed good potentiality of the fabricated nanofibers in treating wounds colonized with bacterial infections. Controlled drug release of resveratrol established the bio-compatibility of the nanofibers in skin wound regeneration.In vivoanalysis assessed in female Wistar rats enabled complete wound closure with 100 % wound contraction within 16 days. Results of histopathology analysis through H-E and MT staining presented the re-surfing of the wound environment with regeneration of epithelium, granulation tissue and collagen. Thus, the fabricated 2D nanofibrous scaffold incorporated with pharmaceutical RSV bio-medicine perceptively mimicked skin ECM convincingly aiding the progression of skin wound regeneration mechanism.
Collapse
Affiliation(s)
- Rajalakshmi Ekambaram
- Mechanical Engineering, Anna University Chennai, Department of Mechanical Engineering, College of Engineering Campus, CEG, Anna University, Chennai-25, Chennai, Tamilnadu, 600025, INDIA
| | - Saisupriyalakshmi Saravanan
- Mechanical Engineering, Anna University Chennai, Department of Mechanical Engineering, College of Engineering Campus, CEG, Anna University, Chennai-25, Chennai, Tamilnadu, 600025, INDIA
| | - Sangeetha Dharmalingam
- Mechanical Engineering, Anna University Chennai, Department of Mechanical Engineering, College of Engineering Campus, CEG, Anna University, Chennai-25, Chennai, Tamilnadu, 600025, INDIA
| |
Collapse
|
31
|
Singh H, Bashir SM, Purohit SD, Bhaskar R, Rather MA, Ali SI, Yadav I, Makhdoomi DM, Din Dar MU, Gani MA, Gupta MK, Mishra NC. Nanoceria laden decellularized extracellular matrix-based curcumin releasing nanoemulgel system for full-thickness wound healing. BIOMATERIALS ADVANCES 2022; 137:212806. [PMID: 35929233 DOI: 10.1016/j.bioadv.2022.212806] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/23/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Decellularized extracellular matrix (ECM) has been widely used for wound healing. But, ECM failed to integrate tissue and restore the tissue function properly, when elevated levels of free radicals and biofilm formation occur at the wound site. Here, nanoemulgel systems were fabricated, considering the combinatorial approach of nanotechnology (nanoceria and curcumin nanoemulsion) and ECM gel of goat small intestine submucosa. The curcumin was encapsulated in the nanoemulgel system to enhance bioavailability in terms of antibacterial, antioxidant, sustained release and permeation at the wound site. Nanoceria was also incorporated to enhance the antibacterial, antioxidant and wound healing properties of the fabricated nanoemulgel formulation. All the formulations were porous, hydrophilic, biodegradable, antioxidant, antibacterial, hemocompatible, biocompatible, and showed enhanced wound healing rate. The formulation (DG-SIS/Ce/NC) showed the highest free radicals scavenging capacity and antibacterial property with prolonged curcumin release (62.9% in 96 h), skin permeability (79.7% in 96 h); showed better cell growth under normal and oxidative-stressed conditions: it also showed full-thickness wound contraction (97.33% in 14 days) with highest collagen synthesis at the wound site (1.61 μg/mg in 14 days). The outcomes of this study suggested that the formulation (DG-SIS/Ce/NC) can be a potential nanoemulgel system for full-thickness wound healing application.
Collapse
Affiliation(s)
- Hemant Singh
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Showkeen Muzamil Bashir
- Biochemistry and Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Shiv Dutt Purohit
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Rakesh Bhaskar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India; School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Muzafar Ahmad Rather
- Biochemistry and Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Sofi Imtiyaz Ali
- Biochemistry and Molecular Biology Lab, Division of Veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | - Indu Yadav
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Dil Muhammad Makhdoomi
- Large Animal Surgical Section, Department of Veterinary Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, Jammu and Kashmir, India
| | - Mehraj U Din Dar
- Large Animal Surgical Section, Department of Veterinary Surgery and Radiology, Faculty of Veterinary Sciences and Animal Husbandry, Srinagar, Jammu and Kashmir, India
| | - Muhamad Asharaf Gani
- Department of Endocrinology, Sher-e-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Narayan Chandra Mishra
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
32
|
Tang X, Xiong K, Wassie T, Wu X. Curcumin and Intestinal Oxidative Stress of Pigs With Intrauterine Growth Retardation: A Review. Front Nutr 2022; 9:847673. [PMID: 35571913 PMCID: PMC9101057 DOI: 10.3389/fnut.2022.847673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/15/2022] [Indexed: 12/12/2022] Open
Abstract
Intrauterine growth restriction (IUGR) refers to the slow growth and development of a mammalian embryo/fetus or fetal organs during pregnancy, which is popular in swine production and causes considerable economic losses. Nutritional strategies have been reported to improve the health status and growth performance of IUGR piglets, among which dietary curcumin supplementation is an efficient alternative. Curcumin is a natural lipophilic polyphenol derived from the rhizome of Curcuma longa with many biological activities. It has been demonstrated that curcumin promotes intestinal development and alleviates intestinal oxidative damage. However, due to its low bioavailability caused by poor solubility, chemical instability, and rapid degradation, the application of curcumin in animal production is rare. In this manuscript, the structural-activity relationship to enhance the bioavailability, and the nutritional effects of curcumin on intestinal health from the aspect of protecting piglets from IUGR associated intestinal oxidative damage were summarized to provide new insight into the application of curcumin in animal production.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Teketay Wassie
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xin Wu
- CAS Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Laboratory of Nutrient Resources and Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
33
|
Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, Sossa CL, Becerra-Bayona SM. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Front Bioeng Biotechnol 2022; 10:821852. [PMID: 35252131 PMCID: PMC8896438 DOI: 10.3389/fbioe.2022.821852] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
The absence or damage of a tissue is the main cause of most acute or chronic diseases and are one of the appealing challenges that novel therapeutic alternatives have, in order to recover lost functions through tissue regeneration. Chronic cutaneous lesions are the most frequent cause of wounds, being a massive area of regenerative medicine and tissue engineering to have efforts to develop new bioactive medical products that not only allow an appropriate and rapid healing, but also avoid severe complications such as bacterial infections. In tissue repair and regeneration processes, there are several overlapping stages that involve the synergy of cells, the extracellular matrix (ECM) and biomolecules, which coordinate processes of ECM remodeling as well as cell proliferation and differentiation. Although these three components play a crucial role in the wound healing process, the ECM has the function of acting as a biological platform to permit the correct interaction between them. In particular, ECM is a mixture of crosslinked proteins that contain bioactive domains that cells recognize in order to promote migration, proliferation and differentiation. Currently, tissue engineering has employed several synthetic polymers to design bioactive scaffolds to mimic the native ECM, by combining biopolymers with growth factors including collagen and fibrinogen. Among these, decellularized tissues have been proposed as an alternative for reconstructing cutaneous lesions since they maintain the complex protein conformation, providing the required functional domains for cell differentiation. In this review, we present an in-depth discussion of different natural matrixes recently employed for designing novel therapeutic alternatives for treating cutaneous injuries, and overview some future perspectives in this area.
Collapse
Affiliation(s)
- Víctor Alfonso Solarte David
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Program of Biomedical Engineering, Faculty of Engineering, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
| | - Viviana Raquel Güiza-Argüello
- Metallurgical Engineering and Materials Science Department, Faculty of Physicochemical Engineering, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Martha L. Arango-Rodríguez
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Claudia L. Sossa
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- Multi-tissue Bank and Advanced Therapy Center, Fundación Oftalmológica de Santander, Clínica Carlos Ardila Lulle, Floridablanca, Colombia
| | - Silvia M. Becerra-Bayona
- Program of Medicine, Faculty of Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga, Colombia
- *Correspondence: Silvia M. Becerra-Bayona,
| |
Collapse
|
34
|
Sharma M, Inbaraj BS, Dikkala PK, Sridhar K, Mude AN, Narsaiah K. Preparation of Curcumin Hydrogel Beads for the Development of Functional Kulfi: A Tailoring Delivery System. Foods 2022; 11:foods11020182. [PMID: 35053917 PMCID: PMC8774899 DOI: 10.3390/foods11020182] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 02/01/2023] Open
Abstract
Curcumin has been demonstrated to have biological activities and its fortification in food products is an important strategy to deliver bioactive ingredients at target sites. However, studies have documented a curcumin low bioavailability and low intake. Hence, combining functional ingredients with food should be needed to prevent widespread nutrient intake shortfalls and associated deficiencies. Thus, curcumin was encapsulated in calcium-alginate and their characteristics as well as in vitro release behavior of curcumin hydrogel beads (CHBs) was studied. Moreover, CHBs were fortified in development of functional Kulfi and their quality characteristics were studied. The encapsulation efficiency was up to 95.04%, indicating that most of the curcumin was entrapped. FTIR shifts in the bands were due to the replacement of sodium ions to the calcium ions. In vitro release (%) for CHBs was found to be 67.15% after 2 h, which increased slightly up to 67.88% after 4 h. The average swelling index of CHBs was found to be 10.21 to 37.92 from 2 to 12 h in PBS (pH 7.40). Control and Kulfi fortified with CHBs showed no significant difference (p > 0.05) in colour (L = 73.03 and 75.88) and the melting rate (0.88 mL/min and 0.63 mL/min), respectively. Standard plate count was reduced in the Kulfi fortified with CHBs (13.77 × 104 CFU/mL) with high sensory score for overall acceptability (8.56) compared to the control (154.70 × 104 CFU/mL). These findings suggested the feasibility of developing CHBs to mask the bitterness, enhance the solubility, and increase the bioavailability in gastrointestinal conditions. Additionally, Kulfi could be a suitable dairy delivery system for curcumin bioactive compounds.
Collapse
Affiliation(s)
- Minaxi Sharma
- Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141 004, India; (M.S.); (P.K.D.); (A.N.M.)
| | | | - Praveen Kumar Dikkala
- Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141 004, India; (M.S.); (P.K.D.); (A.N.M.)
| | - Kandi Sridhar
- Department of Food Science, Fu Jen Catholic University, New Taipei City 242 05, Taiwan; or
- Correspondence: or (K.S.); (K.N.)
| | - Arjun Naik Mude
- Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141 004, India; (M.S.); (P.K.D.); (A.N.M.)
| | - Kairam Narsaiah
- Central Institute of Post-Harvest Engineering and Technology, Ludhiana 141 004, India; (M.S.); (P.K.D.); (A.N.M.)
- Correspondence: or (K.S.); (K.N.)
| |
Collapse
|
35
|
Xu Z, Cao J, Zhao Z, Qiao Y, Liu X, Zhong J, Wang B, Suo G. A functional extracellular matrix biomaterial enriched with VEGFA and bFGF as vehicle of human umbilical cord mesenchymal stem cells in skin wound healing. Biomed Mater 2021; 17. [PMID: 34749352 DOI: 10.1088/1748-605x/ac37b0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/12/2022]
Abstract
The construction of microvascular network is one of the greatest challenges for tissue engineering and cell therapy. Endothelial cells are essential for the construction of network of blood vessels. However, their application meets challenges in clinic due to the limited resource of autologous endothelium. Mesenchymal stem cells can effectively promote the angiogenesis in ischemic tissues for their abilities of endothelial differentiation and paracrine, and abundant sources. Extracellular matrix (ECM) has been widely used as an ideal biomaterial to mimic cellular microenvironment for tissue engineering due to its merits of neutrality, good biocompatibility, degradability, and controllability. In this study, a functional cell derived ECM biomaterial enriched with VEGFA and bFGF by expressing the collagen-binding domain fused factor genes in host cells was prepared. This material could induce endothelial differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs) and promote angiogenesis, which may improve the healing effect of skin injury. Our research not only provides a functional ECM material to inducing angiogenesis by inducing endothelial differentiation of hUCMSCs, but also shed light on the ubiquitous approaches to endow ECM materials different functions by enriching different factors. This study will benefit tissue engineering and regenerative medicine researches.
Collapse
Affiliation(s)
- Zhongjuan Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, People's Republic of China
| | - Junjun Cao
- Livingchip Lnc., Nanjing 211112, Jiangsu, People's Republic of China
| | - Zhe Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, People's Republic of China
| | - Yong Qiao
- Livingchip Lnc., Nanjing 211112, Jiangsu, People's Republic of China
| | - Xingzhi Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.,CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, People's Republic of China
| | - Junjie Zhong
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200041, People's Republic of China
| | - Bin Wang
- Center for Clinic Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, People's Republic of China
| | - Guangli Suo
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, People's Republic of China
| |
Collapse
|
36
|
Da LC, Huang YZ, Xie HQ, Zheng BH, Huang YC, Du SR. Membranous Extracellular Matrix-Based Scaffolds for Skin Wound Healing. Pharmaceutics 2021; 13:1796. [PMID: 34834211 PMCID: PMC8620109 DOI: 10.3390/pharmaceutics13111796] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Membranous extracellular matrix (ECM)-based scaffolds are one of the most promising biomaterials for skin wound healing, some of which, such as acellular dermal matrix, small intestinal submucosa, and amniotic membrane, have been clinically applied to treat chronic wounds with acceptable outcomes. Nevertheless, the wide clinical applications are always hindered by the poor mechanical properties, the uncontrollable degradation, and other factors after implantation. To highlight the feasible strategies to overcome the limitations, in this review, we first outline the current clinical use of traditional membranous ECM scaffolds for skin wound healing and briefly introduce the possible repair mechanisms; then, we discuss their potential limitations and further summarize recent advances in the scaffold modification and fabrication technologies that have been applied to engineer new ECM-based membranes. With the development of scaffold modification approaches, nanotechnology and material manufacturing techniques, various types of advanced ECM-based membranes have been reported in the literature. Importantly, they possess much better properties for skin wound healing, and would become promising candidates for future clinical translation.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| |
Collapse
|