1
|
Lashkarizadeh N, Mohammadi M, Mohyadin Z, Kalantari M, Kakooei S, Karamoozian A. Histological study of the effect of different hydration times of bone allograft and xenograft particles on the rate of bone formation in critical size defects in the rat calvarium. Int J Implant Dent 2025; 11:23. [PMID: 40138157 PMCID: PMC11947333 DOI: 10.1186/s40729-025-00610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of different bone graft hydration times on bone regeneration. METHODS Five-mm defects were created on either side of the sagittal plane in the calvaria of 40 rats. In each rat, the right and left defects were filled with allograft (Cenobone®) and xenograft (Cerabone®) particles, respectively, based on the grouping that was randomly assigned in the study (no hydration of bone graft, 2-minute saline hydration, 10-minute saline hydration, 30-minute saline hydration, and 2-minute blood hydration). Histological and histomorphometrical analyses were performed eight weeks after surgery. The amount of new bone formation, remaining graft, and connective tissue were analyzed using the general linear model (GLM) and Bonferroni test. RESULTS There was no significant difference regarding the mean of new bone, remaining graft, and connective tissue between the xenograft samples in different hydration groups. In the allograft groups, the mean new bone formation of the no-hydration and 2-minute saline-hydrated groups was significantly lower than 30-minute saline-hydrated and blood hydrated groups (P = 0.03 and P = 0.03, respectively). Regarding the variable of the remaining graft particles, the results were almost similar. CONCLUSIONS The results of this study showed that, the method of bone graft hydration before it is used in treating bone lesions affects osteogenesis. Especially in the case of allograft, rehydration before usage at least for 10 min is recommended.
Collapse
Affiliation(s)
- Nazila Lashkarizadeh
- Oral and Dental Diseases Research Center, Department of Periodontics, Kerman Dental School, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Mohammadi
- Oral and Dental Diseases Research Center, Department of Periodontics, Kerman Dental School, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Mohyadin
- Department of Periodontics, School of Dentistry, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| | - Mahsa Kalantari
- Department of Oral and Maxillofacial Pathology, Oral and Dental Diseases Research Center, Kerman Dental School, Kerman University of Medical Sciences, Kerman, Iran
| | - Sina Kakooei
- Oral and Dental Diseases Research Center, Department of Periodontics, Kerman Dental School, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Karamoozian
- Department of Biostatistics and Epidemiology, Kerman University of Medical Sciences, Kerman, Iran
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Abedi N, Sadeghian A, Kouhi M, Haugen HJ, Savabi O, Nejatidanesh F. Immunomodulation in Bone Tissue Engineering: Recent Advancements in Scaffold Design and Biological Modifications for Enhanced Regeneration. ACS Biomater Sci Eng 2025; 11:1269-1290. [PMID: 39970366 DOI: 10.1021/acsbiomaterials.4c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Bone defects, whether caused by trauma, cancer, infectious diseases, or surgery, can significantly impair people's quality of life. Although autografts are the gold standard for treating bone defects, they often fall short in adequately forming bone tissue. The field of bone tissue engineering has made strides in using scaffolds with various biomaterials, stem cells, and growth factors to enhance bone healing. However, some biological structures do not yield satisfactory therapeutic outcomes for new bone formation. Recent studies have shed light on the crucial role of immunomodulation, specifically the interaction between the implanted scaffold and host immune systems, in bone regeneration. Immune cells, particularly macrophages, are pivotal in the inflammatory response, angiogenesis, and osteogenesis. This review delves into the immune system's mechanism toward foreign bodies and the recent advancements in scaffolds' physical and biological properties that foster bone regeneration by modulating macrophage polarization to an anti-inflammatory phenotype and enhancing the osteoimmune microenvironment.
Collapse
Affiliation(s)
- Niloufar Abedi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, Illinois 60612, United States
| | - Aida Sadeghian
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Monireh Kouhi
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Omid Savabi
- Department of Prosthodontics, Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Farahnaz Nejatidanesh
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
3
|
Jia Y, Duan M, Yang Y, Li D, Wang D, Tang Z. The local pulsatile parathyroid hormone delivery system induces the osteogenic differentiation of dental pulp mesenchymal stem cells to reconstruct mandibular defects. Stem Cell Res Ther 2025; 16:119. [PMID: 40050973 PMCID: PMC11887249 DOI: 10.1186/s13287-025-04258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Tumors and injuries often lead to large mandibular defects. Accelerating the osteogenesis of large bone defect areas is a major concern in current research. In this study, dental pulp mesenchymal stem cells (DPSCs) were used as seed cells, and the local pulsatile parathyroid hormone (PTH) delivery system was used as an osteogenic-inducing active ingredient to act on DPSCs and osteoblasts, which were applied to the jaw defect area to evaluate its therapeutic effect on bone regeneration. METHODS Pulsatile delivery systems, both with and without PTH, were developed following the protocols outlined in our previous study. In vitro, the biocompatibility of the pulsatile delivery system with DPSCs was assessed using the Cell Counting Kit-8 (CCK8) assay and live/dead cell staining. Osteogenic differentiation was evaluated through alkaline phosphatase staining and alizarin red staining. In vivo, critical bone defects with a diameter of 10 mm were created in the mandibles of white rabbits. The osteogenic effect was further assessed through gross observation, X-ray imaging, and histological examination. RESULTS In vitro experiments using CCK8 assays and live/dead cell staining demonstrated that DPSCs successfully adhered to the surface of the PTH pulsatile delivery system, showing no significant difference compared to the control group. Furthermore, alkaline phosphatase staining and Alizarin Red staining confirmed that the localized pulsatile parathyroid hormone delivery system effectively induced the differentiation of DPSCs into osteoblasts, leading to the secretion of abundant calcium nodules. Animal studies further revealed that the PTH pulsatile delivery system promoted the osteogenic differentiation of DPSCs, facilitating the repair of critical mandibular bone defects. CONCLUSION The rhythmic release of PTH from the pulsatile delivery system effectively induces the osteogenic differentiation of DPSCs. By leveraging the synergistic interaction between PTH and DPSCs, this approach facilitates the repair of extensive mandibular bone defects.
Collapse
Affiliation(s)
- Yuanyuan Jia
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China
| | - Mianmian Duan
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China
| | - Yan Yang
- Center for Tissue Engineering and Stem Cell Research, Guizhou Medical University, Guiyang, 550000, China
| | - Duchenhui Li
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China
| | - Dongxiang Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China
| | - Zhenglong Tang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Guizhou Medical University, Guiyang, 550000, China.
| |
Collapse
|
4
|
Xu X, Feng J, Lin T, Liu R, Chen Z. miR-181a/MSC-Loaded Nano-Hydroxyapatite/Collagen Accelerated Bone Defect Repair in Rats by Targeting Ferroptosis Pathway. J Funct Biomater 2024; 15:385. [PMID: 39728185 DOI: 10.3390/jfb15120385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Background: The reparative regeneration of jawbone defects poses a significant challenge within the field of dentistry. Despite being the gold standard, autogenous bone materials are not without drawbacks, including a heightened risk of postoperative infections. Consequently, the development of innovative materials that can surpass the osteogenic capabilities of autologous bone has emerged as a pivotal area of research. Methods: Mesenchymal stem cells (MSCs), known for their multilineage differentiation potential, were isolated from human umbilical cords and transfected with miR-181a. The osteogenic differentiation of miR-181a/MSC was investigated. Then, physicochemical properties of miR-181a/MSC-loaded nano-hydroxyapatite (nHAC) scaffolds were characterized, and their efficacy and underlying mechanism in rat calvarial defect repair were explored. Results: miR-181a overexpression in MSCs significantly promoted osteogenic differentiation, as evidenced by increased alkaline phosphatase activity and expression of osteogenic markers. The miR-181a/MSC-loaded nHAC scaffolds exhibited favorable bioactivity and accelerated bone tissue repair and collagen secretion in vivo. Mechanistic studies reveal that miR-181a directly targeted the TP53/SLC7A11 pathway, inhibiting ferroptosis and enhancing the osteogenic capacity of MSCs. Conclusions: The study demonstrates that miR-181a/MSC-loaded nHAC scaffolds significantly enhance the repair of bone defects by promoting osteogenic differentiation and inhibiting ferroptosis. These findings provide novel insights into the molecular mechanisms regulating MSC osteogenesis and offer a promising therapeutic strategy for bone defect repair.
Collapse
Affiliation(s)
- Xiongjun Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Junming Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Tianze Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Runheng Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| |
Collapse
|
5
|
Yang J, Zhang L, Wang Y, Wang N, Wei H, Zhang S, Ding Q, Sun S, Ding C, Liu W. Dihydromyricetin-loaded oxidized polysaccharide/L-arginine chitosan adhesive hydrogel promotes bone regeneration by regulating PI3K/AKT signaling pathway and MAPK signaling pathway. Carbohydr Polym 2024; 346:122614. [PMID: 39245525 DOI: 10.1016/j.carbpol.2024.122614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Bone defects caused by trauma, infection and congenital diseases still face great challenges. Dihydromyricetin (DHM) is a kind of flavone extracted from Ampelopsis grossedentata, a traditional Chinese medicine. DHM can enhance the osteogenic differentiation of human bone marrow mesenchymal stem cells with the potential to promote bone regeneration. Hydrogel can be used as a carrier of DHM to promote bone regeneration due to its unique biochemical characteristics and three-dimensional structure. In this study, oxidized phellinus igniarius polysaccharides (OP) and L-arginine chitosan (CA) are used to develop hydrogel. The pore size and gel strength of the hydrogel can be changed by adjusting the oxidation degree of oxidized phellinus igniarius polysaccharides. The addition of DHM further reduce the pore size of the hydrogel (213 μm), increase the mechanical properties of the hydrogel, and increase the antioxidant and antibacterial activities of the hydrogel. The scavenging rate of DPPH are 72.30 ± 0.33 %, and the inhibition rate of E.coli and S.aureus are 93.12 ± 0.38 % and 94.49 ± 1.57 %, respectively. In addition, PCAD has good adhesion and biocompatibility, and its extract can effectively promote the osteogenic differentiation of MC3T3-E1 cells. Network pharmacology and molecular docking show that the promoting effect of DHM on osteogenesis may be achieved by activating the PI3K/AKT and MAPK signaling pathways. This is confirmed through in vitro cell experiments and in vivo animal experiments.
Collapse
Affiliation(s)
- Jiali Yang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Lifeng Zhang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Yue Wang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Ning Wang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Hewei Wei
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuai Zhang
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Qiteng Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Shuwen Sun
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China
| | - Chuanbo Ding
- College of traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Wencong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543002, China.
| |
Collapse
|
6
|
Mi B, Zhang J, Meng H, Xu Y, Xie J, Hao D, Shan L. Laponite modified methacryloyl gelatin hydrogel with controlled release of vascular endothelial growth factor a for bone regeneration. Biochem Biophys Res Commun 2024; 733:150714. [PMID: 39326258 DOI: 10.1016/j.bbrc.2024.150714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Reconstruction of bone defects has long been a major clinical challenge. Limited by the various shortcomings of conventional treatment like autologous bone grafting and inorganic substitutes, the development of novel bone repairing strategies is on top priority. Injectable biomimetic hydrogels that deliver stem cells and growth factors in a minimally invasive manner can effectively promote bone regeneration and thus represent a promising alternative. Therefore, in this study, we designed and constructed an injectable nanocomposite hydrogel co-loaded with Laponite (Lap) and vascular endothelial growth factor (VEGF) through a simplified and convenient scheme of physical co-mixing (G@Lap/VEGF). The introduced Lap not only optimized the injectability of GelMA by the electrostatic force between the nanoparticles, but also significantly delayed the release of VEGF-A. In addition, Lap promoted high expression of osteogenic biomarkers in mesenchymal stem cells (MSCs) and enhanced the matrix mineralization. Besides, VEGF-A exerted chemotactic effects recruiting endothelial progenitor cells (EPCs) and inducing neovascularization. Histological and micro-CT results demonstrated that the critical-sized calvarial bone defect lesions in the SD rats after treated with G@Lap/VEGF exhibited significant in vivo bone repairing. In conclusion, the injectable G@Lap/VEGF nanocomposite hydrogel constructed in our study is highly promising for clinical transformation and applications, providing a convenient and simplified scheme for clinical bone repairing, and contributing to the further development of the injectable biomimetic hydrogels.
Collapse
Affiliation(s)
- Baoguo Mi
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Jitao Zhang
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Hailan Meng
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China
| | - Yixin Xu
- Department of Orthopaedic, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Jiajun Xie
- Department of Orthopaedic, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Dingjun Hao
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China; Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an, Shaanxi Province, 710054, China.
| | - Lequn Shan
- Department of Spine Surgery, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710054, China.
| |
Collapse
|
7
|
Skierbiszewska K, Szałaj U, Turek B, Sych O, Jasiński T, Łojkowski W, Domino M. Radiological properties of nano-hydroxyapatite compared to natural equine hydroxyapatite quantified using dual-energy CT and high-field MR. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 61:102765. [PMID: 38942131 DOI: 10.1016/j.nano.2024.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024]
Abstract
In equine medicine, assisted bone regeneration, including use of biomaterial substitutes like hydroxyapatite (HAP), is crucial for addressing bone defects. To follow-up on the outcome of HAP-based bone defect treatment, the advancement in quantified diagnostic imaging protocols is needed. This study aimed to quantify and compare the radiological properties of the HAP graft and natural equine bone using Magnetic Resonance (MR) and Computed Tomography (CT), both Single (SECT) and Dual Energy (DECT). SECT and DECT, allow for the differentiation of three HAP grain sizes, by progressive increase in relative density (RD). SECT, DECT, and MR enable the differentiation between natural cortical bone and synthetic HAP graft by augmentation in Effective Z and material density (MD) in HAP/Water, Calcium/Water, and Water/Calcium reconstructions, alongside the reduction in T2 relaxation time. The proposed quantification provided valuable radiological insights into the composition of HAP grafts, which may be useful in follow-up bone defect treatment.
Collapse
Affiliation(s)
- Katarzyna Skierbiszewska
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS - SGGW), 02-797 Warsaw, Poland
| | - Urszula Szałaj
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland
| | - Bernard Turek
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS - SGGW), 02-797 Warsaw, Poland
| | - Olena Sych
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland; Department of Functional Materials for Medical Application, Frantsevich Institute for Problems of Materials Science of NAS of Ukraine, Kyiv 03142, Ukraine
| | - Tomasz Jasiński
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS - SGGW), 02-797 Warsaw, Poland
| | - Witold Łojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142 Warsaw, Poland
| | - Małgorzata Domino
- Department of Large Animal Diseases and Clinic, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS - SGGW), 02-797 Warsaw, Poland.
| |
Collapse
|
8
|
Yagi S, Laurain-Mattar D, Zengin G. Editorial: Natural products from plants or microorganisms for treatment of non- communicable diseases. Front Chem 2024; 12:1496038. [PMID: 39411266 PMCID: PMC11473463 DOI: 10.3389/fchem.2024.1496038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Affiliation(s)
- Sakina Yagi
- Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan
| | | | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Türkiye
| |
Collapse
|
9
|
Abedi M, Shafiee M, Afshari F, Mohammadi H, Ghasemi Y. Collagen-Based Medical Devices for Regenerative Medicine and Tissue Engineering. Appl Biochem Biotechnol 2024; 196:5563-5603. [PMID: 38133881 DOI: 10.1007/s12010-023-04793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Assisted reproductive technologies are key to solving the problems of aging and organ defects. Collagen is compatible with living tissues and has many different chemical properties; it has great potential for use in reproductive medicine and the engineering of reproductive tissues. It is a natural substance that has been used a lot in science and medicine. Collagen is a substance that can be obtained from many different animals. It can be made naturally or created using scientific methods. Using pure collagen has some drawbacks regarding its physical and chemical characteristics. Because of this, when collagen is processed in various ways, it can better meet the specific needs as a material for repairing tissues. In simpler terms, collagen can be used to help regenerate bones, cartilage, and skin. It can also be used in cardiovascular repair and other areas. There are different ways to process collagen, such as cross-linking it, making it more structured, adding minerals to it, or using it as a carrier for other substances. All of these methods help advance the field of tissue engineering. This review summarizes and discusses the current progress of collagen-based materials for reproductive medicine.
Collapse
Affiliation(s)
- Mehdi Abedi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran.
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran.
| | - Mina Shafiee
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Farideh Afshari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Medical Sciences and Technology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Mohammadi
- Research and Development Department, Danesh Salamat Kowsar Co., P.O. Box 7158186496, Shiraz, Iran
| | - Younes Ghasemi
- Pharmaceutical Science Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
10
|
Abdelaziz AG, Nageh H, Abdalla MS, Abdo SM, Amer AA, Loutfy SA, Abdel Fattah NF, Alsalme A, Cornu D, Bechelany M, Barhoum A. Development of polyvinyl alcohol nanofiber scaffolds loaded with flaxseed extract for bone regeneration: phytochemicals, cell proliferation, adhesion, and osteogenic gene expression. Front Chem 2024; 12:1417407. [PMID: 39144698 PMCID: PMC11322085 DOI: 10.3389/fchem.2024.1417407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/04/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction: Bone tissue engineering seeks innovative materials that support cell growth and regeneration. Electrospun nanofibers, with their high surface area and tunable properties, serve as promising scaffolds. This study explores the incorporation of flaxseed extract, rich in polyphenolic compounds, into polyvinyl alcohol (PVA) nanofibers to improve their application in bone tissue engineering. Methods: High-performance liquid chromatography (HPLC) identified ten key compounds in flaxseed extract, including polyphenolic acids and flavonoids. PVA nanofibers were fabricated with 30 wt.% flaxseed extract (P70/E30) via electrospinning. We optimized characteristics like diameter, hydrophilicity, swelling behavior, and hydrolytic degradation. MG-63 osteoblast cultures were used to assess scaffold efficacy through cell adhesion, proliferation, viability (MTT assay), and differentiation. RT-qPCR measured expression of osteogenic genes RUNX2, COL1A1, and OCN. Results: Flaxseed extract increased nanofiber diameter from 252 nm (pure PVA) to 435 nm (P70/E30). P70/E30 nanofibers showed higher cell viability (102.6% vs. 74.5% for pure PVA), although adhesion decreased (151 vs. 206 cells/section). Notably, P70/E30 enhanced osteoblast differentiation, significantly upregulating RUNX2, COL1A1, and OCN genes. Discussion: Flaxseed extract incorporation into PVA nanofibers enhances bone tissue engineering by boosting osteoblast proliferation and differentiation, despite reduced adhesion. These properties suggest P70/E30's potential for regenerative medicine, emphasizing scaffold optimization for biomedical applications.
Collapse
Affiliation(s)
- Ahmed G. Abdelaziz
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Hassan Nageh
- Nanotechnology Research Centre (NTRC), The British University in Egypt, Cairo, Egypt
| | - Mohga S. Abdalla
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Sara M. Abdo
- Biochemistry Division, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Asmaa A. Amer
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Samah A. Loutfy
- Nanotechnology Research Centre (NTRC), The British University in Egypt, Cairo, Egypt
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Nasra F. Abdel Fattah
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - David Cornu
- Institut Européen des Membranes (IEM), UMR 5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University of Montpellier, ENSCM, CNRS, Montpellier, France
- Gulf University for Science and Technology, GUST, Mubarak Al-Abdullah, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
11
|
Popescu F, Titorencu I, Albu Kaya M, Miculescu F, Tutuianu R, Coman AE, Danila E, Marin MM, Ancuta DL, Coman C, Barbilian A. Development of Innovative Biocomposites with Collagen, Keratin and Hydroxyapatite for Bone Tissue Engineering. Biomimetics (Basel) 2024; 9:428. [PMID: 39056869 PMCID: PMC11275084 DOI: 10.3390/biomimetics9070428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
This study follows the process for the development of an innovative biomimetic composite derived from bovine collagen with keratin, with hydroxyapatite being hybridized into its architecture, and it builds a comprehensive evaluation of the composite's characteristics. The novel biomimetic materials are tailored with special traits to be achieved for the repair of osteochondral defects (OCDs). The purpose of the present research is to create a reliable effective alternative to existing bone graft materials while leveraging the intrinsic properties of the components for enhanced osteoinduction and integration. The composites were characterized based on their morphological properties, including water absorption, through scanning electron microscopy (SEM), and their structural properties were characterized by Fourier-Transform Infrared Spectroscopy (FTIR). Biological performance was assessed in vitro using human bone marrow mesenchymal stem cells (BMSCs), focusing on cytotoxicity, cell viability, and the ability to support cell colonization with forthcoming results. This in vivo study illustrates the real potential that this class of novel composites exhibits in regard to bone and cartilage tissue engineering and encourages further exploration and development for future clinical applications.
Collapse
Affiliation(s)
- Florin Popescu
- Department of Orthopedics and Traumatology, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 8 Eroii Sanitari Bvd., 050474 Bucharest, Romania; (F.P.); (A.B.)
| | - Irina Titorencu
- Institute of Cellular Biology and Pathology ‘’Nicolae Simionescu’’, 8 B. P. Hasdeu Street, District 5, 050568 Bucharest, Romania; (I.T.); (R.T.)
| | - Madalina Albu Kaya
- INCDTP—Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania;
| | - Florin Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, National University of Science and Technology Politehnica Bucharest, 313 Independenței Spl., 060042 Bucharest, Romania;
| | - Raluca Tutuianu
- Institute of Cellular Biology and Pathology ‘’Nicolae Simionescu’’, 8 B. P. Hasdeu Street, District 5, 050568 Bucharest, Romania; (I.T.); (R.T.)
| | - Alina Elena Coman
- INCDTP—Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania;
| | - Elena Danila
- INCDTP—Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania;
| | - Minodora Maria Marin
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania;
| | - Diana-Larisa Ancuta
- “Cantacuzino” National Medical-Military Institute for Research and Development, 103 Independenței Spl., 050096 Bucharest, Romania; (D.-L.A.); (C.C.)
| | - Cristin Coman
- “Cantacuzino” National Medical-Military Institute for Research and Development, 103 Independenței Spl., 050096 Bucharest, Romania; (D.-L.A.); (C.C.)
| | - Adrian Barbilian
- Department of Orthopedics and Traumatology, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 8 Eroii Sanitari Bvd., 050474 Bucharest, Romania; (F.P.); (A.B.)
| |
Collapse
|
12
|
Targońska S, Dobrzyńska-Mizera M, Di Lorenzo ML, Knitter M, Longo A, Dobrzyński M, Rutkowska M, Barnaś S, Czapiga B, Stagraczyński M, Mikulski M, Muzalewska M, Wyleżoł M, Rewak-Soroczyńska J, Nowak N, Andrzejewski J, Reeks J, Wiglusz RJ. Design, clinical applications and post-surgical assessment of bioresorbable 3D-printed craniofacial composite implants. Biomater Sci 2024; 12:3374-3388. [PMID: 38787753 DOI: 10.1039/d3bm01826a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
This study details the design, fabrication, clinical trials' evaluation, and analysis after the clinical application of 3D-printed bone reconstruction implants made of nHAp@PLDLLA [nanohydroxyapatite@poly(L-lactide-co-D,L-lactide)] biomaterial. The 3D-printed formulations have been tested as bone reconstruction Cranioimplants in 3 different medical cases, including frontal lobe, mandibular bone, and cleft palate reconstructions. Replacing one of the implants after 6 months provided a unique opportunity to evaluate the post-surgical implant obtained from a human patient. This allowed us to quantify physicochemical changes and develop a spatial map of osseointegration and material degradation kinetics as a function of specific locations. To the best of our knowledge, hydrolytic degradation and variability in the physicochemical and mechanical properties of the biomimetic, 3D-printed implants have not been quantified in the literature after permanent placement in the human body. Such analysis has revealed the constantly changing properties of the implant, which should be considered to optimize the design of patient-specific bone substitutes. Moreover, it has been proven that the obtained composition can produce biomimetic, bioresorbable and bone-forming alloplastic substitutes tailored to each patient, allowing for shorter surgery times and faster patient recovery than currently available methods.
Collapse
Affiliation(s)
- Sara Targońska
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, PL-50-422 Wroclaw, Poland.
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, 75007 Uppsala, Sweden
| | - Monika Dobrzyńska-Mizera
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland.
| | - Maria Laura Di Lorenzo
- National Research Council (CNR), Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy.
| | - Monika Knitter
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland.
| | - Alessandra Longo
- National Research Council (CNR), Institute of Polymers, Composites and Biomaterials (IPCB), Via Campi Flegrei, 34, 80078 Pozzuoli (NA), Italy.
- National Research Council (CNR), Institute of Polymers, Composites and Biomaterials (IPCB), Via Paolo Gaifami 18, 95126, Catania, CT, Italy
| | - Maciej Dobrzyński
- Department of Pediatric Dentistry and Preclinical Dentistry, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Monika Rutkowska
- 4th Military Teaching Hospital, R. Weigla, PL-50-981 Wroclaw, Poland
| | - Szczepan Barnaś
- 4th Military Teaching Hospital, R. Weigla, PL-50-981 Wroclaw, Poland
| | - Bogdan Czapiga
- 4th Military Teaching Hospital, R. Weigla, PL-50-981 Wroclaw, Poland
| | | | | | - Małgorzata Muzalewska
- Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering Silesian University of Technology, Gliwice, Poland.
| | - Marek Wyleżoł
- Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering Silesian University of Technology, Gliwice, Poland.
| | | | - Nicole Nowak
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, PL-50-422 Wroclaw, Poland.
| | - Jacek Andrzejewski
- Institute of Materials Technology, Polymer Division, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland.
| | - John Reeks
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, PL-50-422 Wroclaw, Poland.
| | - Rafal J Wiglusz
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, Krzywoustego 4, 44-100 Gliwice, Poland.
- Institute of Low Temperature and Structure Research, PAS, Okolna 2, PL-50-422 Wroclaw, Poland.
| |
Collapse
|
13
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4) Containing Composites for Biomedical Applications: Formulations, Properties, and Applications. JOURNAL OF COMPOSITES SCIENCE 2024; 8:218. [DOI: 10.3390/jcs8060218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The goal of this review is to present a wide range of hybrid formulations and composites containing calcium orthophosphates (abbreviated as CaPO4) that are suitable for use in biomedical applications and currently on the market. The bioactive, biocompatible, and osteoconductive properties of various CaPO4-based formulations make them valuable in the rapidly developing field of biomedical research, both in vitro and in vivo. Due to the brittleness of CaPO4, it is essential to combine the desired osteologic properties of ceramic CaPO4 with those of other compounds to create novel, multifunctional bone graft biomaterials. Consequently, this analysis offers a thorough overview of the hybrid formulations and CaPO4-based composites that are currently known. To do this, a comprehensive search of the literature on the subject was carried out in all significant databases to extract pertinent papers. There have been many formulations found with different material compositions, production methods, structural and bioactive features, and in vitro and in vivo properties. When these formulations contain additional biofunctional ingredients, such as drugs, proteins, enzymes, or antibacterial agents, they offer improved biomedical applications. Moreover, a lot of these formulations allow cell loading and promote the development of smart formulations based on CaPO4. This evaluation also discusses basic problems and scientific difficulties that call for more investigation and advancements. It also indicates perspectives for the future.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
14
|
Hayashi K, Kishida R, Tsuchiya A, Ishikawa K. Transformable Carbonate Apatite Chains as a Novel Type of Bone Graft. Adv Healthc Mater 2024; 13:e2303245. [PMID: 38229572 DOI: 10.1002/adhm.202303245] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Indexed: 01/18/2024]
Abstract
The aging global population is generating an ever-increasing demand for bone regeneration. Various materials, including blocks, granules, and sponges, are developed for bone regeneration. However, blocks require troublesome shaping and exhibit poor bone-defect conformities; granules migrate into the surrounding tissues during and after filling of the defect, causing handling difficulties and complications; and sponges contain polymers that are subject to religious restrictions, lack osteoconductivity, and may cause inflammation and allergies. Herein, carbonate apatite chains that overcome the limitations of conventional materials are presented. Although carbonate apatite granules migrate, causing inflammation and ectopic calcification, the chains remain in the defects without causing any complications. The chains conform to the defect shape and transform into 3D porous structures, resulting in faster bone regeneration than that observed using granules. Thus, these findings indicate that even traditional calcium phosphates materials can be converted to state-of-the-art materials via shape control.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
15
|
Wüster J, Neckel N, Sterzik F, Xiang-Tischhauser L, Barnewitz D, Genzel A, Koerdt S, Rendenbach C, Müller-Mai C, Heiland M, Nahles S, Knabe C. Effect of a synthetic hydroxyapatite-based bone grafting material compared to established bone substitute materials on regeneration of critical-size bone defects in the ovine scapula. Regen Biomater 2024; 11:rbae041. [PMID: 38903563 PMCID: PMC11187503 DOI: 10.1093/rb/rbae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/11/2024] [Accepted: 03/30/2024] [Indexed: 06/22/2024] Open
Abstract
Lately, the potential risk of disease transmission due to the use of bovine-derived bone substitutes has become obvious, demonstrating the urgent need for a synthetic grafting material with comparable bioactive behaviour and properties. Therefore, the effect of a synthetic hydroxyapatite (HA) (Osbone®) bone grafting material on bone regeneration was evaluated 2 weeks, 1 month, and 3, 6, 12 and 18 months after implantation in critical-size bone defects in the ovine scapula and compared to that of a bovine-derived HA (Bio-Oss®) and β-tricalcium phosphate (TCP) (Cerasorb® M). New bone formation and the biodegradability of the bone substitutes were assessed histomorphometrically. Hard tissue histology and immunohistochemical analysis were employed to characterize collagen type I, alkaline phosphatase, osteocalcin, as well as bone sialoprotein expression in the various cell and matrix components of the bone tissue to evaluate the bioactive properties of the bone grafting materials. No inflammatory tissue response was detected with any of the bone substitute materials studied. After 3 and 6 months, β-TCP (Cerasorb® M) showed superior bone formation when compared to both HA-based materials (3 months: β-TCP 55.65 ± 2.03% vs. SHA 49.05 ± 3.84% and BHA 47.59 ± 1.97%; p ≤ 0.03; 6 months: β-TCP 62.03 ± 1.58%; SHA: 55.83 ± 2.59%; BHA: 53.44 ± 0.78%; p ≤ 0.04). Further, after 12 and 18 months, a similar degree of bone formation and bone-particle contact was noted for all three bone substitute materials without any significant differences. The synthetic HA supported new bone formation, osteogenic marker expression, matrix mineralization and good bone-bonding behaviour to an equal and even slightly superior degree compared to the bovine-derived HA. As a result, synthetic HA can be regarded as a valuable alternative to the bovine-derived HA without the potential risk of disease transmission.
Collapse
Affiliation(s)
- Jonas Wüster
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Neckel
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Florian Sterzik
- Department of Experimental Orofacial Medicine, Philipps University Marburg, Germany
| | - Li Xiang-Tischhauser
- Department of Experimental Orofacial Medicine, Philipps University Marburg, Germany
| | | | - Antje Genzel
- Veterinary Research Centre, Bad Langensalza, Germany
| | - Steffen Koerdt
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carsten Rendenbach
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christian Müller-Mai
- Department of Orthopaedics and Traumatology, Hospital for Special Surgery, Lünen, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Susanne Nahles
- Department of Oral and Maxillofacial Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christine Knabe
- Department of Experimental Orofacial Medicine, Philipps University Marburg, Germany
| |
Collapse
|
16
|
Ferraz MP. An Overview on the Big Players in Bone Tissue Engineering: Biomaterials, Scaffolds and Cells. Int J Mol Sci 2024; 25:3836. [PMID: 38612646 PMCID: PMC11012232 DOI: 10.3390/ijms25073836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Presently, millions worldwide suffer from degenerative and inflammatory bone and joint issues, comprising roughly half of chronic ailments in those over 50, leading to prolonged discomfort and physical limitations. These conditions become more prevalent with age and lifestyle factors, escalating due to the growing elderly populace. Addressing these challenges often entails surgical interventions utilizing implants or bone grafts, though these treatments may entail complications such as pain and tissue death at donor sites for grafts, along with immune rejection. To surmount these challenges, tissue engineering has emerged as a promising avenue for bone injury repair and reconstruction. It involves the use of different biomaterials and the development of three-dimensional porous matrices and scaffolds, alongside osteoprogenitor cells and growth factors to stimulate natural tissue regeneration. This review compiles methodologies that can be used to develop biomaterials that are important in bone tissue replacement and regeneration. Biomaterials for orthopedic implants, several scaffold types and production methods, as well as techniques to assess biomaterials' suitability for human use-both in laboratory settings and within living organisms-are discussed. Even though researchers have had some success, there is still room for improvements in their processing techniques, especially the ones that make scaffolds mechanically stronger without weakening their biological characteristics. Bone tissue engineering is therefore a promising area due to the rise in bone-related injuries.
Collapse
Affiliation(s)
- Maria Pia Ferraz
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
17
|
Yotsova R, Peev S. Biological Properties and Medical Applications of Carbonate Apatite: A Systematic Review. Pharmaceutics 2024; 16:291. [PMID: 38399345 PMCID: PMC10892468 DOI: 10.3390/pharmaceutics16020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/10/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Bone defects represent an everyday challenge for clinicians who work in the fields of orthopedic surgery, maxillofacial and oral surgery, otorhinolaryngology, and dental implantology. Various bone substitutes have been developed and utilized, according to the needs of bone reconstructive surgery. Carbonate apatite has gained popularity in recent years, due to its excellent tissue behavior and osteoconductive potential. This systematic review aims to evaluate the role of carbonate apatite in bone reconstructive surgery and tissue engineering, analyze its advantages and limitations, and suggest further directions for research and development. The Web of Science, PubMed, and Scopus electronic databases were searched for relevant review articles, published from January 2014 to 21 July 2023. The study was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Eighteen studies were included in the present review. The biological properties and medical applications of carbonate apatite (CO3Ap) are discussed and evaluated. The majority of articles demonstrated that CO3Ap has excellent biocompatibility, resorbability, and osteoconductivity. Furthermore, it resembles bone tissue and causes minimal immunological reactions. Therefore, it may be successfully utilized in various medical applications, such as bone substitution, scaffolding, implant coating, drug delivery, and tissue engineering.
Collapse
Affiliation(s)
- Ralitsa Yotsova
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University of Varna, bul. Tsar Osvoboditel 84, 9002 Varna, Bulgaria
| | - Stefan Peev
- Department of Periodontology and Dental Implantology, Faculty of Dental Medicine, Medical University of Varna, bul. Tsar Osvoboditel 84, 9002 Varna, Bulgaria;
| |
Collapse
|
18
|
Wilson BJ, Owston HE, Iqbal N, Giannoudis PV, McGonagle D, Pandit H, Philipose Pampadykandathil L, Jones E, Ganguly P. In Vitro Osteogenesis Study of Shell Nacre Cement with Older and Young Donor Bone Marrow Mesenchymal Stem/Stromal Cells. Bioengineering (Basel) 2024; 11:143. [PMID: 38391629 PMCID: PMC10886325 DOI: 10.3390/bioengineering11020143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024] Open
Abstract
Bone void-filling cements are one of the preferred materials for managing irregular bone voids, particularly in the geriatric population who undergo many orthopedic surgeries. However, bone marrow mesenchymal stem/stromal cells (BM-MSCs) of older-age donors often exhibit reduced osteogenic capacity. Hence, it is crucial to evaluate candidate bone substitute materials with BM-MSCs from the geriatric population to determine the true osteogenic potential, thus simulating the clinical situation. With this concept, we investigated the osteogenic potential of shell nacre cement (SNC), a bone void-filling cement based on shell nacre powder and ladder-structured siloxane methacrylate, using older donor BM-MSCs (age > 55 years) and young donor BM-MSCs (age < 30 years). Direct and indirect cytotoxicity studies conducted with human BM-MSCs confirmed the non-cytotoxic nature of SNC. The standard colony-forming unit-fibroblast (CFU-F) assay and population doubling (PD) time assays revealed a significant reduction in the proliferation potential (p < 0.0001, p < 0.05) in older donor BM-MSCs compared to young donor BM-MSCs. Correspondingly, older donor BM-MSCs contained higher proportions of senescent, β-galactosidase (SA-β gal)-positive cells (nearly 2-fold, p < 0.001). In contrast, the proliferation capacity of older donor BM-MSCs, measured as the area density of CellTrackerTM green positive cells, was similar to that of young donor BM-MSCs following a 7-day culture on SNC. Furthermore, after 14 days of osteoinduction on SNC, scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS) showed that the amount of calcium and phosphorus deposited by young and older donor BM-MSCs on SNC was comparable. A similar trend was observed in the expression of the osteogenesis-related genes BMP2, RUNX2, ALP, COL1A1, OMD and SPARC. Overall, the results of this study indicated that SNC would be a promising candidate for managing bone voids in all age groups.
Collapse
Affiliation(s)
- Bridget Jeyatha Wilson
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, India
| | - Heather Elizabeth Owston
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| | - Neelam Iqbal
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Peter V. Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Orthopaedic & Trauma Sciences, Leeds General Infirmary, University of Leeds, Leeds LS2 9JT, UK
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
- Leeds Musculoskeletal Biomedical Research Centre, Chapel Allerton Hospital, Leeds LS7 4SA, UK
| | - Lizymol Philipose Pampadykandathil
- Division of Dental Products, Department of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, India
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7JT, UK (D.M.); (H.P.)
| |
Collapse
|
19
|
Minaychev VV, Teterina AY, Smirnova PV, Menshikh KA, Senotov AS, Kobyakova MI, Smirnov IV, Pyatina KV, Krasnov KS, Fadeev RS, Komlev VS, Fadeeva IS. Composite Remineralization of Bone-Collagen Matrices by Low-Temperature Ceramics and Serum Albumin: A New Approach to the Creation of Highly Effective Osteoplastic Materials. J Funct Biomater 2024; 15:27. [PMID: 38391880 PMCID: PMC10889756 DOI: 10.3390/jfb15020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
This study examined the effectiveness of coating demineralized bone matrix (DBM) with amorphous calcium phosphate (DBM + CaP), as well as a composite of DBM, calcium phosphate, and serum albumin (DBM + CaP + BSA). The intact structure of DBM promotes the transformation of amorphous calcium phosphate (CaP) into dicalcium phosphate dihydrate (DCPD) with a characteristic plate shape and particle size of 5-35 µm. The inclusion of BSA in the coating resulted in a better and more uniform distribution of CaP on the surface of DBM trabeculae. MG63 cells showed that both the obtained forms of CaP and its complex with BSA did not exhibit cytotoxicity up to a concentration of 10 mg/mL in vitro. Ectopic (subcutaneous) implantation in rats revealed pronounced biocompatibility, as well as strong osteoconductive, osteoinductive, and osteogenic effects for both DBM + CaP and DBM + CaP + BSA, but more pronounced effects for DBM + CaP + BSA. In addition, for the DBM + CaP + BSA samples, there was a pronounced full physiological intrafibrillar biomineralization and proangiogenic effect with the formation of bone-morrow-like niches, accompanied by pronounced processes of intramedullary hematopoiesis, indicating a powerful osteogenic effect of this composite.
Collapse
Affiliation(s)
- Vladislav V Minaychev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia
| | - Anastasia Yu Teterina
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia
| | - Polina V Smirnova
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia
| | - Ksenia A Menshikh
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Center for Translational Research on Autoimmune and Allergic Disease-CAAD, Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Anatoliy S Senotov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Margarita I Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Research Institute of Clinical and Experimental Lymphology-Branch of the Institute of Cytology and Genetics Siberian Branch of Russian Academy of Sciences, 630060 Novosibirsk, Russia
| | - Igor V Smirnov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia
| | - Kira V Pyatina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Kirill S Krasnov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Vladimir S Komlev
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia
| | - Irina S Fadeeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninskiy Prospect 49, 119334 Moscow, Russia
| |
Collapse
|
20
|
Şeker Ş, Aral D, Elçin AE, Yaşar Murat E. Biomimetic mineralization of platelet lysate/oxidized dextran cryogel as a macroporous 3D composite scaffold for bone repair. Biomed Mater 2024; 19:025006. [PMID: 38194711 DOI: 10.1088/1748-605x/ad1c9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Scaffold development approaches using autologous sources for tissue repair are of great importance in obtaining bio-active/-compatible constructs. Platelet-rich plasma (PRP) containing various growth factors and platelet lysate (PL) derived from PRP are autologous products that have the potential to accelerate the tissue repair response by inducing a transient inflammatory event. Considering the regenerative capacity of PRP and PL, PRP/PL-based scaffolds are thought to hold great promise for tissue engineering as a natural source of autologous growth factors and a provider of mechanical support for cells. Here, a bio-mineralized PRP-based scaffold was developed using oxidized dextran (OD) and evaluated for future application in bone tissue engineering. Prepared PL/OD scaffolds were incubated in simulated body fluid (SBF) for 7, 14 and 21 d periods. Mineralized PL/OD scaffolds were characterized using Fourier transform infrared spectroscopy, x-ray diffraction spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis, porosity and compression tests. SEM and energy-dispersive x-ray spectroscopy analyses revealed mineral accumulation on the PL/OD scaffold as a result of SBF incubation.In vitrocytotoxicity andin vitrohemolysis tests revealed that the scaffolds were non-toxic and hemocompatible. Additionally, human osteoblasts (hOBs) exhibited good attachment and spreading behavior on the scaffolds and maintained their viability throughout the culture period. The alkaline phosphatase activity assay and calcium release results revealed that PL/OD scaffolds preserved the osteogenic properties of hOBs. Overall, findings suggest that mineralized PL/OD scaffold may be a promising scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Şükran Şeker
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Dilara Aral
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Elçin Yaşar Murat
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
- Biovalda Health Technologies, Inc., Ankara, Turkey
| |
Collapse
|
21
|
Saurav S, Sharma P, Kumar A, Tabassum Z, Girdhar M, Mamidi N, Mohan A. Harnessing Natural Polymers for Nano-Scaffolds in Bone Tissue Engineering: A Comprehensive Overview of Bone Disease Treatment. Curr Issues Mol Biol 2024; 46:585-611. [PMID: 38248340 PMCID: PMC10814241 DOI: 10.3390/cimb46010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/24/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
Numerous surgeries are carried out to replace tissues that have been harmed by an illness or an accident. Due to various surgical interventions and the requirement of bone substitutes, the emerging field of bone tissue engineering attempts to repair damaged tissues with the help of scaffolds. These scaffolds act as template for bone regeneration by controlling the development of new cells. For the creation of functional tissues and organs, there are three elements of bone tissue engineering that play very crucial role: cells, signals and scaffolds. For the achievement of these aims, various types of natural polymers, like chitosan, chitin, cellulose, albumin and silk fibroin, have been used for the preparation of scaffolds. Scaffolds produced from natural polymers have many advantages: they are less immunogenic as well as being biodegradable, biocompatible, non-toxic and cost effective. The hierarchal structure of bone, from microscale to nanoscale, is mostly made up of organic and inorganic components like nanohydroxyapatite and collagen components. This review paper summarizes the knowledge and updates the information about the use of natural polymers for the preparation of scaffolds, with their application in recent research trends and development in the area of bone tissue engineering (BTE). The article extensively explores the related research to analyze the advancement of nanotechnology for the treatment of bone-related diseases and bone repair.
Collapse
Affiliation(s)
- Sushmita Saurav
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Prashish Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi 110067, Delhi, India;
| | - Zeba Tabassum
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| | - Madhuri Girdhar
- Division of Research and Development, Lovely Professional University, Phagwara 144401, Punjab, India;
| | - Narsimha Mamidi
- Wisconsin Centre for Nano Biosystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anand Mohan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144401, Punjab, India; (S.S.); (P.S.); (Z.T.)
| |
Collapse
|
22
|
Ma J, Li Y, Mi Y, Gong Q, Zhang P, Meng B, Wang J, Wang J, Fan Y. Novel 3D printed TPMS scaffolds: microstructure, characteristics and applications in bone regeneration. J Tissue Eng 2024; 15:20417314241263689. [PMID: 39071895 PMCID: PMC11283664 DOI: 10.1177/20417314241263689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/07/2024] [Indexed: 07/30/2024] Open
Abstract
Bone defect disease seriously endangers human health and affects beauty and function. In the past five years, the three dimension (3D) printed radially graded triply periodic minimal surface (TPMS) porous scaffold has become a new solution for repairing bone defects. This review discusses 3D printing technologies and applications for TPMS scaffolds. To this end, the microstructural effects of 3D printed TPMS scaffolds on bone regeneration were reviewed and the structural characteristics of TPMS, which can promote bone regeneration, were introduced. Finally, the challenges and prospects of using TPMS scaffolds to treat bone defects were presented. This review is expected to stimulate the interest of bone tissue engineers in radially graded TPMS scaffolds and provide a reliable solution for the clinical treatment of personalised bone defects.
Collapse
Affiliation(s)
- Jiaqi Ma
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yumeng Li
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yujing Mi
- Department of Orthodontics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qiannan Gong
- Shanxi Provincial People’s Hospital of Stomatology,Taiyuan,China
| | - Pengfei Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Bing Meng
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jue Wang
- Department of Prosthodontics, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yawei Fan
- Department of Oral and Maxillofacial Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
23
|
Nifant'ev IE, Tavtorkin AN, Ryndyk MP, Gavrilov DE, Lukina YS, Bionyshev-Abramov LL, Serejnikova NB, Smolentsev DV, Ivchenko PV. Crystalline Micro-Sized Carbonated Apatites: Chemical Anisotropy of the Crystallite Surfaces, Biocompatibility, Osteoconductivity, and Osteoinductive Effect Enhanced by Poly(ethylene phosphoric acid). ACS APPLIED BIO MATERIALS 2023; 6:5067-5077. [PMID: 37943148 DOI: 10.1021/acsabm.3c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Carbonated hydroxyapatites (CAp) are very close to natural bone apatite in chemical composition and are regarded as a prospective bone mineral substitute for bone surgery and orthopedics. However, until now, the studies and applications of CAp were limited because of the amorphous nature of the synthetic CAp. In the present work, microsized highly crystalline carbonated apatites with uniform hexagonal (hCAp) or platelike (pCAp) morphology have been studied for the first time in vitro and in vivo, comparing against commercial hydroxyapatite (HAp) and β-tricalcuim phosphate (βTCP). In vitro experiments on dissolution of those calcium phosphate ceramics (CPCs) in acetate (pH 5.5) and Tris (pH 7.3) buffer solutions showed the following rank order of the dissolution rates: βTCP > hCAp > pCAp > HAp. The higher dissolution rate of hCAp in comparison with pCAp is explained by chemical anisotropy of the crystallite surfaces, which was proven by SEM studies of the changes in the morphology of hCAp and pCAp crystallites during hydrolysis. A 5-week experiment on subcutaneous implantation of CPC species showed the following rank order of bioresorption rates: βTCP > pCAp > hCAp > HAp. pCAp matrixes exhibited the highest biocompatibility, confirmed by histomorphological analysis. Three-month bone regeneration experiments involving a rat tibial defect model were conducted with 250-500 μm granules of pCAp and pCAp-PEPA [pCAp, pretreated with 2 wt % poly(ethylene phosphoric acid)]. Notably, pCAp-PEPA implants were resorbed at higher rates and induced the formation of more mature osseous tissue, a compact bone with Haversian systems.
Collapse
Affiliation(s)
- Ilya E Nifant'ev
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
- Department of Chemistry, M.V. Lomonosov Moscow University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
- Faculty of Chemistry, National Research University Higher School of Economics, Myasnitskaya st. 20, 101100 Moscow, Russian Federation
| | - Alexander N Tavtorkin
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
| | - Maria P Ryndyk
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
- Faculty of Chemistry, National Research University Higher School of Economics, Myasnitskaya st. 20, 101100 Moscow, Russian Federation
| | - Dmitry E Gavrilov
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
- Department of Chemistry, M.V. Lomonosov Moscow University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Yulia S Lukina
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
- N.N. Priorov National Medical Research Center for Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Priorova st. 10, 127299 Moscow, Russian Federation
- Faculty of Digital Technologies and Chemical Engineering, Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047 Moscow, Russian Federation
| | - Leonid L Bionyshev-Abramov
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
- N.N. Priorov National Medical Research Center for Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Priorova st. 10, 127299 Moscow, Russian Federation
| | - Natalya B Serejnikova
- N.N. Priorov National Medical Research Center for Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Priorova st. 10, 127299 Moscow, Russian Federation
- Institute for Regenerative Medicine Sechenov First Moscow State Medical University, Trubetskaya st. 8, 119991 Moscow, Russian Federation
| | - Dmitriiy V Smolentsev
- N.N. Priorov National Medical Research Center for Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Priorova st. 10, 127299 Moscow, Russian Federation
| | - Pavel V Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky pr. 29, Moscow 119991, Russian Federation
- Department of Chemistry, M.V. Lomonosov Moscow University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| |
Collapse
|
24
|
Guo W, Li B, Li P, Zhao L, You H, Long Y. Review on vat photopolymerization additive manufacturing of bioactive ceramic bone scaffolds. J Mater Chem B 2023; 11:9572-9596. [PMID: 37727909 DOI: 10.1039/d3tb01236k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Bone defects frequently occur in clinical settings due to trauma, disease, tumors, and other causes. The clinical use of autologous bones and allograft bone, however, has several limitations, such as limited sources, donor site morbidity, and immunological rejection. Nevertheless, there is newfound hope for regenerating and repairing bone defects through the development and integration of bone tissue engineering scaffold and additive manufacturing (AM) technology, also known as 3D printing. In particular, vat photopolymerization (VPP)-AM of bioactive ceramic bone scaffolds has garnered significant interest from interdisciplinary researchers in recent years. On the one hand, VPP-AM demonstrates clear advantages in printing accuracy and speed compared to other AM and non-AM technologies. On the other hand, bioactive ceramic materials exhibit superior bioactivity, biodegradability, and mechanical properties compared to metals, polymers, and bioinert ceramics, making them one of the most promising biomaterials for developing bone scaffolds. This paper reviews the research progress of VPP-AM of bioactive ceramic bone scaffolds, covering the process principles of various VPP-AM technologies, the performance requirements and preparation process of VPP ceramic slurry, the VPP process of bioactive ceramic bone scaffolds, and the research progress on different material types of VPP bioactive ceramic scaffolds. Firstly, we provide a brief introduction to the process principles and medical applications of various VPP technologies. Secondly, we explore the composition of the VPP ceramic slurry system, discussing the function of various components and their effects on printing quality. Thirdly, we delve into the performance requirements of bone scaffolds and summarize the research progress of VPP bioactive ceramic bone scaffolds of various material types including hydroxyapatite (HA), tricalcium phosphate (TCP), bioglass (BG), etc.; Finally, we discuss the challenges currently faced by VPP-AM bioactive ceramic bone scaffolds and propose possible development directions for the future.
Collapse
Affiliation(s)
- Wang Guo
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Bowen Li
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
| | - Ping Li
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
| | - Lei Zhao
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
| | - Hui You
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Yu Long
- Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, School of Mechanical Engineering, Guangxi University, Nanning 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| |
Collapse
|
25
|
Atia GA, Shalaby HK, Roomi AB, Ghobashy MM, Attia HA, Mohamed SZ, Abdeen A, Abdo M, Fericean L, Bănățean Dunea I, Atwa AM, Hasan T, Mady W, Abdelkader A, Ali SA, Habotta OA, Azouz RA, Malhat F, Shukry M, Foda T, Dinu S. Macro, Micro, and Nano-Inspired Bioactive Polymeric Biomaterials in Therapeutic, and Regenerative Orofacial Applications. Drug Des Devel Ther 2023; 17:2985-3021. [PMID: 37789970 PMCID: PMC10543943 DOI: 10.2147/dddt.s419361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/12/2023] [Indexed: 10/05/2023] Open
Abstract
Introducing dental polymers has accelerated biotechnological research, advancing tissue engineering, biomaterials development, and drug delivery. Polymers have been utilized effectively in dentistry to build dentures and orthodontic equipment and are key components in the composition of numerous restorative materials. Furthermore, dental polymers have the potential to be employed for medication administration and tissue regeneration. To analyze the influence of polymer-based investigations on practical medical trials, it is required to evaluate the research undertaken in this sector. The present review aims to gather evidence on polymer applications in dental, oral, and maxillofacial reconstruction.
Collapse
Affiliation(s)
- Gamal A Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Hany K Shalaby
- Department of Oral Medicine, Periodontology and Oral Diagnosis, Faculty of Dentistry, Suez University, Suez, Egypt
| | - Ali B Roomi
- Department of Quality Assurance, University of Thi-Qar, Thi-Qar, Iraq
- Department of Medical Laboratory, College of Health and Medical Technology, National University of Science and Technology, Thi-Qar, Iraq
| | - Mohamed M Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo, Egypt
| | - Hager A Attia
- Department of Molecular Biology and Chemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Sara Z Mohamed
- Department of Removable Prosthodontics, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat, Egypt
| | - Liana Fericean
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ioan Bănățean Dunea
- Department of Biology and Plant Protection, Faculty of Agriculture. University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Tabinda Hasan
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Wessam Mady
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Susan A Ali
- Department of Radiodiagnosis, Faculty of Medicine, Ain Shams University, Abbassia, 1181, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Rehab A Azouz
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Farag Malhat
- Department of Pesticide Residues and Environmental Pollution, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, USA
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, 300041, Romania
| |
Collapse
|
26
|
Abd-Elkawi M, Sharshar A, Misk T, Elgohary I, Gadallah S. Effect of calcium carbonate nanoparticles, silver nanoparticles and advanced platelet-rich fibrin for enhancing bone healing in a rabbit model. Sci Rep 2023; 13:15232. [PMID: 37709814 PMCID: PMC10502137 DOI: 10.1038/s41598-023-42292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
This study aimed to evaluate the efficacy of calcium carbonate nanoparticles (CCNPs) to induce new bone formation in a critical size segmental bone defect in rabbit's radius when used alone, combined with silver nanoparticles (AgNPs) as a paste, or as a composite containing CCNPs, AgNPs, and advanced platelet-rich fibrin (A-PRF). Thirty-six adult apparently healthy male New Zealand White rabbits aging from 5 to 6 months and weighting 3.5 ± 0.5 kg were used. The animals were divided into four groups; control group, CCNPs group, CCNPs/AgNPs paste group, and CCNPs/AgNPs/A-PRF composite group. The animals were investigated at 4, 8, and 12 weeks post-implantation in which the healing was evaluated using computed tomographic (CT) and histopathological evaluation. The results revealed that CCNPs/AgNPs paste and CCNPs/AgNPs/A-PRF composite has a superior effect regarding the amount and the quality of the newly formed bone compared to the control and the CCNPs alone. In conclusion, addition of AgNPs and/or A-PRF to CCNPs has reduced its resorption rate and improved its osteogenic and osteoinductive properties.
Collapse
Affiliation(s)
- Mohamed Abd-Elkawi
- Department of Surgery, Radiology and Anesthesiology, Faculty of Veterinary Medicine, New Valley University, Alkharga, New Valley, 2715, Egypt.
| | - Ahmed Sharshar
- Department of Surgery, Radiology and Anesthesiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Tarek Misk
- Department of Surgery, Radiology and Anesthesiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Islam Elgohary
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Eldokki, Giza, Egypt
| | - Shaaban Gadallah
- Department of Surgery, Radiology and Anesthesiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
27
|
Toro G, Cecere AB, Braile A, Cicco AD, Liguori S, Tarantino U, Iolascon G. New insights in lower limb reconstruction strategies. Ther Adv Musculoskelet Dis 2023; 15:1759720X231189008. [PMID: 37529331 PMCID: PMC10387789 DOI: 10.1177/1759720x231189008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
High Energy Musculoskeletal Traumas (HEMTs) represent a relevant problem for healthcare systems, considering the high social costs, and both the high morbidity and mortality. The poor outcomes associated with HEMT are related to the high incidence of complications, including bone infection, fracture malunion and non-union. The treatment of each of these complications could be extremely difficult. Limb reconstruction often needs multiple procedures, rising some questions on the opportunity in perseverate to try to save the affected limb. In fact, theoretically, amputation may guarantee better function and lower complications. However, amputation is not free of complication, and a high long-term social cost has been reported. A comprehensive literature review was performed to suggest possible ways to optimize the limb preservation surgeries of HEMT's complications in order to ameliorate their management.
Collapse
Affiliation(s)
- Giuseppe Toro
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonio Benedetto Cecere
- Unit of Orthopaedics and Traumatology, San Giuliano Hospital, Giugliano in Campania, Naples, Italy
| | | | - Annalisa De Cicco
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Naples, Italy Unit of Orthopaedics and Traumatology, Santa Maria delle Grazie Hospital, Pozzuoli, Italy
| | - Sara Liguori
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giovanni Iolascon
- Department of Medical and Surgical Specialties and Dentistry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
28
|
Mandurino M, Di Domenico GL, Baldani S, Collivasone G, Gherlone EF, Cantatore G, Paolone G. Dental Restorations. Bioengineering (Basel) 2023; 10:820. [PMID: 37508847 PMCID: PMC10376857 DOI: 10.3390/bioengineering10070820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Fulfilling a patient's request for a healthy, functional and esthetic smile represents a daily challenge for dental practitioners [...].
Collapse
Affiliation(s)
- Mauro Mandurino
- Dental School, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy
| | | | - Sofia Baldani
- Dental School, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy
| | - Giacomo Collivasone
- Dental School, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy
| | | | - Giuseppe Cantatore
- Dental School, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy
| | - Gaetano Paolone
- Dental School, IRCCS San Raffaele Hospital, Vita-Salute University, 20132 Milan, Italy
| |
Collapse
|
29
|
Sukpaita T, Chirachanchai S, Pimkhaokham A, Ampornaramveth RS. Effect of Storage Time and Temperature on the Bioactivity of a Chitosan-Derived Epigenetic Modulation Scaffold. Mar Drugs 2023; 21:md21030175. [PMID: 36976224 PMCID: PMC10054179 DOI: 10.3390/md21030175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The appropriate storage protocol is one of the main limitations of translating tissue engineering technology to commercialized clinical applications. Recently, the development of a chitosan-derived composite scaffold incorporated with bioactive molecules has been reported as an excellent material to repair a critical size bony defect in mice calvaria. This study aims to determine the storage time and appropriate storage temperature of Chitosan/Biphasic Calcium Phosphate/Trichostatin A composite scaffold (CS/BCP/TSA scaffold) in vitro. The mechanical properties and in vitro bioactivity of trichostatin A (TSA) released from CS/BCP/TSA scaffolds in different storage times and temperatures were evaluated. Different storage times (0, 14, and 28 days) and temperatures (−18, 4, and 25 °C) did not affect the porosity, compressive strength, shape memory, and amount of TSA released. However, scaffolds stored at 25 °C and 4 °C were found to lose their bioactivity after 3- and 7-day storage periods, respectively. Thus, the CS/BCP/TSA scaffold should be stored in freezing conditions to preserve the long-term stability of TSA.
Collapse
Affiliation(s)
- Teerawat Sukpaita
- Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Oral Surgery, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Suwabun Chirachanchai
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Atiphan Pimkhaokham
- Bioresources Advanced Materials (B2A), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ruchanee Salingcarnboriboon Ampornaramveth
- Center of Excellence on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +66-81-422-4546
| |
Collapse
|
30
|
A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges. Bioengineering (Basel) 2023; 10:bioengineering10020204. [PMID: 36829698 PMCID: PMC9952306 DOI: 10.3390/bioengineering10020204] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
Over the last few years, biopolymers have attracted great interest in tissue engineering and regenerative medicine due to the great diversity of their chemical, mechanical, and physical properties for the fabrication of 3D scaffolds. This review is devoted to recent advances in synthetic and natural polymeric 3D scaffolds for bone tissue engineering (BTE) and regenerative therapies. The review comprehensively discusses the implications of biological macromolecules, structure, and composition of polymeric scaffolds used in BTE. Various approaches to fabricating 3D BTE scaffolds are discussed, including solvent casting and particle leaching, freeze-drying, thermally induced phase separation, gas foaming, electrospinning, and sol-gel techniques. Rapid prototyping technologies such as stereolithography, fused deposition modeling, selective laser sintering, and 3D bioprinting are also covered. The immunomodulatory roles of polymeric scaffolds utilized for BTE applications are discussed. In addition, the features and challenges of 3D polymer scaffolds fabricated using advanced additive manufacturing technologies (rapid prototyping) are addressed and compared to conventional subtractive manufacturing techniques. Finally, the challenges of applying scaffold-based BTE treatments in practice are discussed in-depth.
Collapse
|
31
|
Bone Formation on Murine Cranial Bone by Injectable Cross-Linked Hyaluronic Acid Containing Nano-Hydroxyapatite and Bone Morphogenetic Protein. Polymers (Basel) 2022; 14:polym14245368. [PMID: 36559734 PMCID: PMC9783206 DOI: 10.3390/polym14245368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/20/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
New injection-type bone-forming materials are desired in dental implantology. In this study, we added nano-hydroxyapatite (nHAp) and bone morphogenetic protein (BMP) to cross-linkable thiol-modified hyaluronic acid (tHyA) and evaluated its usefulness as an osteoinductive injectable material using an animal model. The sol (ux-tHyA) was changed to a gel (x-tHyA) by mixing with a cross-linker. We prepared two sol−gel (SG) material series, that is, x-tHyA + BMP with and without nHAp (SG I) and x-tHyA + nHAp with and without BMP (SG II). SG I materials in the sol stage were injected into the cranial subcutaneous connective tissues of mice, followed by in vivo gelation, while SG II materials gelled in Teflon rings were surgically placed directly on the cranial bones of rats. The animals were sacrificed 8 weeks after implantation, followed by X-ray analysis and histological examination. The results revealed that bone formation occurred at a high rate (>70%), mainly as ectopic bone in the SG I tests in mouse cranial connective tissues, and largely as bone augmentation in rat cranial bones in the SG II experiments when x-tHyA contained both nHAp and BMP. The prepared x-tHyA + nHAp + BMP SG material can be used as an injection-type osteoinductive bone-forming material. Sub-periosteum injection was expected.
Collapse
|
32
|
Paladini F, Pollini M. Novel Approaches and Biomaterials for Bone Tissue Engineering: A Focus on Silk Fibroin. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6952. [PMID: 36234293 PMCID: PMC9572978 DOI: 10.3390/ma15196952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) represents a multidisciplinary research field involving many aspects of biology, engineering, material science, clinical medicine and genetics to create biological substitutes to promote bone regeneration. The definition of the most appropriate biomaterials and structures for BTE is still a challenge for researchers, aiming at simultaneously combining different features such as tissue generation properties, biocompatibility, porosity and mechanical strength. In this scenario, among the biomaterials for BTE, silk fibroin represents a valuable option for the development of functional devices because of its unique biological properties and the multiple chances of processing. This review article aims at providing the reader with a general overview of the most recent progresses in bone tissue engineering in terms of approaches and materials with a special focus on silk fibroin and the related mechanisms involved in bone regeneration, and presenting interesting results obtained by different research groups, which assessed the great potential of this protein for bone tissue engineering.
Collapse
Affiliation(s)
- Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
33
|
Influence of the Components and Orientation of Hydroxyapatite Fibrous Substrates on Osteoblast Behavior. J Funct Biomater 2022; 13:jfb13040168. [PMID: 36278637 PMCID: PMC9590022 DOI: 10.3390/jfb13040168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Synthetic hydroxyapatite has good biocompatibility, bioactivity and osteoconductive ability because its chemical properties and biological properties are similar to those of bioapatite in bone tissue. Strontium-substituted hydroxyapatite has better degradability than hydroxyapatite and can both promote osteogenesis and inhibit adipogenesis in mesenchymal stem cells. Hence, hydroxyapatite and strontium-substituted hydroxyapatite are widely used as bone graft materials, cell carriers and drug/gene delivery carriers. In addition, osteoblasts cultured on aligned nanofibrous substrates had higher expression of osteogenesis-related genes than did those cultured on random nanofibrous substrates. However, to date, no study has explored the effects of the components and orientation of hydroxyapatite nanofibrous substrates on osteoblastic behavior. In this study, a random hydroxyapatite nanofibrous substrate (R-HANF), a random strontium-substituted hydroxyapatite nanofibrous substrate (R-SrHANF), an aligned hydroxyapatite nanofibrous substrate (A-HANF) and an aligned strontium-substituted hydroxyapatite nanofibrous substrate (A-SrHANF) were successfully fabricated by using the electrospinning technique. The effect of fiber composition on osteoblast-like MG63 cells was assessed by evaluating cell morphology, cell proliferation and osteogenesis-related gene expression. The results showed that MG63 cells cultured on A-SrHANF had higher osteogenesis-related gene expression than those cultured on A-HANF. Additionally, MG63 cells were cultured on R-SrHANF and A-SrHANF to evaluate the effects of fiber orientation on cell behavior. On A-SrHANF, the cells aligned along the direction of the nanofibers, with typical bipolar morphologies, and exhibited higher osteogenesis-related gene expression than cells on R-SrHANF. Hence, the components and orientation of hydroxyapatite nanofibrous substrates are critical parameters affecting the osteogenesis process.
Collapse
|
34
|
Diamond-like Carbon Coatings in the Biomedical Field: Properties, Applications and Future Development. COATINGS 2022. [DOI: 10.3390/coatings12081088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Repairment and replacement of organs and tissues are part of the history of struggle against human diseases, in addition to the research and development (R&D) of drugs. Acquisition and processing of specific substances and physiological signals are very important to understand the effects of pathology and treatment. These depend on the available biomedical materials. The family of diamond-like carbon coatings (DLCs) has been extensively applied in many industrial fields. DLCs have also been demonstrated to be biocompatible, both in vivo and in vitro. In many cases, the performance of biomedical devices can be effectively enhanced by coating them with DLCs, such as vascular stents, prosthetic heart valves and surgical instruments. However, the feasibility of the application of DLC in biomedicine remains under discussion. This review introduces the current state of research and application of DLCs in biomedical devices, their potential application in biosensors and urgent problems to be solved. It will be useful to build a bridge between DLC R&D workers and biomedical workers in order to develop high-performance DLC films/coatings, promote their practical use and develop their potential applications in the biomedical field.
Collapse
|