1
|
Mendoza SV, Wells KV, Murugesh DK, Hum NR, Sebastian A, Gorman BM, Wong A, Osipov B, Christiansen BA, Loots GG, Robling AG, Yellowley CE, Genetos DC. Osteocytic oxygen sensing: Distinct impacts of VHL and HIF-2alpha on bone integrity. Bone 2025; 192:117339. [PMID: 39603372 DOI: 10.1016/j.bone.2024.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Skeletal fracture resistance emerges from multiple components of bone structure like microarchitecture, matrix mineralization, and organization. These characteristics are engendered via mechanisms like the hypoxia-inducible factors (HIF) pathway, involving two paralogs, HIF-1α and HIF-2α. Under normoxia, HIF-α is targeted for degradation via von-Hippel Lindau (VHL); hypoxia enables HIF-α stabilization and induction of target genes. We previously showed that osteocytic Vhl deletion or expression of degradation-resistant HIF-2α cDR female mice each produced high bone mass, whereas degradation-resistant osteocytic HIF-1α produced no overt phenotype. We report within that Vhl cKO increased bone strength, while HIF-2α cDR displayed markedly reduced bone strength below Cre-negative controls. This suggests that VHL and HIF-2α drive distinct responses that promote disparate effects on bone strength. Both Vhl deletion or HIF-2α accumulation generated two discrete bone morphologies: an outer lamellar cortex and a woven, poorly mineralized endocortex that imparted dramatically different functional outcomes. Our studies reveal novel influence of osteocytic HIF-2α signaling on collagen matrix organization, mineralization, and bone strength.
Collapse
Affiliation(s)
- Sarah V Mendoza
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, USA
| | - Kristina V Wells
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, USA
| | | | - Nicholas R Hum
- Lawrence Livermore National Laboratories, Livermore, CA, USA
| | - Aimy Sebastian
- Lawrence Livermore National Laboratories, Livermore, CA, USA
| | - Bria M Gorman
- Lawrence Livermore National Laboratories, Livermore, CA, USA
| | - Alice Wong
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, USA
| | - Benjamin Osipov
- Department of Orthopaedic Surgery, UC Davis Health, University of California, Sacramento, CA, USA
| | - Blaine A Christiansen
- Department of Orthopaedic Surgery, UC Davis Health, University of California, Sacramento, CA, USA
| | - Gabriela G Loots
- Lawrence Livermore National Laboratories, Livermore, CA, USA; Department of Orthopaedic Surgery, UC Davis Health, University of California, Sacramento, CA, USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Clare E Yellowley
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, University of California, Davis, CA, USA.
| |
Collapse
|
2
|
Chen L, Xu F, Tong Q, Wang G. Blood routine test-based biomarkers is related to bone mineral density in elderly patients with chronic heart failure: A retrospective study. Medicine (Baltimore) 2024; 103:e40946. [PMID: 39686434 PMCID: PMC11651487 DOI: 10.1097/md.0000000000040946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Our previous studies suggested that bone mineral density (BMD) correlated with the severity of chronic heart failure (HF) as classified by the New York Heart Association (NYHA) and that blood routine test (BRT)-based biomarkers, including hemoglobin, red blood cells (RBCs), lymphocytes, neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, and systemic immune-inflammation index, were significantly related with BMD in general population. OBJECTIVE This work aimed to evaluate the relationship between BRT-based biomarkers and BMD in elderly patients with chronic HF. METHODS It was a retrospective study. BRT and BMD were measured on the same day. Chi-square analysis and 1-way analysis of variance or the Wilcoxon rank-sum test were used to compare categorical variables and continuous variables, respectively. Correlation analysis was performed by the Spearman correlation test. RESULTS A total of 1049 participants were enrolled. Hemoglobin, RBCs, white blood cells, neutrophils, monocytes, eosinophils, lymphocyte-to-monocyte ratio, and systemic immune-inflammation index were significantly different among different NYHA groups. The Spearman correlation test showed that lumbar vertebrae 2-4 (L2-L4) BMD was closely related to hemoglobin and RBC, and that femoral neck BMD was also significantly correlated with hemoglobin and RBC, white blood cells, neutrophils, monocytes, and platelets. Furthermore, stratified analysis in different NYHA classes demonstrated, only in NYHA class I and II groups, hemoglobin was significantly related to L2-L4 and femoral neck BMD. CONCLUSION BRT-based biomarkers were significantly different among different NYHA groups, which deserves further investigation and application in the future.
Collapse
Affiliation(s)
- Lan Chen
- Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Fan Xu
- Dongxiang Hospital of Traditional Chinese Medicine, Fuzhou, Jiangxi, China
| | - Qian Tong
- Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Guofu Wang
- Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Lanzolla G, Sabini E, Beigel K, Khan MP, Sherry Liu X, Wang D, Laslow B, Taylor D, Bellido T, Giaccia A, Schipani E. Pharmacological inhibition of HIF2 protects against bone loss in an experimental model of estrogen deficiency. Proc Natl Acad Sci U S A 2024; 121:e2416004121. [PMID: 39602268 PMCID: PMC11626196 DOI: 10.1073/pnas.2416004121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Estrogen deficiency, which is linked to various pathological conditions such as primary ovarian insufficiency and postmenopausal osteoporosis, disrupts the delicate balance between bone formation and resorption. This imbalance leads to bone loss and an increased risk of fractures, primarily due to a significant reduction in trabecular bone mass. Trabecular osteoblasts, the cells responsible for bone formation within the trabecular compartment, originate from skeletal progenitors located in the bone marrow. The microenvironment of the bone marrow contains hypoxic (low oxygen) regions, and the hypoxia-inducible factor-2α (HIF2) plays a crucial role in cellular responses to these low-oxygen conditions. This study demonstrates that the loss of HIF2 in skeletal progenitors and their derivatives during development enhances trabecular bone mass by promoting bone formation. More importantly, PT2399, a small molecule that specifically inhibits HIF2, effectively prevents trabecular bone loss in ovariectomized adult mice, a model for estrogen-deficient bone loss. Both the genetic and pharmacological approaches result in an increase in osteoblast number, which is linked to the expansion of the pool of skeletal progenitor cells. This expansion either by loss or inhibition of HIF2 uncovers a pivotal mechanism for increasing osteoblast numbers and bone formation, resulting in greater trabecular bone mass.
Collapse
Affiliation(s)
- Giulia Lanzolla
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| | - Elena Sabini
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| | - Katherine Beigel
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Mohd Parvez Khan
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| | - Xiaowei Sherry Liu
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| | - Dian Wang
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| | - Brittany Laslow
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| | - Deanne Taylor
- Department of Biomedical and Health Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas, School of Medicine, Little Rock, AR72205
- Central Arkansas Veterans Healthcare System, John L. McClellan, Little Rock, AR72205
| | - Amato Giaccia
- Department of Oncology, University of Oxford, Division of Medical Sciences, OxfordOX37DQ, United Kingdom
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA19104
| |
Collapse
|
4
|
Rutkowsky JM, Wong A, Toupadakis CA, Rutledge JC, Yellowley CE. Lipolysis products from triglyceride-rich lipoproteins induce stress protein ATF3 in osteoblasts. J Orthop Res 2024; 42:1033-1044. [PMID: 38044472 PMCID: PMC11009083 DOI: 10.1002/jor.25756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
High fat diets overwhelm the physiological mechanisms for absorption, storage, and utilization of triglycerides (TG); consequently TG, TG-rich lipoproteins (TGRL), and TGRL remnants accumulate, circulate systemically, producing dyslipidemia. This associates with, or is causative for increased atherosclerotic cardiovascular risk, ischemic stroke, fatty liver disease, and pancreatitis. TGRL hydrolysis by endothelial surface-bound lipoprotein lipase (LPL) generates metabolites like free fatty acids which have proinflammatory properties. While osteoblasts utilize fatty acids as an energy source, dyslipidemia is associated with negative effects on the skeleton. In this study we investigated the effects of TGRL lipolysis products (TGRL-LP) on expression of a stress responsive transcription factor, termed activating transcription factor 3 (ATF3), reactive oxygen species (ROS), ATF3 target genes, and angiopoietin-like 4 (Angptl4) in osteoblasts. As ATF3 negatively associates with osteoblast differentiation, we also investigated the skeletal effects of global ATF3 deletion in mice. TGRL-LP increased expression of Atf3, proinflammatory proteins Ptgs2 and IL-6, and induced ROS in MC3T3-E1 osteoblastic cells. Angptl4 is an endogenous inhibitor of LPL which was transcriptionally induced by TGRL-LP, while recombinant Angptl4 prevented TG-driven Atf3 induction. Atf3 global knockout male mice demonstrated increased trabecular and cortical microarchitectural parameters. In summary, we find that TGRL-LP induce osteoblastic cell stress as evidenced by expression of ATF3, which may contribute to the negative impact of dyslipidemia in the skeleton. Further, concomitant induction of Angptl4 in osteoblasts might play a protective role by reducing local lipolysis.
Collapse
Affiliation(s)
| | - Alice Wong
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine
| | | | - John C. Rutledge
- Department of Internal Medicine (Cardiology), School of Medicine, University of California Davis, Davis, CA 95616
| | - Clare E. Yellowley
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine
| |
Collapse
|
5
|
Mendoza SV, Genetos DC, Yellowley CE. Hypoxia-Inducible Factor-2α Signaling in the Skeletal System. JBMR Plus 2023; 7:e10733. [PMID: 37065626 PMCID: PMC10097641 DOI: 10.1002/jbm4.10733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/13/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-dependent heterodimeric transcription factors that mediate molecular responses to reductions in cellular oxygen (hypoxia). HIF signaling involves stable HIF-β subunits and labile, oxygen-sensitive HIF-α subunits. Under hypoxic conditions, the HIF-α subunit is stabilized, complexes with nucleus-confined HIF-β subunit, and transcriptionally regulates hypoxia-adaptive genes. Transcriptional responses to hypoxia include altered energy metabolism, angiogenesis, erythropoiesis, and cell fate. Three isoforms of HIF-α-HIF-1α, HIF-2α, and HIF-3α-are found in diverse cell types. HIF-1α and HIF-2α serve as transcriptional activators, whereas HIF-3α restricts HIF-1α and HIF-2α. The structure and isoform-specific functions of HIF-1α in mediating molecular responses to hypoxia are well established across a wide range of cell and tissue types. The contributions of HIF-2α to hypoxic adaptation are often unconsidered if not outrightly attributed to HIF-1α. This review establishes what is currently known about the diverse roles of HIF-2α in mediating the hypoxic response in skeletal tissues, with specific focus on development and maintenance of skeletal fitness. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah V Mendoza
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| | - Damian C Genetos
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| | - Clare E Yellowley
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary MedicineUniversity of California, DavisDavisCAUSA
| |
Collapse
|