1
|
Surapaneni VA, Flaum B, Schindler M, Hayat K, Wölfer J, Baum D, Hu R, Kong TF, Doube M, Dean MN. The helmeted hornbill casque is reinforced by a bundle of exceptionally thick, rod-like trabeculae. Ann N Y Acad Sci 2025; 1544:78-91. [PMID: 39761373 PMCID: PMC11829324 DOI: 10.1111/nyas.15254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Among hornbill birds, the critically endangered helmeted hornbill (Rhinoplax vigil) is notable for its casque (a bulbous beak protrusion) being filled with trabeculae and fronted by a very thick keratin layer. Casque function is debated but appears central to aerial jousting, where birds (typically males) collide casques at high speeds in a mid-flight display that is audible for more than 100 m. We characterized the structural relationship between the skull and casque anatomy using X-ray microtomography and quantitative trabecular network analysis to examine how the casque sustains extreme impact. The casque comprises a keratin veneer (rhamphotheca, ∼8× thicker than beak keratin), which slots over the internal bony casque like a tight-fitting sheath. The bony casque's central cavity contains a network of trabeculae-heavily aligned and predominantly rod-like, among the thickest described in vertebrates-forming a massive rostrocaudal strut spanning the casque's length, bridging rostral (impact), and caudal (braincase) surfaces. Quantitative network characterizations indicate no differences between male and female trabecular architectures. This suggests that females may also joust or that casques play other roles. Our results argue that the casque's impact loading demands and shapes a high-safety-factor construction that involves extreme trabecular morphologies among vertebrates, architectures that also have the potential for informing the design of collision-resistant materials.
Collapse
Affiliation(s)
- Venkata A. Surapaneni
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Benjamin Flaum
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Mike Schindler
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Khizar Hayat
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Jan Wölfer
- Comparative Zoology, Institute of BiologyHumboldt University of BerlinBerlinGermany
| | - Daniel Baum
- Department of Visual and Data‐Centric ComputingZuse Institute BerlinBerlinGermany
| | - Ruien Hu
- Department of Industrial and Systems EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Ting Fai Kong
- Department of Industrial and Systems EngineeringThe Hong Kong Polytechnic UniversityHung HomHong Kong
| | - Michael Doube
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
| | - Mason N. Dean
- Department of Infectious Diseases and Public HealthCity University of Hong KongKowloonHong Kong
- Centre for Nature‐Inspired EngineeringCity University of Hong KongKowloon TongHong Kong
| |
Collapse
|
2
|
Reinecke T, Angielczyk KD. Raccoons Reveal Hidden Diversity in Trabecular Bone Development. Integr Org Biol 2024; 6:obae038. [PMID: 39440137 PMCID: PMC11495488 DOI: 10.1093/iob/obae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Trabecular bone, and its ability to rapidly modify its structure in response to strain exerted on skeletal elements, has garnered increased attention from researchers with the advancement of CT technology that allows for the analysis of its complex lattice-like framework. Much of this research has focused on adults of select taxa, but analysis into trabecular development across ontogeny remains limited. In this paper, we explore the shift in several trabecular characteristics in the articular head of the humerus and femur in Procyon lotor across the entirely of the species' lifespan. Our results show that while body mass plays a role in determining trabecular structure, other elements such as bone growth, increased activity, and puberty result in trends not observed in the interspecific analysis of adults. Furthermore, differences in the trabeculae of the humerus and femur suggest combining distinct boney elements in meta-analysis may obfuscate the variety in the structures. Finally, rates at which fore and hindlimb trabeculae orient themselves early in life differ enough to warrant further exploration to identify the currently unknown causes for their variation.
Collapse
Affiliation(s)
- T Reinecke
- The Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - K D Angielczyk
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| |
Collapse
|
3
|
Hu YJ, Yu YE, Cooper HJ, Shah RP, Geller JA, Lu XL, Shane E, Bathon J, Lane NE, Guo XE. Mechanical and structural properties of articular cartilage and subchondral bone in human osteoarthritic knees. J Bone Miner Res 2024; 39:1120-1131. [PMID: 38887013 DOI: 10.1093/jbmr/zjae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Knee osteoarthritis (OA), characterized by multiple joint tissue degenerations, remains a significant clinical challenge. Recent evidence suggests that crosstalk within the osteochondral unit may drive OA progression. Although structural-biomechanical properties of bone and cartilage have been studied, potential interaction within the osteochondral unit in the context of OA has yet to be investigated. We performed comprehensive structural and biomechanical quantification of the cartilage, subchondral bone plate (SBP), and subchondral trabecular bone (STB) using 101 osteochondral cores collected from tibial plateaus of 12 control human cadavers (CT, 5 male/7 female) and 19 patients undergoing total knee replacement (OA, 6 male/13 female). For each sample, we quantified SBP microstructure, plate-and-rod morphological properties of the STB using individual trabecula segmentation, and morphological and compositional properties of the articular cartilage. We also performed indentation testing on each compartment of the osteochondral unit to extract the respective structural-mechanical properties. Cartilage thickness was lower in moderate and severe OA regions, while Osteoarthritis Research Society International score was higher only in severe OA regions. GAG content did not change in any OA region. Aggregate and shear moduli were lower only in severe OA regions, while permeability was lower only in moderate OA regions. In the SBP, thickness and tissue mineral density were higher in moderate and severe OA regions. Tissue modulus of STB was lower in moderate OA regions despite a thicker and more mineralized SBP; this deterioration was not observed in severe OA regions. Regression analysis revealed strong correlations between cartilage and STB properties in CT; these correlations were also found in moderate OA regions but were not observed in severe OA regions. In summary, our findings comprehensively characterize the human OA osteochondral unit. Importantly, uncoupling cartilage and subchondral bone structural-mechanical properties may be a hallmark of OA.
Collapse
Affiliation(s)
- Yizhong Jenny Hu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Y Eric Yu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Herbert J Cooper
- Department of Orthopaedic Surgery, Columbia University Medical Center, New York, NY 10032, United States
| | - Roshan P Shah
- Department of Orthopaedic Surgery, Columbia University Medical Center, New York, NY 10032, United States
| | - Jeffrey A Geller
- Department of Orthopaedic Surgery, Columbia University Medical Center, New York, NY 10032, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University Irving Medical Center, Vagelos College of Physicians and Surgeons, New York, NY 10032, United States
| | - Joan Bathon
- Division of Rheumatology, Department of Medicine, New York-Presbyterian/Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Nancy E Lane
- Division of Rheumatology, Department of Medicine, University of California Davis, Davis, CA 95817, United States
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| |
Collapse
|
4
|
Lewiecki EM, Betah D, Humbert L, Libanati C, Oates M, Shi Y, Winzenrieth R, Ferrari S, Omura F. 3D-modeling from hip DXA shows improved bone structure with romosozumab followed by denosumab or alendronate. J Bone Miner Res 2024; 39:473-483. [PMID: 38477808 PMCID: PMC11262148 DOI: 10.1093/jbmr/zjae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/22/2023] [Accepted: 12/15/2024] [Indexed: 03/14/2024]
Abstract
Romosozumab treatment in women with postmenopausal osteoporosis increases bone formation while decreasing bone resorption, resulting in large BMD gains to reduce fracture risk within 1 yr. DXA-based 3D modeling of the hip was used to assess estimated changes in cortical and trabecular bone parameters and map the distribution of 3D changes in bone parameters over time in patients from 2 randomized controlled clinical trials: FRAME (romosozumab vs placebo followed by denosumab) and ARCH (romosozumab vs alendronate followed by alendronate). For each study, data from a subset of ~200 women per treatment group who had TH DXA scans at baseline and months 12 and 24 and had provided consent for future research were analyzed post hoc. 3D-SHAPER software v2.11 (3D-SHAPER Medical) was used to generate patient-specific 3D models from TH DXA scans. Percentage changes from baseline to months 12 and 24 in areal BMD (aBMD), integral volumetric BMD (vBMD), cortical thickness, cortical vBMD, cortical surface BMD (sBMD), and trabecular vBMD were evaluated. Data from 377 women from FRAME (placebo, 190; romosozumab, 187) and 368 women from ARCH (alendronate, 185; romosozumab, 183) with evaluable 3D assessments at baseline and months 12 and 24 were analyzed. At month 12, treatment with romosozumab vs placebo in FRAME and romosozumab vs alendronate in ARCH resulted in greater increases in aBMD, integral vBMD, cortical thickness, cortical vBMD, cortical sBMD, and trabecular vBMD (P < .05 for all). At month 24, cumulative gains in all parameters were greater in the romosozumab-to-denosumab vs placebo-to-denosumab sequence and romosozumab-to-alendronate vs alendronate-to-alendronate sequence (P < .05 for all). 3D-SHAPER analysis provides a novel technique for estimating changes in cortical and trabecular parameters from standard hip DXA images. These data add to the accumulating evidence that romosozumab improves hip bone density and structure, thereby contributing to the antifracture efficacy of the drug.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, 300 Oak St NE, Albuquerque, NM 87106, United States
| | - Donald Betah
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Ludovic Humbert
- 3D-SHAPER Medical, Rambla de Catalunya, 53, 4-H, Eixample, 08007 Barcelona, Spain
| | - Cesar Libanati
- UCB Pharma, Allée de la Recherche, 60, Brussels B-1070, Belgium
| | - Mary Oates
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Yifei Shi
- Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Renaud Winzenrieth
- 3D-SHAPER Medical, Rambla de Catalunya, 53, 4-H, Eixample, 08007 Barcelona, Spain
| | - Serge Ferrari
- Division of Bone Diseases, University Hospital of Geneva, Geneva 1211, Switzerland
| | - Fumitoshi Omura
- Koenji Orthopedics Clinic, 4-29-2, Koenji minami, Suginami-ku, Tokyo, 166-0003, Japan
| |
Collapse
|
5
|
Amraish N, Pahr DH. High-resolution local trabecular strain within trabecular structure under cyclic loading. J Mech Behav Biomed Mater 2024; 152:106318. [PMID: 38290394 DOI: 10.1016/j.jmbbm.2023.106318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 02/01/2024]
Abstract
Trabecular bone structure is a complex microstructure consisting of rods and plates, which poses challenges for its mechanical characterization. Digital image correlation (DIC) offers the possibility to characterize the strain response on the surface of trabecular bone. This study employed DIC equipped with a telecentric lens to investigate the strain state of individual trabeculae within their trabecular structure by assessing the longitudinal strain of the trabeculae at both the middle and near the edges of the trabeculae. Due to the high-resolution of the used DIC system, local surface strain of trabeculae was analyzed too. Lastly, the correlation between longitudinal trabecular strain and the orientation and slenderness of the trabeculae was investigated. The results showed that the strain magnification close to the edge of the trabeculae was higher and reached up to 8-folds the strain along the middle of the trabeculae. On the contrary, no strain magnification was found for most of the trabeculae between the longitudinal trabecular strain along the middle of the trabeculae and the globally applied strain. High-resolution full-field strain maps were obtained on the surface of trabeculae showing heterogeneous strain distribution with increasing load. No significant correlation was found between longitudinal trabecular strain and its orientation or slenderness. These findings and the applied methodology can be used to broaden our understanding of the deformation mechanisms of trabeculae within the trabecular network.
Collapse
Affiliation(s)
- Nedaa Amraish
- Division Biomechanics, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems, 3500, Lower Austria, Austria; Institute for Lightweight Design and Structural Biomechanics, Getreidemarkt 9, Vienna, 1060, Vienna, Austria.
| | - Dieter H Pahr
- Division Biomechanics, Karl Landsteiner University for Health Sciences, Dr.-Karl-Dorrek-Straße 30, Krems, 3500, Lower Austria, Austria; Institute for Lightweight Design and Structural Biomechanics, Getreidemarkt 9, Vienna, 1060, Vienna, Austria
| |
Collapse
|
6
|
Albert DL, Katzenberger MJ, Hunter RL, Agnew AM, Kemper AR. Effects of loading rate, age, and morphology on the material properties of human rib trabecular bone. J Biomech 2023; 156:111670. [PMID: 37352737 DOI: 10.1016/j.jbiomech.2023.111670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 04/21/2023] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
The material and morphometric properties of trabecular bone have been studied extensively in bones bearing significant weight, such as the appendicular long bones and spine. Less attention has been devoted to the ribs, where quantification of material properties is vital to understanding thoracic injury. The objective of this study was to quantify the compressive material properties of human rib trabecular bone and assess the effects of loading rate, age, and morphology on the material properties. Material properties were quantified via uniaxial compression tests performed on trabecular bone samples at two loading rates: 0.005 s-1 and 0.5 s-1. Morphometric parameters of each sample were quantified before testing using micro-computed tomography. Rib trabecular bone material properties were lower on average compared to trabecular bone from other anatomical locations. Morphometric parameters indicated an anisotropic structure with low connectivity and a sparser density of trabeculae in the rib compared to other locations. No significant differences in material properties were observed between the tested loading rates. Material properties were only significantly correlated with age at the 0.005 s-1 loading rate, and no morphometric parameter was significantly correlated with age. Trabecular separation and thickness were most strongly correlated with the material properties, indicating the sparser trabecular matrix likely contributed to the lower material property values compared to other sites. The novel trabecular bone material properties reported in this study can be used to improve the thoracic response and injury prediction of computational models.
Collapse
Affiliation(s)
- Devon L Albert
- Virginia Tech, Center for Injury Biomechanics, United States.
| | | | - Randee L Hunter
- The Ohio State University, Injury Biomechanics Research Center, United States
| | - Amanda M Agnew
- The Ohio State University, Injury Biomechanics Research Center, United States
| | - Andrew R Kemper
- Virginia Tech, Center for Injury Biomechanics, United States
| |
Collapse
|
7
|
Rasmussen NH, Vestergaard P. Diabetes and osteoporosis - Treating two entities: A challenge or cause for concern? Best Pract Res Clin Rheumatol 2022; 36:101779. [PMID: 36154803 DOI: 10.1016/j.berh.2022.101779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
People with T1D and T2D have an increased risk of fractures than the general population, posing several significant pathophysiologic, diagnostic, and therapeutic challenges. The pathophysiology is still not fully elucidated, but it is considered a combination of increased skeletal fragility and falls. Diagnostics issues exist, as regular and even newer scan methods underestimate the true incidence of osteoporosis and thus the fracture risk. Therefore, co-managing diabetes and osteoporosis by using top-line strategies is essential to preserve bone health and minimize the risk of falls. The therapeutic focus should start with lifestyle implementation and physical exercise interventions to reduce diabetic complications, strengthen bones, and improve postural control strategies. In addition, osteoporosis should be treated according to current guidelines by including bisphosphonates and antidiabetic drugs that support bone health. Finally, potentially modifiable risk factors for falls should be managed.
Collapse
Affiliation(s)
| | - Peter Vestergaard
- Steno Diabetes Center North Denmark, Aalborg University Hospital, Denmark
| |
Collapse
|
8
|
Measurement of Ultrasound Parameters of Bovine Cancellous Bone as a Function of Frequency for a Range of Porosities via Through-Transmission Ultrasonic Spectroscopy. ACOUSTICS 2022. [DOI: 10.3390/acoustics4020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The relationship between ultrasonic parameters (attenuation coefficients and velocity) and bone porosity in bovine cancellous bone is explored to understand the possibility of fracture risk diagnosis associated with osteoporosis by applying ultrasound. In vitro measurements of ultrasonic parameters on twenty-one bovine cancellous bone samples from tibia were conducted, using ultrasonic spectroscopy in the through-transmission mode. Transducers of three different center frequencies were used to cover a wide diagnostic frequency range between 1.0–7.8 MHz. The nonlinear relationship of porosity and normalized attenuation coefficient (nATTN) and normalized broadband attenuation coefficient (nBUA) were well described by a third-order polynomial fit, whereas porosity and the phase velocity (UV) were found to be negatively correlated with the linear correlation coefficients of −0.93, −0.89 and −0.83 at 2.25, 5.00 and 7.50 MHz, respectively. The results imply that the ultrasound parameters attain maximum values for the bone sample with the lowest porosity, and then decrease for samples with greater porosity for the range of porosities in our samples for all frequencies. Spatial variation in the ultrasound parameters was found to be caused by non-uniform pore size distribution, which was examined at five different locations within the same bone specimen. However, it did not affect the relationship of ultrasound parameters and porosity at these frequencies.
Collapse
|
9
|
Sacher SE, Hunt HB, Lekkala S, Lopez KA, Potts J, Heilbronner AK, Stein EM, Hernandez CJ, Donnelly E. Distributions of Microdamage Are Altered Between Trabecular Rods and Plates in Cancellous Bone From Men With Type 2 Diabetes Mellitus. J Bone Miner Res 2022; 37:740-752. [PMID: 35064941 PMCID: PMC9833494 DOI: 10.1002/jbmr.4509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 01/13/2023]
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of fragility fracture despite exhibiting normal to high bone mineral density (BMD). Conditions arising from T2DM, such as reduced bone turnover and alterations in microarchitecture, may contribute to skeletal fragility by influencing bone morphology and microdamage accumulation. The objectives of this study were (i) to characterize the effect of T2DM on microdamage quantity and morphology in cancellous bone, and (ii) relate the accumulation of microdamage to the cancellous microarchitecture. Cancellous specimens from the femoral neck were collected during total hip arthroplasty (T2DM: n = 22, age = 65 ± 9 years, glycated hemoglobin [HbA1c] = 7.00% ± 0.98%; non-diabetic [non-DM]: n = 25, age = 61 ± 8 years, HbA1c = 5.50% ± 0.4%), compressed to 3% strain, stained with lead uranyl acetate to isolate microdamage, and scanned with micro-computed tomography (μCT). Individual trabeculae segmentation was used to isolate rod-like and plate-like trabeculae and their orientations with respect to the loading axis. The T2DM group trended toward a greater BV/TV (+27%, p = 0.07) and had a more plate-like trabecular architecture (+8% BVplates , p = 0.046) versus non-DM specimens. Rods were more damaged relative to their volume compared to plates in the non-DM group (DVrods /BVrods versus DVplates /BVplates : +49%, p < 0.0001), but this difference was absent in T2DM specimens. Longitudinal rods were more damaged in the non-DM group (DVlongitudinal rods /BVlongitudinal rods : +73% non-DM versus T2DM, p = 0.027). Total damage accumulation (DV/BV) and morphology (DS/DV) did not differ in T2DM versus non-DM specimens. These results provide evidence that cancellous microarchitecture does not explain fracture risk in T2DM, pointing to alterations in material matrix properties. In particular, cancellous bone from men with T2DM may have an attenuated ability to mitigate microdamage accumulation through sacrificial rods. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Sara E Sacher
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Heather B Hunt
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Sashank Lekkala
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Kelsie A Lopez
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Jesse Potts
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Alison K Heilbronner
- Department of Medicine, Endocrinology and Metabolic Bone Service, Hospital for Special Surgery, New York, NY, USA
| | - Emily M Stein
- Department of Medicine, Endocrinology and Metabolic Bone Service, Hospital for Special Surgery, New York, NY, USA
| | - Christopher J Hernandez
- Research Division, Hospital for Special Surgery, New York, NY, USA.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Eve Donnelly
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.,Research Division, Hospital for Special Surgery, New York, NY, USA
| |
Collapse
|
10
|
Hu YJ, Chines A, Shi Y, Seeman E, Guo XE. The effect of denosumab and alendronate on trabecular plate and rod microstructure at the distal tibia and radius: A post-hoc HR-pQCT study. Bone 2022; 154:116187. [PMID: 34530172 DOI: 10.1016/j.bone.2021.116187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/02/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023]
Abstract
BACKGROUND Age-related trabecular microstructural deterioration and conversion from plate-like trabeculae to rod-like trabeculae occur because of unbalanced rapid remodeling. As denosumab achieves greater remodeling suppression and lower cortical porosity than alendronate, we hypothesized that denosumab might also preserve trabecular plate microstructure, bone stiffness and strength more effectively than alendronate. METHODS In this post hoc analysis of a phase 2 study, postmenopausal women randomized to placebo (P, n = 74), denosumab (D, n = 72), or alendronate (A, n = 68). HR-pQCT scans of the distal radius and tibia were performed at baseline and Month-12 (M12). Trabecular compartment was subjected to Individual Trabecula Segmentation while finite element analysis was performed to estimate stiffness and strength. Percent change from baseline at M12 of each parameter was compared between patient groups. RESULTS At the distal tibia, in the placebo group, plate surface area (pTb.S, -1.3%) decreased while rod bone volume fraction (rBV/TV, +4.5%) and number (rTb.N, +2.1%) increased. These changes were prevented by denosumab but persisted despite alendronate therapy (pTb.S: -1.7%; rBV/TV: +6.9%; rTb.N: +3.0%). Both treatments improved whole bone stiffness (D: +3.1%; A: +1.8%) and failure load (D: +3.0%; A: +2.2%); improvements using denosumab was significant compared to placebo (stiffness: p = 0.004; failure load: p = 0.003). At the distal radius, denosumab increased total trabecular bone volume fraction (BV/TV, +3.4%) and whole bone failure load (+4.0%), significantly different from placebo (BV/TV: p = 0.044; failure load: p = 0.046). Significantly different effects of either drug on plate and rod microstructure were not detected. CONCLUSIONS Denosumab preserved trabecular plate microstructure. Alendronate did not. However, estimated strength did not differ between denosumab and alendronate treated groups.
Collapse
Affiliation(s)
- Yizhong Jenny Hu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | | | - Ego Seeman
- Departments of Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Australia; Mary MacKillop Institute of Healthy Aging, Australian Catholic University, Melbourne, Australia
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Öhman‐Mägi C, Holub O, Wu D, Hall RM, Persson C. Density and mechanical properties of vertebral trabecular bone-A review. JOR Spine 2021; 4:e1176. [PMID: 35005442 PMCID: PMC8717096 DOI: 10.1002/jsp2.1176] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022] Open
Abstract
Being able to predict the mechanical properties of vertebrae in patients with osteoporosis and other relevant pathologies is essential to prevent fractures and to develop the most favorable fracture treatments. Furthermore, a reliable prediction is important for developing more patient- and pathology-specific biomaterials. A plethora of studies correlating bone density to mechanical properties has been reported; however, the results are variable, due to a variety of factors, including anatomical site and methodological differences. The aim of this study was to provide a comprehensive literature review on density and mechanical properties of human vertebral trabecular bone as well as relationships found between these properties. A literature search was performed to include studies, which investigated mechanical properties and bone density of trabecular bone. Only studies on vertebral trabecular bone tissue, reporting bone density or mechanical properties, were kept. A large variation in reported vertebral trabecular bone densities, mechanical properties, and relationships between the two was found, as exemplified by values varying between 0.09 and 0.35 g/cm3 for the wet apparent density and from 0.1 to 976 MPa for the elastic modulus. The differences were found to reflect variations in experimental and analytical processes that had been used, including testing protocol and specimen geometry. The variability in the data decreased in studies where bone tissue testing occurred in a standardized manner (eg, the reported differences in average elastic modulus decreased from 400% to 10%). It is important to take this variability into account when analyzing the predictions found in the literature, for example, to calculate fracture risk, and it is recommended to use the models suggested in the present review to reduce data variability.
Collapse
Affiliation(s)
- Caroline Öhman‐Mägi
- Department of Materials Science and EngineeringUppsala UniversityUppsalaSweden
| | - Ondrej Holub
- School of Mechanical EngineeringUniversity of LeedsLeedsUK
| | - Dan Wu
- Department of Materials Science and EngineeringUppsala UniversityUppsalaSweden
| | | | - Cecilia Persson
- Department of Materials Science and EngineeringUppsala UniversityUppsalaSweden
| |
Collapse
|
12
|
Brown JP, Engelke K, Keaveny TM, Chines A, Chapurlat R, Foldes AJ, Nogues X, Civitelli R, De Villiers T, Massari F, Zerbini CAF, Wang Z, Oates MK, Recknor C, Libanati C. Romosozumab improves lumbar spine bone mass and bone strength parameters relative to alendronate in postmenopausal women: results from the Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial. J Bone Miner Res 2021; 36:2139-2152. [PMID: 34190361 PMCID: PMC9292813 DOI: 10.1002/jbmr.4409] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 01/20/2023]
Abstract
The Active-Controlled Fracture Study in Postmenopausal Women With Osteoporosis at High Risk (ARCH) trial (NCT01631214; https://clinicaltrials.gov/ct2/show/NCT01631214) showed that romosozumab for 1 year followed by alendronate led to larger areal bone mineral density (aBMD) gains and superior fracture risk reduction versus alendronate alone. aBMD correlates with bone strength but does not capture all determinants of bone strength that might be differentially affected by various osteoporosis therapeutic agents. We therefore used quantitative computed tomography (QCT) and finite element analysis (FEA) to assess changes in lumbar spine volumetric bone mineral density (vBMD), bone volume, bone mineral content (BMC), and bone strength with romosozumab versus alendronate in a subset of ARCH patients. In ARCH, 4093 postmenopausal women with severe osteoporosis received monthly romosozumab 210 mg sc or weekly oral alendronate 70 mg for 12 months, followed by open-label weekly oral alendronate 70 mg for ≥12 months. Of these, 90 (49 romosozumab, 41 alendronate) enrolled in the QCT/FEA imaging substudy. QCT scans at baseline and at months 6, 12, and 24 were assessed to determine changes in integral (total), cortical, and trabecular lumbar spine vBMD and corresponding bone strength by FEA. Additional outcomes assessed include changes in aBMD, bone volume, and BMC. Romosozumab caused greater gains in lumbar spine integral, cortical, and trabecular vBMD and BMC than alendronate at months 6 and 12, with the greater gains maintained upon transition to alendronate through month 24. These improvements were accompanied by significantly greater increases in FEA bone strength (p < 0.001 at all time points). Most newly formed bone was accrued in the cortical compartment, with romosozumab showing larger absolute BMC gains than alendronate (p < 0.001 at all time points). In conclusion, romosozumab significantly improved bone mass and bone strength parameters at the lumbar spine compared with alendronate. These results are consistent with greater vertebral fracture risk reduction observed with romosozumab versus alendronate in ARCH and provide insights into structural determinants of this differential treatment effect. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Jacques P Brown
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre, Department of Medicine, Rheumatology Division, Laval University, Quebec City, Québec, Canada
| | - Klaus Engelke
- Bioclinica, Hamburg, Germany.,Department of Medicine 3, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Tony M Keaveny
- Departments of Mechanical Engineering and Bioengineering, University of California Berkeley, Berkeley, California, USA
| | | | - Roland Chapurlat
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unités Mixtes de Recherche (UMR) 1033, Université de Lyon, Hôpital E Herriot, Lyon, France
| | - A Joseph Foldes
- Osteoporosis Center, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Xavier Nogues
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Autonomous University of Barcelona, Barcelona, Spain
| | - Roberto Civitelli
- Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tobias De Villiers
- Department of Obstetrics and Gynaecology, Stellenbosch University, Stellenbosch, South Africa
| | - Fabio Massari
- Instituto de Diagnóstico e Investigaciones Metabólicas, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
13
|
McMorran JG, Gregory DE. The Influence of Axial Compression on the Cellular and Mechanical Function of Spinal Tissues; Emphasis on the Nucleus Pulposus and Annulus Fibrosus: A Review. J Biomech Eng 2021; 143:050802. [PMID: 33454730 DOI: 10.1115/1.4049749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Indexed: 11/08/2022]
Abstract
In light of the correlation between chronic back pain and intervertebral disc (IVD) degeneration, this literature review seeks to illustrate the importance of the hydraulic response across the nucleus pulposus (NP)-annulus fibrosus (AF) interface, by synthesizing current information regarding injurious biomechanics of the spine, stemming from axial compression. Damage to vertebrae, endplates (EPs), the NP, and the AF, can all arise from axial compression, depending on the segment's posture, the manner in which it is loaded, and the physiological state of tissue. Therefore, this movement pattern was selected to illustrate the importance of the bracing effect of a pressurized NP on the AF, and how injuries interrupting support to the AF may contribute to IVD degeneration.
Collapse
Affiliation(s)
- John G McMorran
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5
| | - Diane E Gregory
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5; Department of Health Sciences, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON N2 L 3C5
| |
Collapse
|
14
|
Krez A, Agarwal S, Bucovsky M, McMahon DJ, Hu Y, Bessler M, Schrope B, Carrelli A, Clare S, Guo XDE, Silverberg SJ, Stein EM. Long-term Bone Loss and Deterioration of Microarchitecture After Gastric Bypass in African American and Latina Women. J Clin Endocrinol Metab 2021; 106:e1868-e1879. [PMID: 33098299 PMCID: PMC8502471 DOI: 10.1210/clinem/dgaa654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023]
Abstract
CONTEXT The prevalence of obesity is burgeoning among African American and Latina women; however, few studies investigating the skeletal effects of bariatric surgery have focused on these groups. OBJECTIVE To investigate long-term skeletal changes following Roux-en-Y gastric bypass (RYGB) in African American and Latina women. DESIGN Four-year prospective cohort study. PATIENTS African American and Latina women presenting for RYGB (n = 17, mean age 44, body mass index 44 kg/m2) were followed annually for 4 years postoperatively. MAIN OUTCOME MEASURES Dual-energy x-ray absorptiometry (DXA) measured areal bone mineral density (aBMD) at the spine, hip, and forearm, and body composition. High-resolution peripheral quantitative computed tomography measured volumetric bone mineral density (vBMD) and microarchitecture. Individual trabecula segmentation-based morphological analysis assessed trabecular morphology and connectivity. RESULTS Baseline DXA Z-Scores were normal. Weight decreased ~30% at Year 1, then stabilized. Parathyroid hormone (PTH) increased by 50% and 25-hydroxyvitamin D was stable. By Year 4, aBMD had declined at all sites, most substantially in the hip. There was significant, progressive loss of cortical and trabecular vBMD, deterioration of microarchitecture, and increased cortical porosity at both the radius and tibia over 4 years. There was loss of trabecular plates, loss of axially aligned trabeculae, and decreased trabecular connectivity. Whole bone stiffness and failure load declined. Risk factors for bone loss included greater weight loss, rise in PTH, and older age. CONCLUSIONS African American and Latina women had substantial and progressive bone loss, deterioration of microarchitecture, and trabecular morphology following RYGB. Further studies are critical to understand the long-term skeletal consequences of bariatric surgery in this population.
Collapse
Affiliation(s)
- Alexandra Krez
- Endocrinology and Metabolic Bone Disease Service, Hospital for Special Surgery, New York, New York
| | - Sanchita Agarwal
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Mariana Bucovsky
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Donald J McMahon
- Endocrinology and Metabolic Bone Disease Service, Hospital for Special Surgery, New York, New York
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Yizhong Hu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Marc Bessler
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY
| | - Beth Schrope
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, NY
| | - Angela Carrelli
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Shannon Clare
- Endocrinology and Metabolic Bone Disease Service, Hospital for Special Surgery, New York, New York
| | - Xiang-Dong Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Shonni J Silverberg
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Emily M Stein
- Endocrinology and Metabolic Bone Disease Service, Hospital for Special Surgery, New York, New York
- Correspondence and Reprint Requests: Emily M. Stein, MD, MS, Director of Research, Metabolic Bone Service, Hospital for Special Surgery, Associate Professor of Medicine, Weill Cornell Medical College, 535 East 70th Street, New York, NY 10021. E-mail:
| |
Collapse
|
15
|
Trunk Muscle Mass Measured by Bioelectrical Impedance Analysis Reflecting the Cross-Sectional Area of the Paravertebral Muscles and Back Muscle Strength: A Cross-Sectional Analysis of a Prospective Cohort Study of Elderly Population. J Clin Med 2021; 10:jcm10061187. [PMID: 33809059 PMCID: PMC8001452 DOI: 10.3390/jcm10061187] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Trunk muscles play an important role in supporting the spinal column. A decline in trunk muscle mass, as measured by bioelectrical impedance analysis (TMM-BIA), is associated with low back pain and poor quality of life. The purpose of this study was to determine whether TMM-BIA correlates with quantitative and functional assessments traditionally used for the trunk muscles. We included 380 participants (aged ≥ 65 years; 152 males, 228 females) from the Shiraniwa Elderly Cohort (Shiraniwa) study, for whom the following data were available: TMM-BIA, lumbar magnetic resonance imaging (MRI), and back muscle strength (BMS). We measured the cross-sectional area (CSA) and fat-free CSA of the paravertebral muscles (PVM), including the erector spinae (ES), multifidus (MF), and psoas major (PM), on an axial lumbar MRI at L3/4. The correlation between TMM-BIA and the CSA of PVM, fat-free CSA of PVM, and BMS was investigated. TMM-BIA correlated with the CSA of total PVM and each individual PVM. A stronger correlation between TMM-BIA and fat-free CSA of PVM was observed. The TMM-BIA also strongly correlated with BMS. TMM-BIA is an easy and reliable way to evaluate the trunk muscle mass in a clinical setting.
Collapse
|
16
|
Fluid-structure interaction (FSI) modeling of bone marrow through trabecular bone structure under compression. Biomech Model Mechanobiol 2021; 20:957-968. [PMID: 33547975 DOI: 10.1007/s10237-021-01423-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
The present study has sought to investigate the fluid characteristic and mechanical properties of trabecular bone using fluid-structure interaction (FSI) approach under different trabecular bone orientations. This method imposed on trabecular bone structure at both longitudinal and transverse orientations to identify effects on shear stress, permeability, stiffness and stress regarded to the trabeculae. Sixteen FSI models were performed on different range trabecular cubes of 27 mm3 with eight models developed for each longitudinal and transverse direction. Results show that there was a moderate correlation between permeability and porosity, and surface area in the longitudinal and transverse orientations. For the longitudinal orientation, the permeability values varied between 3.66 × 10-8 and 1.9 × 10-7 and the sheer stress values varied between 0.05 and 1.8 Pa, whilst for the transverse orientation, the permeability values varied between 5.95 × 10-10 and 1.78 × 10-8 and the shear stress values varied between 0.04 and 3.1 Pa. Here, transverse orientation limits the fluid flow from passing through the trabeculae due to high shear stress disturbance generated within the trabecular bone region. Compared to physiological loading direction (longitudinal orientation), permeability is higher within the range known to trigger a response in bone cells. Additionally, shear stresses also increase with bone surface area. This study suggests the shear stress within bone marrow in real trabecular architecture could provide the mechanical signal to marrow cells that leads to bone anabolism and can depend on trabecular orientation.
Collapse
|
17
|
MR imaging pattern of tibial subchondral bone structure: considerations of meniscal coverage and integrity. Skeletal Radiol 2020; 49:2019-2027. [PMID: 32591855 PMCID: PMC7658005 DOI: 10.1007/s00256-020-03517-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVES To compare regional differences in subchondral trabecular structure using high-resolution MRI in meniscus-covered/meniscus-uncovered tibia in cadaveric knees with intact/torn menisci. MATERIALS AND METHODS 3D proton density CUBE MRI of 6 cadaveric knees without significant osteoarthritis (OA) was acquired, 0.25-mm resolution. Menisci were evaluated and classified intact or torn. MR data were transferred to ImageJ program to segment tibial 3D volume of interest (VOI). Data was subdivided into meniscus-covered/meniscus-uncovered regions. Segmented VOI was classified into binary data, trabeculae/bone marrow. The trabecular bone data was used to measure MR biomarkers (apparent subchondral plate-connected bone density (adapted from spine MR), apparent trabecular bone volume fraction, apparent mean trabecular thickness, apparent connectivity density, and structure model index (SMI)). Mean value of parameters was analyzed for the effects of meniscal tear/tibial coverage. RESULTS Nine torn menisci and 3 intact menisci were present. MR measures of bone varied significantly due to meniscal coverage/tear. Subchondral plate-connected bone density under covered meniscus regions increased from 10.9 to 23.5% with meniscal tear. Values increased in uncovered regions, 19.3% (intact) and 32.4% (torn). This reflects higher density when uncovered (p = 0.048) with meniscal tear (p = 0.007). Similar patterns were found for trabecular bone fraction (coverage p < 0.001, tear p = 0.047), trabecular thickness (coverage p = 0.03), connectivity density (coverage p = 0.002), and SMI (coverage p = 0.015). CONCLUSION Quantitative trabecular bone evaluation emphasizes intrinsic structural differences between meniscus-covered/meniscus-uncovered tibias. Results offer insight into bone adaptation with meniscal tear and support the hypothesis that subchondral bone plate-connected bone density could be important in early subchondral bone adaptation.
Collapse
|
18
|
Erythropoietin Mediated Bone Loss in Mice Is Dose-Dependent and Mostly Irreversible. Int J Mol Sci 2020; 21:ijms21113817. [PMID: 32471308 PMCID: PMC7312352 DOI: 10.3390/ijms21113817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/14/2023] Open
Abstract
Recent studies have demonstrated that erythropoietin (EPO) treatment in mice results in trabecular bone loss. Here, we investigated the dose-response relationship between EPO, hemoglobin (Hgb) and bone loss and examined the reversibility of EPO-induced damage. Increasing doses of EPO over two weeks led to a dose-dependent increase in Hgb in young female mice, accompanied by a disproportionate decrease in trabecular bone mass measured by micro-CT (µCT). Namely, increasing EPO from 24 to 540 IU/week produced a modest 12% rise in Hgb (20.2 ± 1.3 mg/dL vs 22.7 ± 1.3 mg/dL), while trabecular bone volume fraction (BV/TV) in the distal femur decreased dramatically (27 ± 8.5% vs 53 ± 10.2% bone loss). To explore the long-term skeletal effects of EPO, we treated mice for two weeks (540 IU/week) and monitored bone mass changes after treatment cessation. Six weeks post-treatment, there was only a partial recovery of the trabecular microarchitecture in the femur and vertebra. EPO-induced bone loss is therefore dose-dependent and mostly irreversible at doses that offer only a minor advantage in the treatment of anemia. Because patients requiring EPO therapy are often prone to osteoporosis, our data advocate for using the lowest effective EPO dose for the shortest period of time to decrease thromboembolic complications and minimize the adverse skeletal outcome.
Collapse
|
19
|
Wu Y, Morgan EF. Effect of fabric on the accuracy of computed tomography-based finite element analyses of the vertebra. Biomech Model Mechanobiol 2020; 19:505-517. [PMID: 31506861 PMCID: PMC7062572 DOI: 10.1007/s10237-019-01225-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
Abstract
Quantitative computed tomography (QCT)-based finite element (FE) models of the vertebra are widely used in studying spine biomechanics and mechanobiology, but their accuracy has not been fully established. Although the models typically assign material properties based only on local bone mineral density (BMD), the mechanical behavior of trabecular bone also depends on fabric. The goal of this study was to determine the effect of incorporating measurements of fabric on the accuracy of FE predictions of vertebral deformation. Accuracy was assessed by using displacement fields measured via digital volume correlation-applied to time-lapse microcomputed tomography (μCT)-as the gold standard. Two QCT-based FE models were generated from human L1 vertebrae (n = 11): the entire vertebral body and a cuboid-shaped portion of the trabecular centrum [dimensions: (20-30) × (15-20) × (15-20) mm3]. For axial compression boundary conditions, there was no difference (p = 0.40) in the accuracy of the FE-computed displacements for models using material properties based on local values of BMD versus those using material properties based on local values of fabric and volume fraction. However, when using BMD-based material properties, errors were higher for the vertebral-body models (8.4-50.1%) than cuboid models (1.5-19.6%), suggesting that these properties are inaccurate in the peripheral regions of the centrum. Errors also increased when assuming that the cuboid region experienced uniaxial loading during axial compression of the vertebra. These findings indicate that a BMD-based constitutive model is not sufficient for the peripheral region of the vertebral body when seeking accurate QCT-based FE modeling of the vertebra.
Collapse
Affiliation(s)
- Yuanqiao Wu
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA.
| | - Elise F Morgan
- Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA, 02215, USA
| |
Collapse
|
20
|
Schorr M, Fazeli PK, Bachmann KN, Faje AT, Meenaghan E, Kimball A, Singhal V, Ebrahimi S, Gleysteen S, Mickley D, Eddy KT, Misra M, Klibanski A, Miller KK. Differences in Trabecular Plate and Rod Structure in Premenopausal Women Across the Weight Spectrum. J Clin Endocrinol Metab 2019; 104:4501-4510. [PMID: 31219580 PMCID: PMC6735760 DOI: 10.1210/jc.2019-00843] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
Abstract
CONTEXT Premenopausal women with anorexia nervosa (AN) and obesity (OB) have elevated fracture risk. More plate-like and axially aligned trabecular bone, assessed by individual trabeculae segmentation (ITS), is associated with higher estimated bone strength. Trabecular plate and rod structure has not been reported across the weight spectrum. OBJECTIVE To investigate trabecular plate and rod structure in premenopausal women. DESIGN Cross-sectional study. SETTING Clinical research center. PARTICIPANTS A total of 105 women age 21 to 46 years: (i) women with AN (n = 46), (ii) eumenorrheic lean healthy controls (HCs) (n = 29), and (iii) eumenorrheic women with OB (n = 30). MEASURES Trabecular microarchitecture by ITS. RESULTS Mean age (±SD) was similar (28.9 ± 6.3 years) and body mass index differed (16.7 ± 1.8 vs 22.6 ± 1.4 vs 35.1 ± 3.3 kg/m2; P < 0.0001) across groups. Bone was less plate-like and axially aligned in AN (P ≤ 0.01) and did not differ between OB and HC. After controlling for weight, plate and axial bone volume fraction and plate number density were lower in OB vs HC; some were lower in OB than AN (P < 0.05). The relationship between weight and plate variables was quadratic (R = 0.39 to 0.70; P ≤ 0.0006) (i.e., positive associations were attenuated at high weight). Appendicular lean mass and IGF-1 levels were positively associated with plate variables (R = 0.27 to 0.67; P < 0.05). Amenorrhea was associated with lower radial plate variables than eumenorrhea in AN (P < 0.05). CONCLUSIONS In women with AN, trabecular bone is less plate-like. In women with OB, trabecular plates do not adapt to high weight. This is relevant because trabecular plates are associated with greater estimated bone strength. Higher muscle mass and IGF-1 levels may mitigate some of the adverse effects of low weight or excess adiposity on bone.
Collapse
Affiliation(s)
- Melanie Schorr
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Correspondence and Reprint Requests: Melanie Schorr, MD, Neuroendocrine Unit, Massachusetts General Hospital, 55 Fruit Street, Bulfinch 457B, Boston, Massachusetts 02114. E-mail:
| | - Pouneh K Fazeli
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Katherine N Bachmann
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Alexander T Faje
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Erinne Meenaghan
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Allison Kimball
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Vibha Singhal
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Pediatric Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Seda Ebrahimi
- Cambridge Eating Disorder Center, Cambridge, Massachusetts
| | - Suzanne Gleysteen
- Harvard Medical School, Boston, Massachusetts
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Diane Mickley
- Wilkins Center for Eating Disorders, Greenwich, Connecticut
| | - Kamryn T Eddy
- Harvard Medical School, Boston, Massachusetts
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, Massachusetts
| | - Madhusmita Misra
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Pediatric Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Anne Klibanski
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Karen K Miller
- Neuroendocrine Unit, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Uklejewski R, Winiecki M, Patalas A, Rogala P. Numerical studies of the influence of various geometrical features of a multispiked connecting scaffold prototype on mechanical stresses in peri-implant bone. Comput Methods Biomech Biomed Engin 2018; 21:541-547. [PMID: 30396280 DOI: 10.1080/10255842.2018.1480759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The multispiked connecting scaffold (MSC-scaffold) prototype is an essential innovation in the fixation of components of resurfacing arthroplasty (RA) endoprostheses, providing their entirely non-cemented and bone-tissue-preserving fixation in peri-articular bone. An FE study is proposed to evaluate the influence of geometrical features of the MSC-scaffold on the transfer of mechanical load in peri-implant bone. For this study, an FE model of Ti-Alloy MSC-scaffold prototype embedded in a bilinear elastic, transversely isotropic bone material was built. For the compressive load on the MSC-scaffold, maps of Huber-Mises-Hencky (HMH) stress in peri-implant bone were determined. The influence of the distance between the bases of neighbouring spikes, the apex angle of spikes, and the height of the spherical cup of spikes of the MSC-scaffold were analysed. It was found that the changes in the distance between the bases of neighbouring spikes from 0.2 to 0.5 mm cause the HMH stress to increase in bone material by 32%. The changes of the apex angle of spikes from 2° to 4° decrease the HMH stress in bone material by 39%. The changes of height of the spherical cup of spikes from 0 to 0.12 mm increase the HMH stress in bone material by 24%. In conclusion, the spikes' apex angle and the distance between the bases of spikes of the MSC-scaffold are the key geometrical features determining the appropriate MSC-scaffold prototype design. The built FE model was found to be useful in bioengineering design of the novel fixation system for RA endoprostheses by means of the MSC-scaffold.
Collapse
Affiliation(s)
- Ryszard Uklejewski
- a Department of Medical Bioengineering Fundamentals , Institute of Technology, Kazimierz Wielki University , Karola Chodkiewicza Street 30 , 85-064 Bydgoszcz , Poland .,b Department of Technology Design/Laboratory of Bone Implants Research and Design , Institute of Mechanical Technology, Poznan University of Technology , Piotrowo Street 3 , 60-965 Poznan , Poland
| | - Mariusz Winiecki
- a Department of Medical Bioengineering Fundamentals , Institute of Technology, Kazimierz Wielki University , Karola Chodkiewicza Street 30 , 85-064 Bydgoszcz , Poland .,b Department of Technology Design/Laboratory of Bone Implants Research and Design , Institute of Mechanical Technology, Poznan University of Technology , Piotrowo Street 3 , 60-965 Poznan , Poland
| | - Adam Patalas
- b Department of Technology Design/Laboratory of Bone Implants Research and Design , Institute of Mechanical Technology, Poznan University of Technology , Piotrowo Street 3 , 60-965 Poznan , Poland
| | - Piotr Rogala
- c Department of Orthopaedics and Traumatology , W. Dega University Hospital, Poznan University of Medical Sciences , 28 Czerwca 1956 Street 135/147 , 61-545 Poznan , Poland
| |
Collapse
|
22
|
Larger vertebral endplate concavities cause higher failure load and work at failure under high-rate impact loading of rabbit spinal explants. J Mech Behav Biomed Mater 2018; 80:104-110. [DOI: 10.1016/j.jmbbm.2018.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023]
|
23
|
DANESI VALENTINA, FALDINI CESARE, CRISTOFOLINI LUCA. METHODS FOR THE CHARACTERIZATION OF THE LONG-TERM MECHANICAL PERFORMANCE OF CEMENTS FOR VERTEBROPLASTY AND KYPHOPLASTY: CRITICAL REVIEW AND SUGGESTIONS FOR TEST METHODS. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519417300022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There is a growing interest towards bone cements for use in vertebroplasty and kyphoplasty, as such spine procedures are becoming more and more common. Such cements feature different compositions, including both traditional acrylic cements and resorbable and bioactive materials. Due to the different compositions and intended use, the mechanical requirements of cements for spinal applications differ from those of traditional cements used in joint replacement. Because of the great clinical implications, it is very important to assess their long-term mechanical competence in terms of fatigue strength and creep. This paper aims at offering a critical overview of the methods currently adopted for such mechanical tests. The existing international standards and guidelines and the literature were searched for publications relevant to fatigue and creep of cements for vertebroplasty and kyphoplasty. While standard methods are available for traditional bone cements in general, no standard indicates specific methods or acceptance criteria for fatigue and creep of cements for vertebroplasty and kyphoplasty. Similarly, a large number of papers were published on cements for joint replacements, but only few cover fatigue and creep of cements for vertebroplasty and kyphoplasty. Furthermore, the literature was analyzed to provide some indications of tests parameters and acceptance criteria (number of cycles, duration in time, stress levels, acceptable amount of creep) for possible tests specifically relevant to cements for spinal applications.
Collapse
Affiliation(s)
- VALENTINA DANESI
- Department of Industrial Engineering, Alma Mater Studiorum — Università di Bologna, Italy
| | - CESARE FALDINI
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum — Università di Bologna, Italy
- Department of Orthopaedics and Trauma Surgery, Università di Bologna — Istituto Ortopedico Rizzoli, Bologna, Italy
| | - LUCA CRISTOFOLINI
- Department of Industrial Engineering, Alma Mater Studiorum — Università di Bologna, Italy
| |
Collapse
|
24
|
Hart N, Nimphius S, Rantalainen T, Ireland A, Siafarikas A, Newton R. Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2017; 17:114-139. [PMID: 28860414 PMCID: PMC5601257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/19/2017] [Indexed: 11/09/2022]
Abstract
This review summarises current understanding of how bone is sculpted through adaptive processes, designed to meet the mechanical challenges it faces in everyday life and athletic pursuits, serving as an update for clinicians, researchers and physical therapists. Bone's ability to resist fracture under the large muscle and locomotory forces it experiences during movement and in falls or collisions is dependent on its established mechanical properties, determined by bone's complex and multidimensional material and structural organisation. At all levels, bone is highly adaptive to habitual loading, regulating its structure according to components of its loading regime and mechanical environment, inclusive of strain magnitude, rate, frequency, distribution and deformation mode. Indeed, the greatest forces habitually applied to bone arise from muscular contractions, and the past two decades have seen substantial advances in our understanding of how these forces shape bone throughout life. Herein, we also highlight the limitations of in vivo methods to assess and understand bone collagen, and bone mineral at the material or tissue level. The inability to easily measure or closely regulate applied strain in humans is identified, limiting the translation of animal studies to human populations, and our exploration of how components of mechanical loading regimes influence mechanoadaptation.
Collapse
Affiliation(s)
- N.H. Hart
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
| | - S. Nimphius
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth, W.A., Australia
| | - T. Rantalainen
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - A. Ireland
- School of Healthcare Science, Manchester Metropolitan University, Manchester, United Kingdom
| | - A. Siafarikas
- Western Australian Bone Research Collaboration, Perth, W.A., Australia
- Department of Endocrinology, Princess Margaret Hospital, Perth, W.A., Australia
- School of Paediatrics and Child Health, University of Western Australia, Perth, W.A., Australia
- Institute of Health Research, University of Notre Dame Australia, Perth, W.A., Australia
| | - R.U. Newton
- Exercise Medicine Research Institute, Edith Cowan University, Perth, W.A., Australia
| |
Collapse
|
25
|
Walterscheid Z, O'Neill C, Ochs A, D'Averso A, Dew C, Huntington A, Ma G, Behrend C, De Vita R, Carmouche J. Anterior Cervical Discectomy With Fusion Using a Local Source for Cancellous Autograft: A Biomechanical Analysis of Vertebral Body Stability in an Osteopenic Bone Model. Geriatr Orthop Surg Rehabil 2017; 8:128-134. [PMID: 28835868 PMCID: PMC5557196 DOI: 10.1177/2151458517715739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 04/19/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Anterior cervical discectomy with fusion is an effective treatment for patients having cervical radiculopathy and myelopathy. To reduce morbidity associated with autograft taken from the iliac crest without sacrificing high fusion rates, a novel technique that harvests bone from the vertebral body adjacent to the operative disc space has been proposed. The effects of square and round bone graft harvest techniques on the mechanical stability of the osteopenic donor vertebrae are unknown. We analyzed the biomechanical implications of the technique by subjecting osteopenic models to uniaxial compression to compare yield strengths of surgically altered and unaltered specimens. METHODS Biomechanical grade polyurethane foam was cut into 60 different 12 mm × 17 mm × 20 mm blocks. The foam had a density of 10 pounds per cubic foot, simulating osteoporotic bone. Rectangular prism (4 mm × 4 mm × 6 mm) and cylindrical cores (r = 2 mm, h = 8 mm) were removed from 20 blocks per group. Twenty samples were left intact as a control group. Anterior plate screws were applied to the models and a Polyether ether ketone (PEEK) interbody spacer was placed on top. Samples underwent uniaxial compression at 0.1 mm/s until mechanical failure. Points of structural failure were determined using a 0.1% offset on a force-displacement curve and compared to determine the reductions in compressive strength. RESULTS The mean force eliciting structural failure for intact samples was 450.6 N. Average failure forces for rectangular prisms and cylindrical cores removed were 383.2 and 395.4 N, respectively. Removal of a rectangular prismatic core of the necessary volume resulted in a 15.0% reduction in compressive strength, while removal of a cylindrical core of comparable volume facilitated a reduction of 12.2%. CONCLUSION Local autograft harvested from adjacent vertebrae reduces morbidity associated with a second surgical site while minimally reducing the compressive strength of the donor vertebra in an osteopenic model, lending credence to the efficacy of this technique in elderly patient populations.
Collapse
Affiliation(s)
- Zakk Walterscheid
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA
| | - Conor O'Neill
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA
| | - Alex Ochs
- Virginia Tech College of Engineering, Blacksburg, VA, USA
| | | | | | | | - Grace Ma
- Virginia Tech College of Engineering, Blacksburg, VA, USA
| | - Caleb Behrend
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA.,Department of Orthopaedic Surgery, Carilion Clinic, Roanoke, VA, USA
| | | | - Jonathan Carmouche
- Virginia Tech Carilion School of Medicine and Research Institute, Roanoke, VA, USA.,Department of Orthopaedic Surgery, Carilion Clinic, Roanoke, VA, USA
| |
Collapse
|
26
|
Putman MS, Yu EW, Lin D, Darakananda K, Finkelstein JS, Bouxsein ML. Differences in Trabecular Microstructure Between Black and White Women Assessed by Individual Trabecular Segmentation Analysis of HR-pQCT Images. J Bone Miner Res 2017; 32:1100-1108. [PMID: 27958659 PMCID: PMC5413370 DOI: 10.1002/jbmr.3060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/04/2016] [Accepted: 12/09/2016] [Indexed: 11/10/2022]
Abstract
Black women have lower fracture risk compared with white women, which may be partly explained by improved volumetric bone mineral density (vBMD) and bone microarchitecture primarily within the cortical bone compartment. To determine if there are differences in trabecular microstructure, connectivity, and alignment according to race/ethnicity, we performed individual trabecular segmentation (ITS) analyses on high-resolution peripheral quantitative computed tomography (HR-pQCT) scans of the distal radius and tibia in 273 peri- and postmenopausal black (n = 100) and white (n = 173) women participating in the Study of Women's Health Across the Nation in Boston. Unadjusted analyses showed that black women had greater trabecular plate volume fraction, plate thickness, plate number density, and plate surface area along with greater axial alignment of trabeculae, whereas white women had greater trabecular rod tissue fraction (p < 0.05 for all). Adjustment for clinical covariates augmented these race/ethnicity-related differences in plates and rods, such that white women had greater trabecular rod number density and rod-rod connectivity, whereas black women continued to have superior plate structural characteristics and axial alignment (p < 0.05 for all). These differences remained significant after adjustment for hip BMD and trabecular vBMD. In conclusion, black women had more plate-like trabecular morphology and higher axial alignment of trabeculae, whereas white women had more rod-like trabeculae. These differences may contribute to the improved bone strength and lower fracture risk observed in black women. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Melissa S Putman
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Endocrine Division, Boston Children's Hospital, Boston, MA, USA
| | - Elaine W Yu
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - David Lin
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Karin Darakananda
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Joel S Finkelstein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Center for Advanced Orthopaedic Studies, Beth Israel Deaconness Medical Center, Boston, MA, USA
| |
Collapse
|
27
|
Campbell GM, Peña JA, Giravent S, Thomsen F, Damm T, Glüer CC, Borggrefe J. Assessment of Bone Fragility in Patients With Multiple Myeloma Using QCT-Based Finite Element Modeling. J Bone Miner Res 2017; 32:151-156. [PMID: 27454865 DOI: 10.1002/jbmr.2924] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 11/10/2022]
Abstract
Multiple myeloma (MM) is a malignant plasma cell disease associated with severe bone destruction. Surgical intervention is often required to prevent vertebral body collapse and resulting neurological complications; however, its necessity is determined by measuring lesion size or number, without considering bone biomechanics. Finite element (FE) modeling, which simulates the physiological loading, may improve the prediction of fragility. To test this, we developed a quantitative computed tomography (QCT)-based FE model of the vertebra and applied it to a dataset of MM patients with and without prevalent fracture. FE models were generated from vertebral QCT scans of the T12 (T11 if T12 was fractured) of 104 MM patients, 45 with fracture and 59 without, using a low-dose scan protocol (1.5 mm slice thickness, 4.0 to 6.5 mSv effective dose). A calibration phantom enabled the conversion of the CT Hounsfield units to FE material properties. Compressive loading of the vertebral body was simulated and the stiffness, yield load, and work to yield determined. To compare the parameters between fracture and nonfracture groups, t tests were used, and standardized odds ratios (sOR, normalized to standard deviation) and 95% confidence intervals were calculated. FE parameters were compared to mineral and structural parameters using linear regression. Patients with fracture showed lower vertebral stiffness (-15.2%; p = 0.010; sOR = 1.73; 95% CI, 1.11 to 2.70), yield force (-21.5%; p = 0.002; sOR = 2.09; 95% CI, 1.27 to 3.43), and work to yield (-27.4%; p = 0.001; sOR = 2.28; 95% CI, 1.33 to 3.92) compared to nonfracture patients. All parameters correlated significantly with vBMD (stiffness: R2 = 0.57, yield force: R2 = 0.59, work to yield: R2 = 0.50, p < 0.001), BV/TV (stiffness: R2 = 0.56, yield force: R2 = 0.58, work to yield: R2 = 0.49, p < 0.001), and Tb.Sp (stiffness: R2 = 0.51, yield force: R2 = 0.53, work to yield: R2 = 0.45, p < 0.001). FE modeling identified MM patients with compromised mechanical integrity of the vertebra. Higher sOR values were obtained for the biomechanical compared to structural or mineral measures, suggesting that FE modeling improves fragility assessment in these patients. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Graeme M Campbell
- Section Biomedical Imaging, Department of Radiology and Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.,Institute of Biomechanics, Hamburg University of Technology, Hamburg, Germany
| | - Jaime A Peña
- Section Biomedical Imaging, Department of Radiology and Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sarah Giravent
- Section Biomedical Imaging, Department of Radiology and Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Felix Thomsen
- National Scientific and Technical Research Council (CONICET), National University of the South, Bahía Blanca, Argentina
| | - Timo Damm
- Section Biomedical Imaging, Department of Radiology and Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Claus-C Glüer
- Section Biomedical Imaging, Department of Radiology and Neurology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jan Borggrefe
- Section Biomedical Imaging, Department of Radiology and Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.,Institut und Poliklinik für Diagnostische Radiologie, Uniklinik Köln, Köln, Germany
| |
Collapse
|
28
|
Lee DC, Varela A, Kostenuik PJ, Ominsky MS, Keaveny TM. Finite Element Analysis of Denosumab Treatment Effects on Vertebral Strength in Ovariectomized Cynomolgus Monkeys. J Bone Miner Res 2016; 31:1586-95. [PMID: 27149403 DOI: 10.1002/jbmr.2830] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 03/01/2016] [Accepted: 03/04/2016] [Indexed: 01/22/2023]
Abstract
Finite element analysis has not yet been validated for measuring changes in whole-bone strength at the hip or spine in people after treatment with an osteoporosis agent. Toward that end, we assessed the ability of a clinically approved implementation of finite element analysis to correctly quantify treatment effects on vertebral strength, comparing against direct mechanical testing, in cynomolgus monkeys randomly assigned to one of three 16-month-long treatments: sham surgery with vehicle (Sham-Vehicle), ovariectomy with vehicle (OVX-Vehicle), or ovariectomy with denosumab (OVX-DMAb). After treatment, T12 vertebrae were retrieved, scanned with micro-CT, and mechanically tested to measure compressive strength. Blinded to the strength data and treatment codes, the micro-CT images were coarsened and homogenized to create continuum-type finite element models, without explicit porosity. With clinical translation in mind, these models were then analyzed for strength using the U.S. Food and Drug Administration (FDA)-cleared VirtuOst software application (O.N. Diagnostics, Berkeley, CA, USA), developed for analysis of human bones. We found that vertebral strength by finite element analysis was highly correlated (R(2) = 0.97; n = 52) with mechanical testing, independent of treatment (p = 0.12). Further, the size of the treatment effect on strength (ratio of mean OVX-DMAb to mean OVX-Vehicle, as a percentage) was large and did not differ (p = 0.79) between mechanical testing (+57%; 95% CI [26%, 95%]) and finite element analysis (+51% [20%, 88%]). The micro-CT analysis revealed increases in cortical thickness (+45% [19%, 73%]) and trabecular bone volume fraction (+24% [8%, 42%]). These results show that a preestablished clinical finite element analysis implementation-developed for human bone and clinically validated in fracture-outcome studies-correctly quantified the observed treatment effects of denosumab on vertebral strength in cynomolgus monkeys. One implication is that the treatment effects in this study are well explained by the features contained within these finite element models, namely, the bone geometry and mass and the spatial distribution of bone mass. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
| | - Aurore Varela
- Charles River Laboratories Inc., Montréal, QC, Canada
| | | | | | | |
Collapse
|
29
|
Modeling the Mechanical Consequences of Age-Related Trabecular Bone Loss by XFEM Simulation. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2016; 2016:3495152. [PMID: 27403206 PMCID: PMC4925952 DOI: 10.1155/2016/3495152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/23/2016] [Indexed: 11/18/2022]
Abstract
The elderly are more likely to suffer from fracture because of age-related trabecular bone loss. Different bone loss locations and patterns have different effects on bone mechanical properties. Extended finite element method (XFEM) can simulate fracture process and was suited to investigate the effects of bone loss on trabecular bone. Age-related bone loss is indicated by trabecular thinning and loss and may occur at low-strain locations or other random sites. Accordingly, several ideal normal and aged trabecular bone models were created based on different bone loss locations and patterns; then, fracture processes from crack initiation to complete failure of these models were observed by XFEM; finally, the effects of different locations and patterns on trabecular bone were compared. Results indicated that bone loss occurring at low-strain locations was more detrimental to trabecular bone than that occurring at other random sites; meanwhile, the decrease in bone strength caused by trabecular loss was higher than that caused by trabecular thinning, and the effects of vertical trabecular loss on mechanical properties were more severe than horizontal trabecular loss. This study provided a numerical method to simulate trabecular bone fracture and distinguished different effects of the possible occurrence of bone loss locations and patterns on trabecular bone.
Collapse
|
30
|
Mitchell DM, Tuck P, Ackerman KE, Cano Sokoloff N, Woolley R, Slattery M, Lee H, Bouxsein ML, Misra M. Altered trabecular bone morphology in adolescent and young adult athletes with menstrual dysfunction. Bone 2015; 81:24-30. [PMID: 26123592 PMCID: PMC4745258 DOI: 10.1016/j.bone.2015.06.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/15/2015] [Accepted: 06/18/2015] [Indexed: 01/25/2023]
Abstract
CONTEXT Young amenorrheic athletes (AA) have lower bone mineral density (BMD) and an increased prevalence of fracture compared with eumenorrheic athletes (EA) and non-athletes. Trabecular morphology is a determinant of skeletal strength and may contribute to fracture risk. OBJECTIVES To determine the variation in trabecular morphology among AA, EA, and non-athletes and to determine the association of trabecular morphology with fracture among AA. DESIGN AND SETTING A cross-sectional study performed at an academic clinical research center. PARTICIPANTS 161 girls and young women aged 14-26 years (97 AA, 32 EA, and 32 non-athletes). MAIN OUTCOME MEASURE We measured volumetric BMD (vBMD) and skeletal microarchitecture using high-resolution peripheral quantitative computed tomography. We evaluated trabecular morphology (plate-like vs. rod-like), orientation, and connectivity by individual trabecula segmentation. RESULTS At the non-weight-bearing distal radius, the groups did not differ for trabecular vBMD. However, plate-like trabecular bone volume fraction (pBV/TV) was lower in AA vs. EA (p=0.03), as were plate number (p=0.03) and connectivity (p=0.03). At the weight-bearing distal tibia, trabecular vBMD was higher in athletes vs. non-athletes (p=0.05 for AA and p=0.009 for EA vs. non-athletes, respectively). pBV/TV was higher in athletes vs. non-athletes (p=0.04 AA and p=0.005 EA vs. non-athletes), as were axially-aligned trabeculae, plate number, and connectivity. Among AA, those with a history of recurrent stress fracture had lower pBV/TV, axially-aligned trabeculae, plate number, plate thickness, and connectivity at the distal radius. CONCLUSIONS Trabecular morphology and alignment differ among AA, EA, and non-athletes. These differences may be associated with increased fracture risk.
Collapse
Affiliation(s)
- Deborah M Mitchell
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Pediatric Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Padrig Tuck
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kathryn E Ackerman
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Division of Sports Medicine, Boston Children's Hospital, Boston, MA 02116, USA
| | - Natalia Cano Sokoloff
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ryan Woolley
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Meghan Slattery
- Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hang Lee
- Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Mary L Bouxsein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Madhusmita Misra
- Pediatric Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Neuroendocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
31
|
Vegger JB, Brüel A, Thomsen JS. Vertical Trabeculae are Thinned More Than Horizontal Trabeculae in Skeletal-Unloaded Rats. Calcif Tissue Int 2015; 97:516-26. [PMID: 26163234 DOI: 10.1007/s00223-015-0035-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/03/2015] [Indexed: 10/23/2022]
Abstract
Skeletal unloading results in a rapid thinning of the trabecular bone network, but it is unknown whether vertical and horizontal trabeculae are equally affected. Therefore, the purpose of the present study was to investigate whether horizontal and vertical trabeculae were thinned similarly during skeletal unloading in rats. Fifty-seven 16-week-old female Wistar rats were randomized into six groups: baseline; control 4 weeks; botulinum toxin A (BTX) 4 weeks; control 8 weeks; BTX 8 weeks; and two BTX injections 8 weeks (BTX + BTX8). The BTX animals were injected in the right hind limb with 4 IU BTX at the start of the study, while the BTX + BTX8 were also injected with 2 IU BTX after 4 weeks. The animals were killed after 0, 4, or 8 weeks. The distal femoral metaphyses were μCT scanned, and the strengths of the femoral necks, mid-diaphyses, and distal femoral metaphyses were ascertained. Disuse resulted in a significant loss of BV/TV, thinning of the trabeculae, and decrease in the degree of anisotropy, and in a significant reduced bone strength after both 4 and 8 weeks. The ratio of horizontal to vertical trabecular thickness (Tb.Th.horz/Tb.Th.vert) and the ratio of horizontal to vertical bone volume (BV.horz/BV.vert) were significantly higher in BTX animals than in control animals. In addition, the horizontal and vertical trabecular thickness probability density functions were more similar in BTX animals than in control animals. In conclusion, skeletal unloading decreased BV/TV, Tb.Th, the degree of anisotropy, and mechanical strength, while BV.horz/BV.vert and Tb.Th.horz/Tb.Th.vert were increased. This indicates that the more loaded vertical trabeculae are pronouncedly more thinned than the less loaded supporting horizontal trabeculae during unloading.
Collapse
Affiliation(s)
- Jens Bay Vegger
- Department of Biomedicine - Anatomy, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark.
| | - Annemarie Brüel
- Department of Biomedicine - Anatomy, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark.
| | - Jesper Skovhus Thomsen
- Department of Biomedicine - Anatomy, Aarhus University, Wilhelm Meyers Allé 3, 8000, Aarhus C, Denmark.
| |
Collapse
|
32
|
Biomechanics of low-modulus and standard acrylic bone cements in simulated vertebroplasty: A human ex vivo study. J Biomech 2015; 48:3258-66. [DOI: 10.1016/j.jbiomech.2015.06.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 05/30/2015] [Accepted: 06/21/2015] [Indexed: 11/21/2022]
|
33
|
Lekadir K, Hoogendoorn C, Hazrati-Marangalou J, Taylor Z, Noble C, van Rietbergen B, Frangi AF. A Predictive Model of Vertebral Trabecular Anisotropy From Ex Vivo Micro-CT. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:1747-1759. [PMID: 25561590 DOI: 10.1109/tmi.2014.2387114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Spine-related disorders are amongst the most frequently encountered problems in clinical medicine. For several applications such as 1) to improve the assessment of the strength of the spine, as well as 2) to optimize the personalization of spinal interventions, image-based biomechanical modeling of the vertebrae is expected to play an important predictive role. However, this requires the construction of computational models that are subject-specific and comprehensive. In particular, they need to incorporate information about the vertebral anisotropic micro-architecture, which plays a central role in the biomechanical function of the vertebrae. In practice, however, accurate personalization of the vertebral trabeculae has proven to be difficult as its imaging in vivo is currently infeasible. Consequently, this paper presents a statistical approach for accurate prediction of the vertebral fabric tensors based on a training sample of ex vivo micro-CT images. To the best of our knowledge, this is the first predictive model proposed and validated for vertebral datasets. The method combines features selection and partial least squares regression in order to derive optimal latent variables for the prediction of the fabric tensors based on the more easily extracted shape and density information. Detailed validation with 20 ex vivo T12 vertebrae demonstrates the accuracy and consistency of the approach for the personalization of trabecular anisotropy.
Collapse
|
34
|
Clouthier AL, Hosseini HS, Maquer G, Zysset PK. Finite element analysis predicts experimental failure patterns in vertebral bodies loaded via intervertebral discs up to large deformation. Med Eng Phys 2015; 37:599-604. [PMID: 25922211 DOI: 10.1016/j.medengphy.2015.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 01/14/2015] [Accepted: 03/22/2015] [Indexed: 11/28/2022]
Abstract
Vertebral compression fractures are becoming increasingly common. Patient-specific nonlinear finite element (FE) models have shown promise in predicting yield strength and damage pattern but have not been experimentally validated for clinically relevant vertebral fractures, which involve loading through intervertebral discs with varying degrees of degeneration up to large compressive strains. Therefore, stepwise axial compression was applied in vitro on segments and performed in silico on their FE equivalents using a nonlocal damage-plastic model including densification at large compression for bone and a time-independent hyperelastic model for the disc. The ability of the nonlinear FE models to predict the failure pattern in large compression was evaluated for three boundary conditions: healthy and degenerated intervertebral discs and embedded endplates. Bone compaction and fracture patterns were predicted using the local volume change as an indicator and the best correspondence was obtained for the healthy intervertebral discs. These preliminary results show that nonlinear finite element models enable prediction of bone localisation and compaction. To the best of our knowledge, this is the first study to predict the collapse of osteoporotic vertebral bodies up to large compression using realistic loading via the intervertebral discs.
Collapse
Affiliation(s)
- Allison L Clouthier
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland.
| | - Hadi S Hosseini
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland.
| | - Ghislain Maquer
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland.
| | - Philippe K Zysset
- Institute for Surgical Technology and Biomechanics, University of Bern, Stauffacherstrasse 78, 3014 Bern, Switzerland.
| |
Collapse
|
35
|
Cristofolini L. In vitro evidence of the structural optimization of the human skeletal bones. J Biomech 2015; 48:787-96. [DOI: 10.1016/j.jbiomech.2014.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2014] [Indexed: 11/17/2022]
|
36
|
Wang J, Zhou B, Liu XS, Fields AJ, Sanyal A, Shi X, Adams M, Keaveny TM, Guo XE. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Bone 2015; 72:71-80. [PMID: 25460571 PMCID: PMC4282941 DOI: 10.1016/j.bone.2014.11.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 10/24/2022]
Abstract
The microstructure of trabecular bone is usually perceived as a collection of plate-like and rod-like trabeculae, which can be determined from the emerging high-resolution skeletal imaging modalities such as micro-computed tomography (μCT) or clinical high-resolution peripheral quantitative CT (HR-pQCT) using the individual trabecula segmentation (ITS) technique. It has been shown that the ITS-based plate and rod parameters are highly correlated with elastic modulus and yield strength of human trabecular bone. In the current study, plate-rod (PR) finite element (FE) models were constructed completely based on ITS-identified individual trabecular plates and rods. We hypothesized that PR FE can accurately and efficiently predict elastic modulus and yield strength of human trabecular bone. Human trabecular bone cores from proximal tibia (PT), femoral neck (FN) and greater trochanter (GT) were scanned by μCT. Specimen-specific ITS-based PR FE models were generated for each μCT image and corresponding voxel-based FE models were also generated in comparison. Both types of specimen-specific models were subjected to nonlinear FE analysis to predict the apparent elastic modulus and yield strength using the same trabecular bone tissue properties. Then, mechanical tests were performed to experimentally measure the apparent modulus and yield strength. Strong linear correlations for both elastic modulus (r(2) = 0.97) and yield strength (r(2) = 0.96) were found between the PR FE model predictions and experimental measures, suggesting that trabecular plate and rod morphology adequately captures three-dimensional (3D) microarchitecture of human trabecular bone. In addition, the PR FE model predictions in both elastic modulus and yield strength were highly correlated with the voxel-based FE models (r(2) = 0.99, r(2) = 0.98, respectively), resulted from the original 3D images without the PR segmentation. In conclusion, the ITS-based PR models predicted accurately both elastic modulus and yield strength determined experimentally across three distinct anatomic sites. Trabecular plates and rods accurately determine elastic modulus and yield strength of human trabecular bone.
Collapse
Affiliation(s)
- Ji Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Bin Zhou
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - X Sherry Liu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA; Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.
| | - Arnav Sanyal
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.
| | - Xiutao Shi
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| | - Mark Adams
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.
| | - Tony M Keaveny
- Department of Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA.
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
37
|
Ozcivici E, Judex S. Trabecular bone recovers from mechanical unloading primarily by restoring its mechanical function rather than its morphology. Bone 2014; 67:122-9. [PMID: 24857858 DOI: 10.1016/j.bone.2014.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 10/25/2022]
Abstract
Upon returning to normal ambulatory activities, the recovery of trabecular bone lost during unloading is limited. Here, using a mouse population that displayed a large range of skeletal susceptibility to unloading and reambulation, we tested the impact of changes in trabecular bone morphology during unloading and reambulation on its simulated mechanical properties. Female adult mice from a double cross of BALB/cByJ and C3H/HeJ strains (n=352) underwent 3wk of hindlimb unloading followed by 3wk of reambulation. Normally ambulating mice served as controls (n=30). As quantified longitudinally by in vivo μCT, unloading led to an average loss of 43% of trabecular bone volume fraction (BV/TV) in the distal femur. Finite element models of the μCT tomographies showed that deterioration of the trabecular structure raised trabecular peak Von-Mises (PVM) stresses on average by 27%, indicating a significant increase in the risk of mechanical failure compared to baseline. Further, skewness of the Von-Mises stress distributions (SVM) increased by 104% with unloading, indicating that the trabecular structure became inefficient in resisting the applied load. During reambulation, bone of experimental mice recovered on average only 10% of its lost BV/TV. Even though the addition of trabecular tissue was small during reambulation, PVM and SVM as indicators of risk of mechanical failure decreased by 56% and 57%, respectively. Large individual differences in the response of trabecular bone, together with a large sample size, facilitated stratification of experimental mice based on the level of recovery. As a fraction of all mice, 66% of the population showed some degree of recovery in BV/TV while in 89% and 87% of all mice, PVM and SVM decreased during reambulation, respectively. At the end of the reambulation phase, only 8% of the population recovered half of the unloading induced losses in BV/TV while 50% and 49% of the population recovered half of the unloading induced deterioration in PVM and SVM, respectively. The association between morphological and mechanical variables was strong at baseline but progressively decreased during the unloading and reambulation cycles. The preferential recovery of trabecular micromechanical properties over bone volume fraction emphasizes that mechanical demand during reambulation does not, at least initially, seek to restore bone's morphology but its mechanical integrity.
Collapse
Affiliation(s)
- Engin Ozcivici
- Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir, Turkey; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
38
|
Chen H, Kubo KY. Bone three-dimensional microstructural features of the common osteoporotic fracture sites. World J Orthop 2014; 5:486-495. [PMID: 25232524 PMCID: PMC4133454 DOI: 10.5312/wjo.v5.i4.486] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/03/2014] [Accepted: 06/03/2014] [Indexed: 02/06/2023] Open
Abstract
Osteoporosis is a common metabolic skeletal disorder characterized by decreased bone mass and deteriorated bone structure, leading to increased susceptibility to fractures. With aging population, osteoporotic fractures are of global health and socioeconomic importance. The three-dimensional microstructural information of the common osteoporosis-related fracture sites, including vertebra, femoral neck and distal radius, is a key for fully understanding osteoporosis pathogenesis and predicting the fracture risk. Low vertebral bone mineral density (BMD) is correlated with increased fracture of the spine. Vertebral BMD decreases from cervical to lumbar spine, with the lowest BMD at the third lumbar vertebra. Trabecular bone mass of the vertebrae is much lower than that of the peripheral bone. Cancellous bone of the vertebral body has a complex heterogeneous three-dimensional microstructure, with lower bone volume in the central and anterior superior regions. Trabecular bone quality is a key element to maintain the vertebral strength. The increased fragility of osteoporotic femoral neck is attributed to low cancellous bone volume and high compact porosity. Compared with age-matched controls, increased cortical porosity is observed at the femoral neck in osteoporotic fracture patients. Distal radius demonstrates spatial inhomogeneous characteristic in cortical microstructure. The medial region of the distal radius displays the highest cortical porosity compared with the lateral, anterior and posterior regions. Bone strength of the distal radius is mainly determined by cortical porosity, which deteriorates with advancing age.
Collapse
|
39
|
Zhou B, Wang J, Stein EM, Zhang Z, Nishiyama KK, Zhang CA, Nickolas TL, Shane E, Guo XE. Bone density, microarchitecture and stiffness in Caucasian and Caribbean Hispanic postmenopausal American women. Bone Res 2014; 2:14016. [PMID: 26273525 PMCID: PMC4472134 DOI: 10.1038/boneres.2014.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/30/2014] [Accepted: 07/30/2014] [Indexed: 12/24/2022] Open
Abstract
Hispanic Americans of Caribbean origin are a fast-growing subset of the US population, but there are no studies on bone density, microstructure and biomechanical integrity in this minority group. In this study, we aimed to compare Caucasian and Caribbean Hispanic postmenopausal American women with respect to these characteristics. Thirty-three Caribbean Hispanics were age-matched to thirty-three Caucasian postmenopausal women. At the lumbar spine, the Hispanic women had significantly lower areal bone mineral density (aBMD). At the radius by high-resolution peripheral quantitative computed tomography (HR-pQCT), there were minimal differences between Hispanic and Caucasian women. At the tibia, Hispanic women had lower trabecular volumetric bone density and trabecular number, and higher trabecular separation. Individual trabecula segmentation (ITS) analyses indicated that at the tibia, Hispanic women not only had significantly lower bone volume fraction, but also had significantly lower rod bone volume fraction, plate trabecular number, rod trabecular number and lower plate–plate, plate–rod and rod–rod junction densities compared to Caucasian women. The differences in bone quantity and quality contributed to lower whole bone stiffness at the radius, and both whole bone and trabecular bone stiffness at the tibia in Hispanic women. In conclusion, Hispanic women had poorer bone mechanical and microarchitectural properties than Caucasian women, especially at the load-bearing distal tibia.
Collapse
Affiliation(s)
- Bin Zhou
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University , New York, USA
| | - Ji Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University , New York, USA
| | - Emily M Stein
- Division of Endocrinology, Department of Medicine, Columbia University , New York, USA
| | - Zhendong Zhang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University , New York, USA ; Department of Orthopedic Surgery, First Affiliated Hospital, School of Medicine Shihezi University , Shihezi, Xinjiang, China
| | - Kyle K Nishiyama
- Division of Endocrinology, Department of Medicine, Columbia University , New York, USA
| | - Chiyuan A Zhang
- Division of Endocrinology, Department of Medicine, Columbia University , New York, USA
| | - Thomas L Nickolas
- Division of Endocrinology, Department of Medicine, Columbia University , New York, USA
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University , New York, USA
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University , New York, USA
| |
Collapse
|
40
|
Ozcivici E, Zhang W, Donahue LR, Judex S. Quantitative trait loci that modulate trabecular bone's risk of failure during unloading and reloading. Bone 2014; 64:25-32. [PMID: 24698783 DOI: 10.1016/j.bone.2014.03.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/01/2014] [Accepted: 03/22/2014] [Indexed: 01/23/2023]
Abstract
Genetic makeup of an individual is a strong determinant of the morphologic and mechanical properties of bone. Here, in an effort to identify quantitative trait loci (QTLs) for changes in the simulated mechanical parameters of trabecular bone during altered mechanical demand, we subjected 352 second generation female adult (16 weeks old) BALBxC3H mice to 3 weeks of hindlimb unloading followed by 3 weeks of reambulation. Longitudinal in vivo microcomputed tomography (μCT) scans tracked trabecular changes in the distal femur. Tomographies were directly translated into finite element (FE) models and subjected to a uniaxial compression test. Apparent trabecular stiffness and components of the Von Mises (VM) stress distributions were computed for the distal metaphysis and associated with QTLs. At baseline, five QTLs explained 20% of the variation in trabecular peak stresses across the mouse population. During unloading, three QTLs accounted for 14% of the variability in peak stresses. During reambulation, one QTL accounted for 5% of the variability in peak stresses. QTLs were also identified for mechanically induced changes in stiffness, median stress values and skewness of stress distributions. There was little overlap between QTLs identified for baseline and QTLs for longitudinal changes in mechanical properties, suggesting that distinct genes may be responsible for the mechanical response of trabecular bone. Unloading related QTLs were also different from reambulation related QTLs. Further, QTLs identified here for mechanical properties differed from previously identified QTLs for trabecular morphology, perhaps revealing novel gene targets for reducing fracture risk in individuals exposed to unloading and for maximizing the recovery of trabecular bone's mechanical properties during reambulation.
Collapse
Affiliation(s)
- Engin Ozcivici
- Department of Mechanical Engineering, Izmir Institute of Technology, Urla, Izmir 35430, Turkey.
| | | | | | - Stefan Judex
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
41
|
Compressive mechanical properties and cytocompatibility of bone-compliant, linoleic acid-modified bone cement in a bovine model. J Mech Behav Biomed Mater 2014; 32:245-256. [DOI: 10.1016/j.jmbbm.2014.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/18/2022]
|
42
|
BRANDOLINI NICOLA, CRISTOFOLINI LUCA, VICECONTI MARCO. EXPERIMENTAL METHODS FOR THE BIOMECHANICAL INVESTIGATION OF THE HUMAN SPINE: A REVIEW. J MECH MED BIOL 2014. [DOI: 10.1142/s0219519414300026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In vitro mechanical testing of spinal specimens is extremely important to better understand the biomechanics of the healthy and diseased spine, fracture, and to test/optimize surgical treatment. While spinal testing has extensively been carried out in the past four decades, testing methods are quite diverse. This paper aims to provide a critical overview of the in vitro methods for mechanical testing the human spine at different scales. Specimens of different type are used, according to the aim of the study: spine segments (two or more adjacent vertebrae) are used both to investigate the spine kinematics, and the mechanical properties of the spine components (vertebrae, ligaments, discs); single vertebrae (whole vertebra, isolated vertebral body, or vertebral body without endplates) are used to investigate the structural properties of the vertebra itself; core specimens are extracted to test the mechanical properties of the trabecular bone at the tissue-level; mechanical properties of spine soft tissue (discs, ligaments, spinal cord) are measured on isolated elements, or on tissue specimens. Identification of consistent reference frames is still a debated issue. Testing conditions feature different pre-conditioning and loading rates, depending on the simulated action. Tissue specimen preservation is a very critical issue, affecting test results. Animal models are often used as a surrogate. However, because of different structure and anatomy, extreme caution is required when extrapolating to the human spine. In vitro loading conditions should be based on reliable in vivo data. Because of the high complexity of the spine, such information (either through instrumented implants or through numerical modeling) is currently unsatisfactory. Because of the increasing ability of computational models in predicting biomechanical properties of musculoskeletal structures, a synergy is possible (and desirable) between in vitro experiments and numerical modeling. Future perspectives in spine testing include integration of mechanical and structural properties at different dimensional scales (from the whole-body-level down to the tissue-level) so that organ-level models (which are used to predict the most relevant phenomena such as fracture) include information from all dimensional scales.
Collapse
Affiliation(s)
- NICOLA BRANDOLINI
- Laboratory for Medical Technology, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
- School of Mechanical Engineering, University of Leeds, Woodhouse Lane, LS2 9JT Leeds, UK
| | - LUCA CRISTOFOLINI
- Department of Industrial Engineering, School of Engineering and Architecture, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy
| | - MARCO VICECONTI
- Laboratory for Medical Technology, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
43
|
Stein EM, Kepley A, Walker M, Nickolas TL, Nishiyama K, Zhou B, Liu XS, McMahon DJ, Zhang C, Boutroy S, Cosman F, Nieves J, Guo XE, Shane E. Skeletal structure in postmenopausal women with osteopenia and fractures is characterized by abnormal trabecular plates and cortical thinning. J Bone Miner Res 2014; 29:1101-9. [PMID: 24877245 PMCID: PMC4084559 DOI: 10.1002/jbmr.2144] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The majority of fragility fractures occur in women with osteopenia rather than osteoporosis as determined by dual‐energy X‐ray absorptiometry (DXA). However, it is difficult to identify which women with osteopenia are at greatest risk. We performed this study to determine whether osteopenic women with and without fractures had differences in trabecular morphology and biomechanical properties of bone. We hypothesized that women with fractures would have fewer trabecular plates, less trabecular connectivity, and lower stiffness. We enrolled 117 postmenopausal women with osteopenia by DXA (mean age 66 years; 58 with fragility fractures and 59 nonfractured controls). All had areal bone mineral density (aBMD) measured by DXA. Trabecular and cortical volumetric bone mineral density (vBMD), trabecular microarchitecture, and cortical porosity were measured by high‐resolution peripheral computed tomography (HR‐pQCT) of the distal radius and tibia. HR‐pQCT scans were subjected to finite element analysis to estimate whole bone stiffness and individual trabecula segmentation (ITS) to evaluate trabecular type (as plate or rod), orientation, and connectivity.Groups had similar age, race, body mass index (BMI), and mean T‐scores. Fracture subjects had lower cortical and trabecular vBMD, thinner cortices, and thinner, more widely separated trabeculae. By ITS, fracture subjects had fewer trabecular plates, less axially aligned trabeculae, and less trabecular connectivity. Whole bone stiffness was lower in women with fractures. Cortical porosity did not differ. Differences in cortical bone were found at both sites, whereas trabecular differences were more pronounced at the radius.In summary, postmenopausal women with osteopenia and fractures had lower cortical and trabecular vBMD; thinner, more widely separated and rodlike trabecular structure; less trabecular connectivity; and lower whole bone stiffness compared with controls,despite similar aBMD by DXA. Our results suggest that in addition to trabecular and cortical bone loss, changes in plate and rod structure may be important mechanisms of fracture in postmenopausal women with osteopenia.
Collapse
Affiliation(s)
- Emily M Stein
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | - Anna Kepley
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | - Marcella Walker
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | - Thomas L Nickolas
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | - Kyle Nishiyama
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | - Bin Zhou
- Bone Bioengineering Laboratory, Department of Biomedical Engineering; Columbia University; New York NY USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery; University of Pennsylvania; Philadelphia PA USA
| | - Donald J McMahon
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | - Chiyuan Zhang
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| | | | - Felicia Cosman
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
- Helen Hayes Hospital; West Haverstraw; NY USA
| | - Jeri Nieves
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
- Helen Hayes Hospital; West Haverstraw; NY USA
| | - X Edward Guo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery; University of Pennsylvania; Philadelphia PA USA
| | - Elizabeth Shane
- Department of Medicine; Columbia University College of Physicians and Surgeons; New York NY USA
| |
Collapse
|
44
|
Zhou B, Liu XS, Wang J, Lu XL, Fields AJ, Guo XE. Dependence of mechanical properties of trabecular bone on plate-rod microstructure determined by individual trabecula segmentation (ITS). J Biomech 2013; 47:702-8. [PMID: 24360196 DOI: 10.1016/j.jbiomech.2013.11.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 11/24/2013] [Indexed: 12/01/2022]
Abstract
Individual trabecula segmentation (ITS) technique can decompose the trabecular bone network into individual trabecular plates and rods and is capable of quantifying the plate/rod-related microstructural characteristics of trabecular bone. This novel technique has been shown to be able to provide in-depth insights into micromechanics and failure mechanisms of human trabecular bone, as well as to distinguish the fracture status independent of area bone mineral density in clinical applications. However, the plate/rod microstructural parameters from ITS have never been correlated to experimentally determined mechanical properties of human trabecular bone. In this study, on-axis cylindrical trabecular bone samples from human proximal tibia (n=22), vertebral body (n=10), and proximal femur (n=21) were harvested, prepared, scanned using micro computed-tomography (µCT), analyzed with ITS and mechanically tested. Regression analyses showed that the plate bone volume fraction (pBV/TV) and axial bone volume fraction (aBV/TV) calculated by ITS analysis correlated the best with elastic modulus (R(2)=0.96-0.97) and yield strength (R(2)=0.95-0.96). Trabecular plate-related microstructural parameters correlated highly with elastic modulus and yield strength, while most rod-related parameters were found inversely and only moderately correlated with the mechanical properties. In addition, ITS analysis also identified that trabecular bone at human femoral neck had the highest trabecular plate-related parameters while the other sites were similar with each other in terms of plate-rod microstructure.
Collapse
Affiliation(s)
- Bin Zhou
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - X Sherry Liu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Ji Wang
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - X Lucas Lu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA; Cartilage Bioengineering Laboratory, Department of Mechanical Engineering, University of Delaware, Newark, DE, USA
| | - Aaron J Fields
- Department of Orthopaedic Surgery, University of California, San Francisco, CA, USA; Orthopaedic Biomechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - X Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
45
|
Thomsen JS, Niklassen AS, Ebbesen EN, Brüel A. Age-related changes of vertical and horizontal lumbar vertebral trabecular 3D bone microstructure is different in women and men. Bone 2013; 57:47-55. [PMID: 23899636 DOI: 10.1016/j.bone.2013.07.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/28/2022]
Abstract
The study presents a 3D method for subdividing a trabecular network into horizontal and vertical oriented bone. This method was used to investigate the age related changes of the bone volume fraction and thickness of horizontal and vertical trabeculae in human lumbar vertebral bone estimated with unbiased 3D methods in women and men over a large age-range. The study comprised second lumbar vertebral body bone samples from 40 women (aged 21.7-96.4years, median 56.6years) and 39 men (aged 22.6-94.6years, median 55.6years). The bone samples were μCT scanned and the 3D microstructure was quantified. A voxel based algorithm inspecting the local neighborhood is presented and used to segment the trabecular network into horizontal and vertical oriented bone. For both women and men BV/TV decreased significantly with age, Tb.Th* was independent of age, while SMI increased significantly with age. Vertical (BV.vert/TV) and horizontal (BV.horz/TV) bone volume fraction decreased significantly with age for both sexes. BV.vert/TV decreased significantly faster with age for women than for men. Vertical (Tb.Th*.vert) and horizontal (Tb.Th*.horz) trabecular thickness were independent of age, while Tb.Th*.horz/Tb.Th*.vert decreased significantly with age for both sexes. Additionally, the 95th percentile of the trabecular thickness distribution increased significantly with age for vertical trabeculae in women, whereas it was independent of age in men. In conclusion, we have shown that vertical and horizontal oriented bone density decreases with age in both women and men, and that vertical oriented bone is lost more quickly in women than in men. Furthermore, vertical and horizontal trabecular thickness were independent of age, whereas the horizontal to vertical trabecular thickness ratio decreased significantly with age indicating a relatively more pronounced thinning of horizontal trabeculae. Finally, the age-related loss of trabecular elements appeared to result in a compensatory hypertrophy of vertical trabeculae in women, but not in men.
Collapse
|
46
|
Tsouknidas A, Maliaris G, Savvakis S, Michailidis N. Anisotropic post-yield response of cancellous bone simulated by stress–strain curves of bulk equivalent structures. Comput Methods Biomech Biomed Engin 2013; 18:839-46. [DOI: 10.1080/10255842.2013.849342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Cristofolini L, Brandolini N, Danesi V, Juszczyk MM, Erani P, Viceconti M. Strain distribution in the lumbar vertebrae under different loading configurations. Spine J 2013; 13:1281-92. [PMID: 23958297 DOI: 10.1016/j.spinee.2013.06.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 03/01/2013] [Accepted: 06/01/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT The stress/strain distribution in the human vertebrae has seldom been measured, and only for a limited number of loading scenarios, at few locations on the bone surface. PURPOSE This in vitro study aimed at measuring how strain varies on the surface of the lumbar vertebral body and how such strain pattern depends on the loading conditions. METHODS Eight cadaveric specimens were instrumented with eight triaxial strain gauges each to measure the magnitude and direction of principal strains in the vertebral body. Each vertebra was tested in a three adjacent vertebrae segment fashion. The loading configurations included a compressive force aligned with the vertebral body but also tilted (15°) in each direction in the frontal and sagittal planes, a traction force, and torsion (both directions). Each loading configuration was tested six times on each specimen. RESULTS The strain magnitude varied significantly between strain measurement locations. The strain distribution varied significantly when different loading conditions were applied (compression vs. torsion vs. traction). The strain distribution when the compressive force was tilted by 15° was also significantly different from the axial compression. Strains were minimal when the compressive force was applied coaxial with the vertebral body, compared with all other loading configurations. Also, strain was significantly more uniform for the axial compression, compared with all other loading configurations. Principal strains were aligned within 19° to the axis of the vertebral body for axial-compression and axial-traction. Conversely, when the applied force was tilted by 15°, the direction of principal strain varied by a much larger angle (15° to 28°). CONCLUSIONS This is the first time, to our knowledge, that the strain distribution in the vertebral body is measured for such a variety of loading configurations and a large number of strain sensors. The present findings suggest that the structure of the vertebral body is optimized to sustain compressive forces, whereas even a small tilt angle makes the vertebral structure work under suboptimal conditions.
Collapse
Affiliation(s)
- Luca Cristofolini
- Laboratory for Medical Technology, Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy; Department of Industrial Engineering, School of Engineering and Architecture, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
48
|
Wang Y, Owoc JS, Boyd SK, Videman T, Battié MC. Regional variations in trabecular architecture of the lumbar vertebra: associations with age, disc degeneration and disc space narrowing. Bone 2013; 56:249-54. [PMID: 23810839 DOI: 10.1016/j.bone.2013.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/16/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
Abstract
Previous studies suggest that age and disc degeneration are associated with variations in vertebral trabecular architecture. In particular, disc space narrowing, a severe form of disc degeneration, may predispose the anterior portion of a vertebra to fracture. We studied 150 lumbar vertebrae and 209 intervertebral discs from 48 cadaveric lumbar spines of middle-aged men to investigate regional trabecular differences in relation to age, disc degeneration and disc narrowing. The degrees of disc degeneration and narrowing were evaluated using radiography and discography. The vertebrae were dried and scanned on a μCT system. The μCT images of each vertebral body were processed to include only vertebral trabeculae, which were first divided into superior and inferior regions, and further into central and peripheral regions, and then anterior and posterior regions. Structural analyses were performed to obtain trabecular microarchitecture measurements for each vertebral region. On average, the peripheral region had 12-15% greater trabecular bone volume fraction and trabecular thickness than the central region (p<0.01). Greater age was associated with better trabecular structure in the peripheral region relative to the central region. Moderate and severe disc degeneration were associated with higher trabecular thickness in the peripheral region of the vertebral trabeculae (p<0.05). The anterior region was of lower bone quality than the posterior region, which was not associated with age. Slight to moderate narrowing was associated with greater trabecular bone volume fraction in the anterior region of the inferior vertebra (p<0.05). Similarly, greater disc narrowing was associated with higher trabecular thickness in the anterior region (p<0.05). Better architecture of peripheral trabeculae relative to central trabeculae was associated with both age and disc degeneration. In contrast to the previous view that disc narrowing stress-shields the anterior vertebra, disc narrowing tended to associate with better trabecular architecture in the anterior region, as opposed to the posterior region.
Collapse
Affiliation(s)
- Yue Wang
- Spine Lab, Department of Orthopedic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.
| | | | | | | | | |
Collapse
|
49
|
Barak MM, Lieberman DE, Hublin JJ. Of mice, rats and men: trabecular bone architecture in mammals scales to body mass with negative allometry. J Struct Biol 2013; 183:123-31. [PMID: 23639903 DOI: 10.1016/j.jsb.2013.04.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/16/2013] [Accepted: 04/21/2013] [Indexed: 11/29/2022]
Abstract
Body mass (BM) in mammal species spans over six orders of magnitude. Although trabecular bone contributes to the mechanical properties of bones, we know much less about how trabecular bone scales with BM than about how cortical bone scales with BM. We therefore conducted a meta-analysis of the existing literature to test in rodents, humans and other mammals, predicted scaling properties between BM and several trabecular parameters: bone volume fraction (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), connectivity density (ConnD) and degree of anisotropy (DA). Our results show that BV/TV and DA are independent of BM and that Tb.N, Tb.Th and Tb.Sp scale with negative allometry relative to BM. Rodents appear to have relatively thicker and fewer trabeculae than humans, and we propose it that is due to a minimum thickness threshold "imposed" on mechanically functional trabeculae. Consequently, rodents (mice and rats) and humans demonstrate two distinct mechanisms to achieve variations in BV/TV. Although Tb.Th variation is the main contributing factor for differences in BV/TV in humans, Tb.N variation is the main contributing factor for differences in BV/TV in rodents. Our results also demonstrate no correlation between Tb.N and Tb.Th within each taxon (mice, rats and humans). Since rodents are a common animal model for research on bone biomechanics, the evidence that trabecular bone parameters scale and correlate differently in rodents than in humans suggests that care should be applied when extrapolating bone biomechanical results from small animals to large-bodied humans.
Collapse
Affiliation(s)
- Meir Max Barak
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
50
|
Dumont M, Laurin M, Jacques F, Pellé E, Dabin W, de Buffrénil V. Inner architecture of vertebral centra in terrestrial and aquatic mammals: A two-dimensional comparative study. J Morphol 2013; 274:570-84. [DOI: 10.1002/jmor.20122] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/12/2012] [Accepted: 12/10/2012] [Indexed: 11/06/2022]
|