1
|
Tüysüz B, Usluer E, Uludağ Alkaya D, Ocak S, Saygılı S, Şeker A, Apak H. The molecular spectrum of Turkish osteopetrosis and related osteoclast disorders with natural history, including a candidate gene, CCDC120. Bone 2023; 177:116897. [PMID: 37704070 DOI: 10.1016/j.bone.2023.116897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Osteopetrosis and related osteoclastic disorders are a heterogeneous group of inherited diseases characterized by increased bone density. The aim of this study is to investigate the molecular spectrum and natural history of the clinical and radiological features of these disorders. METHODS 28 patients from 20 families were enrolled in the study; 20 of them were followed for a period of 1-16 years. Targeted gene analysis and whole-exome sequencing (WES) were performed. RESULTS Biallelic mutations in CLCN7 and TCIRG1 were detected in three families each, in TNFRSF11A and CA2 in two families each, and in SNX10 in one family in the osteopetrosis group. A heterozygous variant in CLCN7 was also found in one family. In the osteopetrosis and related osteoclast disorders group, three different variants in CTSK were detected in five families with pycnodysostosis and a SLC29A3 variant causing dysosteosclerosis was detected in one family. In autosomal recessive osteopetrosis (ARO), a malignant infantile form, four patients died during follow-up, two of whom had undergone hematopoietic stem cell transplantation. Interestingly, all patients had osteopetrorickets of the long bone metaphyses in infancy, typical skeletal features such as Erlenmeyer flask deformity and bone-in-bone appearance that developed toward the end of early childhood. Two siblings with a biallelic missense mutation in CLCN7 and one patient with the compound heterozygous novel splicing variants in intron 15 and 17 in TCIRG1 corresponded to the intermediate form of ARO (IARO); there was intrafamilial clinical heterogeneity in the family with the CLCN7 variant. One of two patients with IARO and distal tubular acidosis was found to have a large deletion in CA2. In one family, two siblings with a heterozygous mutation in CLCN7 were affected, whereas the father with the same mutation was asymptomatic. In WES analysis of three brothers from a family without mutations in osteopetrosis genes, a hemizygous missense variant in CCDC120, a novel gene, was found to be associated with high bone mass. CONCLUSION This study extended the natural history of the different types of osteopetrosis and also introduced a candidate gene, CCDC120, potentially causing osteopetrosis.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Genetics, Istanbul, Turkey.
| | - Esra Usluer
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Genetics, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Genetics, Istanbul, Turkey
| | - Süheyla Ocak
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Hematology, Istanbul, Turkey
| | - Seha Saygılı
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Nephrology, Istanbul, Turkey
| | - Ali Şeker
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Orthopedics and Traumatology, Istanbul, Turkey
| | - Hilmi Apak
- Istanbul University-Cerrahpasa, Cerrahpasa Faculty of Medicine, Department of Pediatric Hematology, Istanbul, Turkey
| |
Collapse
|
2
|
Capo V, Abinun M, Villa A. Osteoclast rich osteopetrosis due to defects in the TCIRG1 gene. Bone 2022; 165:116519. [PMID: 35981697 DOI: 10.1016/j.bone.2022.116519] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Discovery that mutations in TCIRG1 (also known as Atp6i) gene are responsible for most instances of autosomal recessive osteopetrosis (ARO) heralded a new era for comprehension and treatment of this phenotypically heterogeneous rare bone disease. TCIRG1 encodes the a3 subunit, an essential isoform of the vacuolar ATPase proton pump involved in acidification of the osteoclast resorption lacuna and in secretory lysosome trafficking. TCIRG1 defects lead to inefficient bone resorption by nonfunctional osteoclasts seen in abundance on bone marrow biopsy, delineating this ARO as 'osteoclast-rich'. Presentation is usually in early childhood and features of extramedullary haematopoiesis (hepatosplenomegaly, anaemia, thrombocytopenia) due to bone marrow fibrosis, and cranial nerve impingement (blindness in particular). Impaired dietary calcium uptake due to high pH causes the co-occurrence of rickets, described as "osteopetrorickets". Osteoclast dysfunction leads to early death if untreated, and allogeneic haematopoietic stem cell transplantation is currently the treatment of choice. Studies of patients as well as of mouse models carrying spontaneous (the oc/oc mouse) or targeted disruption of Atp6i (TCIRG1) gene have been instrumental providing insight into disease pathogenesis and development of novel cellular therapies that exploit gene correction.
Collapse
Affiliation(s)
- Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy
| | - Mario Abinun
- Children's Haematopoietic Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, Milan Unit, National Research Council, Milan, Italy.
| |
Collapse
|
3
|
Luong LH, Nguyen HD, Trung TN, Minh TMT, Khanh TL, Son TP, Tran TD, Nguyen TT. Case report of mild TCIRG1-associated autosomal recessive osteopetrosis in Vietnam. Am J Med Genet A 2022; 188:3096-3099. [PMID: 35915932 DOI: 10.1002/ajmg.a.62897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 01/31/2023]
Abstract
Autosomal recessive osteopetrosis (ARO) is a group of disease characterized by osteoclast dysfunction inhibiting bone resorption and bone turnover, with TCIRG1-associated ARO being more common leading to autosomal recessive infantile malignant osteopetrosis (OPTB1, MIM entry number # 259700). While most patients with TCIRG1-associated osteopetrosis present a malignant clinical course and shortened lifespan, a few cases of non-malignant TCIRG1-associated osteopetrosis have been reported. 24-year-old female patient came to us with limp gait, hip pain in both sides, and severe stiffness. She had suffered many fractures, bilateral hip osteoarthritis, right leg was 2 cm shorter compared with left leg. Whole Exome Sequencing was conducted, the result and subsequent Sanger's sequencing shown the patient had a compound heterozygous genotype at TCIRG1 (c.1194dup, p.Gly399ArgTer and c.334G>A, p.Gly112Arg), these two variants found were not previously reported. Sanger's sequencing revealed two other siblings whom suffer the same disorder had similar genotype to the proband; the parents were found to be heterozygous. This is the first case of TCIRG1-associated osteopetrosis reported in Vietnam and one of the few cases of nonmalignant TCIRG1-associated osteopetrosis, in which detailed clinical and genetic work-up were performed.
Collapse
Affiliation(s)
| | - Hieu Dinh Nguyen
- National E Hospital, Hanoi, Vietnam.,VNU University of Medicine and Pharmacy, Hanoi, Vietnam
| | - Tuyen Nguyen Trung
- National E Hospital, Hanoi, Vietnam.,Hanoi Medical University, Hanoi, Vietnam
| | | | | | | | | | | |
Collapse
|
4
|
Dinh HN, Luong LH, Trung TN, Minh TMT, Tran TD, Nguyen TT. Successful total hip arthroplasty for patient with TCIRG1-associated autosomal recessive osteopetrosis. Int J Surg Case Rep 2022. [PMCID: PMC9178469 DOI: 10.1016/j.ijscr.2022.107262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Introduction and importance Autosomal recessive osteopetrosis (ARO) is a group of disease characterized by osteoclast dysfunction inhibiting bone resorption and bone turnover, with TCIRG1-associated ARO leading to autosomal recessive infantile malignant osteopetrosis (OPTB1, MIM entry number # 259700). While most patients with TCIRG1-associated osteopetrosis present a malignant clinical course and shortened lifespan, a few cases of mild osteopetrosis associated with TCIRG1 have been reported recently. In this study we report a rare case of non-malignant TCIRG1-associated osteopetrosis, with detail clinical characterization, genetic analysis and underwent successful total hip replacement surgery. Case presentation 24-year-old female patient came to us with limp gait, hip pain in both sides, severe stiffness. She suffered multiple fractures, bilateral hip osteoarthritis, right leg was 2 cm shorter compared with left leg. The patient had a limp gait due to severe pain and leg length discrepancy. Clinical discussion Whole Exome Sequencing, result of genetic analysis shown the patient had a compound heterozygous genotype at TCIRG1 (c.1194dup, p.Gly399ArgTer and c.334G > A, p.Gly112Arg). Total hip replacement was performed. The joint exposure and femoral canal reaming was difficult due to complete deformity of femoral head, loss of canal and high bone density. Post-operation period was uneventful; the patient rehabilitated as planned without further complication. Conclusion This is the first case of TCIRG1-associated osteopetrosis reported in Vietnam and one of the few cases of non-malignant TCIRG1-associated osteopetrosis. This case report suggests that total hip replacement is a viable option for the treatment of hip osteoarthritis in patients with mild form osteopetrosis. This is the first case of TCIRG1-associated osteopetrosis reported in Vietnam with clinical and genetic workup. This study detailed the surgical processes as well as the rehabilitation period of a patient with mild form of osteopetrosis. Total hip arthroplasty is a feasible option for the treatment of hip osteoarthritis in osteopetrosis patients High bone density, brittle/fragile bone, deformed acetabulum, narrow or sealed femoral canal leads to difficulty in surgery.
Collapse
|
5
|
Shinwari K, Rehman HM, Liu G, Bolkov MA, Tuzankina IA, Chereshnev VA. Novel Disease-Associated Missense Single-Nucleotide Polymorphisms Variants Predication by Algorithms Tools and Molecular Dynamics Simulation of Human TCIRG1 Gene Causing Congenital Neutropenia and Osteopetrosis. Front Mol Biosci 2022; 9:879875. [PMID: 35573728 PMCID: PMC9095858 DOI: 10.3389/fmolb.2022.879875] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/04/2022] [Indexed: 12/16/2022] Open
Abstract
T Cell Immune Regulator 1, ATPase H + Transporting V0 Subunit A3 (TCIRG1 gene provides instructions for making one part, the a3 subunit, of a large protein complex known as a vacuolar H + -ATPase (V-ATPase). V-ATPases are a group of similar complexes that act as pumps to move positively charged hydrogen atoms (protons) across membranes. Single amino acid changes in highly conserved areas of the TCIRG1 protein have been linked to autosomal recessive osteopetrosis and severe congenital neutropenia. We used multiple computational approaches to classify disease-prone single nucleotide polymorphisms (SNPs) in TCIRG1. We used molecular dynamics analysis to identify the deleterious nsSNPs, build mutant protein structures, and assess the impact of mutation. Our results show that fifteen nsSNPs (rs199902030, rs200149541, rs372499913, rs267605221, rs374941368, rs375717418, rs80008675, rs149792489, rs116675104, rs121908250, rs121908251, rs121908251, rs149792489 and rs116675104) variants are likely to be highly deleterious mutations as by incorporating them into wild protein they destabilize the wild protein structure and function. They are also located in the V-ATPase I domain, which may destabilize the structure and impair TCIRG1 protein activation, as well as reduce its ATPase effectiveness. These mutants have not yet been identified in patients suffering from CN and osteopetrosis while (G405R, R444L, and D517N) reported in our study are already associated with osteopetrosis. Mutation V52L reported in our study was identified in a patient suspected for CN. Finally, these mutants can help to further understand the broad pool of illness susceptibilities associated with TCIRG1 catalytic kinase domain activation and aid in the development of an effective treatment for associated diseases.
Collapse
Affiliation(s)
- Khyber Shinwari
- Institute of Chemical Engineering, Department of Immunochemistry, Ural Federal University, Yekaterinburg, Russia
| | - Hafiz Muzzammel Rehman
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
- Alnoorians Group of Institutes, Shad Bagh, Lahore, Pakistan
| | - Guojun Liu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Mikhail A. Bolkov
- Institute of Chemical Engineering, Department of Immunochemistry, Ural Federal University, Yekaterinburg, Russia
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina A. Tuzankina
- Institute of Chemical Engineering, Department of Immunochemistry, Ural Federal University, Yekaterinburg, Russia
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Valery. A. Chereshnev
- Institute of Chemical Engineering, Department of Immunochemistry, Ural Federal University, Yekaterinburg, Russia
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| |
Collapse
|
6
|
Liang H, Li N, Yao R, Yu T, Ding L, Chen J, Wang J. Clinical and molecular characterization of five Chinese patients with autosomal recessive osteopetrosis. Mol Genet Genomic Med 2021; 9:e1815. [PMID: 34545712 PMCID: PMC8606217 DOI: 10.1002/mgg3.1815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/27/2021] [Accepted: 09/07/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Osteopetrosis is characterized by increased bone density and bone marrow cavity stenosis due to a decrease in the number of osteoclasts or the dysfunction of their differentiation and absorption properties usually caused by biallelic variants of the TCIRG1 and CLCN7 genes. METHODS In this study, we describe five Chinese children who presented with anemia, thrombocytopenia, hepatosplenomegaly, repeated infections, and increased bone density. Whole-exome sequencing identified five compound heterozygous variants of the CLCN7 and TCIRG1 genes in these patients. RESULTS Patient 1 had a novel variant c.1555C>T (p.L519F) and a previously reported pathogenic variant c.2299C>T (p.R767W) in CLCN7. Patient 2 harbored a novel missense variant (c.1025T>C; p.L342P) and a novel splicing variant (c.286-9G>A) in CLCN7. Patients 3A and 3B from one family displayed the same compound heterozygous TCIRG1 variant, including a novel frameshift variant (c.1370del; p.T457Tfs*71) and a novel splicing variant (c.1554+2T>C). In Patient 4, two novel variants were identified in the TCIRG1 gene: c.676G>T; p.E226* and c.1191del; p.P398Sfs*5. Patient 5 harbored two known pathogenic variants, c.909C>A (p.Y303*) and c.2008C>T (p.R670*), in TCIRG1. Analysis of the products obtained from the reverse transcription-polymerase chain reaction revealed that the c.286-9G>A variant in CLCN7 of patient 2 leads to intron 3 retention, resulting in the formation of a premature termination codon (p.E95Vfs*8). These five patients were eventually diagnosed with autosomal recessive osteopetrosis, and the three children with TCIRG1 variants received hematopoietic stem cell transplantation. CONCLUSIONS Our results expand the spectrum of variation of genes related to osteopetrosis and deepen the understanding of the relationship between the genotype and clinical characteristics of osteopetrosis.
Collapse
Affiliation(s)
- Huanhuan Liang
- Key Laboratory of Pediatric Hematology and OncologyMinistry of HealthDepartment of Hematology and OncologyShanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Niu Li
- Department of Medical Genetics and Molecular Diagnostic LaboratoryShanghai Children’s Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PediatricsShanghaiChina
| | - Ru‐en Yao
- Department of Medical Genetics and Molecular Diagnostic LaboratoryShanghai Children’s Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PediatricsShanghaiChina
| | - Tingting Yu
- Department of Medical Genetics and Molecular Diagnostic LaboratoryShanghai Children’s Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PediatricsShanghaiChina
| | - Lixia Ding
- Key Laboratory of Pediatric Hematology and OncologyMinistry of HealthDepartment of Hematology and OncologyShanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jing Chen
- Key Laboratory of Pediatric Hematology and OncologyMinistry of HealthDepartment of Hematology and OncologyShanghai Children's Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic LaboratoryShanghai Children’s Medical CenterShanghai Jiao Tong University School of MedicineShanghaiChina
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for PediatricsShanghaiChina
| |
Collapse
|
7
|
Oh YK, Choi KE, Shin YJ, Kim ER, Kim JY, Kim MS, Cho SY, Jin DK. Autosomal Recessive Malignant Infantile Osteopetrosis Associated with a TCIRG1 Mutation: A Case Report of a Neonate Presenting with Hypocalcemia in South Korea. NEONATAL MEDICINE 2021. [DOI: 10.5385/nm.2021.28.3.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Osteopetrosis refers to a group of genetic skeletal disorders characterized by osteosclerosis and fragile bones. Osteopetrosis can be classified into autosomal dominant, autosomal recessive, or X-linked forms, which might differ in clinical characteristics and disease severity. Autosomal recessive osteopetrosis, also known as malignant osteopetrosis, has an earlier onset, more serious clinical symptoms, and is usually fatal. We encountered a 1-day-old girl who was born full-term via vaginal delivery, which was complicated by meconium-stained amniotic fluid, cephalo-pelvic disproportion, and nuchal cord. Routine neonatal care was provided, in addition to blood tests and chest radiography to screen for sepsis, as well as skull radiography to rule out head injuries. Initial blood tests revealed hypocalcemia, which persisted on follow-up tests the next day. Radiographic examinations revealed diffusely increased bone density and a "space alien" appearance of the skull. Based on radiographic and laboratory findings, the infantile form of osteopetrosis was suspected and genetic testing for identification of the responsible gene. Eventually, a heterozygous mutation of the T cell immune regulator 1, ATPase H+ transporting V0 subunit a3 (TCIRG1) gene (c.292C>T) was identified, making this the first reported case of neonatal-onset malignant osteopetrosis with TCIRG1 mutation in South Korea. Early-onset hypocalcemia is common and usually results from prematurity, fetal growth restriction, maternal diabetes, perinatal asphyxia, and physiologic hypoparathyroidism. However, if hypocalcemia persists, we recommend considering 'infantile of osteopetrosis' as a rare cause of neonatal hypocalcemia and performing radiographic examinations to establish the diagnosis.
Collapse
|
8
|
Chu A, Zirngibl RA, Manolson MF. The V-ATPase a3 Subunit: Structure, Function and Therapeutic Potential of an Essential Biomolecule in Osteoclastic Bone Resorption. Int J Mol Sci 2021; 22:ijms22136934. [PMID: 34203247 PMCID: PMC8269383 DOI: 10.3390/ijms22136934] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.
Collapse
|
9
|
Chen T, Sun J, Liu G, Yin C, Liu H, Qu L, Fang S, Shifra A, Gilad G. A Homozygous Mutation in 5' Untranslated Region of TNFRSF11A Leading to Molecular Diagnosis of Osteopetrosis Coinheritance With Wiskott-Aldrich Syndrome. J Pediatr Hematol Oncol 2021; 43:e264-e267. [PMID: 32097281 PMCID: PMC7993917 DOI: 10.1097/mph.0000000000001760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/30/2020] [Indexed: 01/17/2023]
Abstract
Wiskott-Aldrich syndrome (WAS) and osteopetrosis are 2 different, rare hereditary diseases. Here we report clinical and molecular genetics investigations on an infant patient with persistent thrombocytopenia and prolonged fever. He was clinical diagnosed as osteopetrosis according to clinical presentation, radiologic skeletal features, and bone biopsy results. Gene sequencing demonstrated a de novo homozygous mutation in 5'-untranslated region of TNFRSF11A, c.-45A>G, which is relating to osteopetrosis. Meanwhile, a hemizygous transition mutation in WAS gene, c.400G>A diagnosed the infant with WAS. This is the first clinical report for the diagnosis of osteopetrosis coinheritance with WAS in a single patient.
Collapse
Affiliation(s)
- Tianping Chen
- Departments of Hematology
- Hematology Research Centre, Anhui Provincial Research Institute of Pediatrics
- Hematology Research Centre, Anhui Medical University, Hefei, People’s Republic of China
| | - Jun Sun
- Orthopedics
- Hematology Research Centre, Anhui Provincial Research Institute of Pediatrics
| | - Guanghui Liu
- Neonatal
- Hematology Research Centre, Anhui Provincial Research Institute of Pediatrics
| | - Chuangao Yin
- Radiology
- Hematology Research Centre, Anhui Provincial Research Institute of Pediatrics
| | - Haipeng Liu
- Hematology Research Centre, Anhui Provincial Research Institute of Pediatrics
| | - Lijun Qu
- Departments of Hematology
- Hematology Research Centre, Anhui Provincial Research Institute of Pediatrics
| | - Shijin Fang
- Respiratory, Anhui Provincial Children’s Hospital
| | - Ash Shifra
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children’s Medical Center, Petah Tikva, Israel
| | - Gil Gilad
- The Rina Zaizov Division of Pediatric Hematology-Oncology, Schneider Children’s Medical Center, Petah Tikva, Israel
| |
Collapse
|
10
|
Howaldt A, Hennig AF, Rolvien T, Rössler U, Stelzer N, Knaus A, Böttger S, Zustin J, Geißler S, Oheim R, Amling M, Howaldt HP, Kornak U. Adult Osteosclerotic Metaphyseal Dysplasia With Progressive Osteonecrosis of the Jaws and Abnormal Bone Resorption Pattern Due to a LRRK1 Splice Site Mutation. J Bone Miner Res 2020; 35:1322-1332. [PMID: 32119750 DOI: 10.1002/jbmr.3995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022]
Abstract
Osteosclerotic metaphyseal dysplasia (OSMD) is a rare autosomal recessive sclerosing skeletal dysplasia. We report on a 34-year-old patient with sandwich vertebrae, platyspondyly, osteosclerosis of the tubular bones, pathologic fractures, and anemia. In the third decade, he developed osteonecrosis of the jaws, which was progressive in spite of repeated surgical treatment over a period of 11 years. An iliac crest bone biopsy revealed the presence of hypermineralized cartilage remnants, large multinucleated osteoclasts with abnormal morphology, and inadequate bone resorption typical for osteoclast-rich osteopetrosis. After exclusion of mutations in TCIRG1 and CLCN7 we performed trio-based exome sequencing. The novel homozygous splice-site mutation c.261G>A in the gene LRRK1 was found and co-segregated with the phenotype in the family. cDNA sequencing showed nearly complete skipping of exon 3 leading to a frameshift (p.Ala34Profs*33). Osteoclasts differentiated from the patient's peripheral blood monocytes were extremely large. Instead of resorption pits these cells were only capable of superficial erosion. Phosphorylation of L-plastin at position Ser5 was strongly reduced in patient-derived osteoclasts showing a loss of function of the mutated LRRK1 kinase protein. Our analysis indicates a strong overlap of LRRK1-related OSMD with other forms of intermediate osteopetrosis, but an exceptional abnormality of osteoclast resorption. Like in other osteoclast pathologies an increased risk for progressive osteonecrosis of the jaws should be considered in OSMD, an intermediate form of osteopetrosis. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Antonia Howaldt
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anna Floriane Hennig
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Freie Universität Berlin, Berlin, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uta Rössler
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nina Stelzer
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Alexej Knaus
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sebastian Böttger
- Department for Maxillo Facial Surgery, Justus Liebig University Gießen, Gießen, Germany
| | - Jozef Zustin
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Geißler
- BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans-Peter Howaldt
- Department for Maxillo Facial Surgery, Justus Liebig University Gießen, Gießen, Germany
| | - Uwe Kornak
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
11
|
Stem cell transplantation for osteopetrosis in patients beyond the age of 5 years. Blood Adv 2020; 3:862-868. [PMID: 30885997 DOI: 10.1182/bloodadvances.2018025890] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/03/2019] [Indexed: 11/20/2022] Open
Abstract
Osteopetrosis (OP) is a rare disease caused by defective osteoclast differentiation or function. Hematopoietic stem cell transplantation (HSCT) is the only curative treatment available in the infantile "malignant" form of OP. Improved clinical and genetic diagnosis of OP has seen the emergence of a cohort of patients with less severe and heterogeneous clinical presentations. This intermediate form of OP does not call for urgent intervention, but patients accumulate debilitating skeletal complications over years and decades, which are severe enough to require curative treatment and may also require intermittent transfusion of blood products. Here we present data from 7 patients with intermediate OP caused by mutations in TCIRG1 (n = 2), CLCN7 (n = 2), RANK (n = 1), SNX10 (n = 1), and CA2 (n = 1), who were transplanted between the ages of 5 to 30 years (mean, 15; median, 12). Donors were matched siblings or family (n = 4), matched unrelated (n = 2), or HLA haploidentical family donors (n = 1). Conditioning was fludarabine and treosulfan based. All 6 patients transplanted from matched donors are currently alive with a follow-up period between 1 and 8 years at time of publication (median, 4 years) and have demonstrated a significant improvement in symptoms and quality of life. Patients with intermediate OP should be considered for HSCT.
Collapse
|
12
|
V-ATPase a3 isoform mutations identified in osteopetrosis patients abolish its expression and disrupt osteoclast function. Exp Cell Res 2020; 389:111901. [PMID: 32045577 DOI: 10.1016/j.yexcr.2020.111901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
The a3 isoform of vacuolar-type proton-pumping ATPase (V-ATPase) is essential for bone resorption by osteoclasts. Although more than 90 mutations of the human a3 gene have been identified in patients with infantile malignant osteopetrosis, it is unclear whether they lead to osteoclast dysfunction. We have established an in vitro assay to induce osteoclasts from spleen macrophages derived from a3-knockout mice. Here, we examined the effects of these mutations in a3-knockout osteoclasts. We were interested in four mutations, two short deletions and two missense mutations, previously identified in the a3 cytosolic domain. a3 harboring either of the two short deletions was hardly expressed in osteoclasts and calcium phosphate resorption was impaired. On the other hand, osteoclasts expressing a3 with either of the two missense mutations exhibited no defects. Specifically, expression levels of the mutant proteins, V-ATPase assembly, and calcium phosphate resorption activity were similar to those of the wild type. Moreover, these missense mutants interacted with Rab7, a small GTPase that regulates lysosomal trafficking. These results suggest that the short deletions impair a3 expression and thus disrupt V-ATPase subunit assembly essential for bone resorption, while the missense mutations do not cause osteoclast dysfunction without an additional mutation(s) or impair resorption of bone, but not of calcium phosphate.
Collapse
|
13
|
Generation of an immunodeficient mouse model of tcirg1-deficient autosomal recessive osteopetrosis. Bone Rep 2020; 12:100242. [PMID: 31938717 PMCID: PMC6953598 DOI: 10.1016/j.bonr.2020.100242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 01/16/2023] Open
Abstract
Background Autosomal recessive osteopetrosis is a rare skeletal disorder with increased bone density due to a failure in osteoclast bone resorption. In most cases, the defect is cell-autonomous, and >50% of patients bear mutations in the TCIRG1 gene, encoding for a subunit of the vacuolar proton pump essential for osteoclast resorptive activity. The only cure is hematopoietic stem cell transplantation, which corrects the bone pathology by allowing the formation of donor-derived functional osteoclasts. Therapeutic approaches using patient-derived cells corrected ex vivo through viral transduction or gene editing can be considered, but to date functional rescue cannot be demonstrated in vivo because a relevant animal model for xenotransplant is missing. Methods We generated a new mouse model, which we named NSG oc/oc, presenting severe autosomal recessive osteopetrosis owing to the Tcirg1oc mutation, and profound immunodeficiency caused by the NSG background. We performed neonatal murine bone marrow transplantation and xenotransplantation with human CD34+ cells. Results We demonstrated that neonatal murine bone marrow transplantation rescued NSG oc/oc mice, in line with previous findings in the oc/oc parental strain and with evidence from clinical practice in humans. Importantly, we also demonstrated human cell chimerism in the bone marrow of NSG oc/oc mice transplanted with human CD34+ cells. The severity and rapid progression of the disease in the mouse model prevented amelioration of the bone pathology; nevertheless, we cannot completely exclude that minor early modifications of the bone tissue might have occurred. Conclusion Our work paves the way to generating an improved xenograft model for in vivo evaluation of functional rescue of patient-derived corrected cells. Further refinement of the newly generated mouse model will allow capitalizing on it for an optimized exploitation in the path to novel cell therapies. Ex vivo corrected autologous HSCs might cure Autosomal Recessive Osteopetrosis (ARO). There is no animal model to prove in vivo functional rescue of corrected human cells. NSG oc/oc mice display osteoclast-rich cell-autonomous ARO and immunodeficiency. Human CD34+ cell-transplanted NSG oc/oc mice show human cell chimerism in the BM. Further improvements will allow in vivo evaluating corrected patient-derived cells.
Collapse
|
14
|
Hoshino A, Takashima T, Yoshida K, Morimoto A, Kawahara Y, Yeh TW, Okano T, Yamashita M, Mitsuiki N, Imai K, Sakatani T, Nakazawa A, Okuno Y, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Ogawa S, Kojima S, Morio T, Kanegane H. Dysregulation of Epstein-Barr Virus Infection in Hypomorphic ZAP70 Mutation. J Infect Dis 2019; 218:825-834. [PMID: 29684201 DOI: 10.1093/infdis/jiy231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Background Some patients with genetic defects develop Epstein-Barr virus (EBV)-associated lymphoproliferative disorder (LPD)/lymphoma as the main feature. Hypomophic mutations can cause different clinical and laboratory manifestations from null mutations in the same genes. Methods We sought to describe the clinical and immunologic phenotype of a 21-month-old boy with EBV-associated LPD who was in good health until then. A genetic and immunologic analysis was performed. Results Whole-exome sequencing identified a novel compound heterozygous mutation of ZAP70 c.703-1G>A and c.1674G>A. A small amount of the normal transcript was observed. Unlike ZAP70 deficiency, which has been previously described as severe combined immunodeficiency with nonfunctional CD4+ T cells and absent CD8+ T cells, the patient had slightly low numbers of CD8+ T cells and a small amount of functional T cells. EBV-specific CD8+ T cells and invariant natural killer T (iNKT) cells were absent. The T-cell receptor repertoire, determined using next generation sequencing, was significantly restricted. Conclusions Our patient showed that a hypomorphic mutation of ZAP70 can lead to EBV-associated LPD and that EBV-specific CD8+ T cells and iNKT cells are critically involved in immune response against EBV infection.
Collapse
Affiliation(s)
- Akihiro Hoshino
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan.,Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Takehiro Takashima
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Akira Morimoto
- Department of Pediatrics, Jichi Medical University of Medicine, Shimotsuke, Japan
| | - Yuta Kawahara
- Department of Pediatrics, Jichi Medical University of Medicine, Shimotsuke, Japan
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Takashi Sakatani
- Department of Diagnostic Pathology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Atsuko Nakazawa
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, The University of Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, The University of Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, The University of Tokyo, Japan.,Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| |
Collapse
|
15
|
Zirngibl RA, Wang A, Yao Y, Manolson MF, Krueger J, Dupuis L, Mendoza-Londono R, Voronov I. Novel c.G630A TCIRG1 mutation causes aberrant splicing resulting in an unusually mild form of autosomal recessive osteopetrosis. J Cell Biochem 2019; 120:17180-17193. [PMID: 31111556 DOI: 10.1002/jcb.28979] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/22/2022]
Abstract
Autosomal recessive osteopetrosis (ARO) is a severe genetic bone disease characterized by high bone density due to mutations that affect formation or function of osteoclasts. Mutations in the a3 subunit of the vacuolar-type H+ -ATPase (encoded by T-cell immune regulator 1 [TCIRG1]) are responsible for ~50% of all ARO cases. We identified a novel TCIRG1 (c.G630A) mutation responsible for an unusually mild form of the disease. To characterize this mutation, osteoclasts were differentiated using peripheral blood monocytes from the patient (c.G630A/c.G630A), male sibling (+/+), unaffected female sibling (+/c.G630A), and unaffected parent (+/c.G630A). Osteoclast formation, bone-resorbing function, TCIRG1 protein, and mRNA expression levels were assessed. The c.G630A mutation did not affect osteoclast differentiation; however, bone-resorbing function was decreased. Both TCIRG1 protein and full-length TCIRG1 mRNA expression levels were also diminished in the affected patient's sample. The c.G630A mutation replaces the last nucleotide of exon 6 and may cause splicing defects. We analyzed the TCIRG1 splicing pattern between exons 4 to 8 and detected deletions of exons 5, 6, 7, and 5-6 (ΔE56). These deletions were only observed in c.G630A/c.G630A and +/c.G630A samples, but not in +/+ controls. Among these deletions, only ΔE56 maintained the reading frame and was predicted to generate an 85 kDa protein. Exons 5-6 encode an uncharacterized portion of the cytoplasmic N-terminal domain of a3, a domain not involved in proton translocation. To investigate the effect of ΔE56 on V-ATPase function, we transformed yeast with plasmids carrying full-length or truncated Vph1p, the yeast ortholog of a3. Both proteins were expressed; however, ΔE56-Vph1p transformed yeast failed to grow on Zn2+ -containing plates, a growth assay dependent on V-ATPase-mediated vacuolar acidification. In conclusion, our results show that the ΔE56 truncated protein is not functional, suggesting that the mild ARO phenotype observed in the patient is likely due to the residual full-length protein expression.
Collapse
Affiliation(s)
- Ralph A Zirngibl
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Wang
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Yeqi Yao
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Morris F Manolson
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Joerg Krueger
- Division of Hematology/Oncology and Blood and Marrow Transplant, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lucie Dupuis
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Irina Voronov
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Howaldt A, Nampoothiri S, Quell LM, Ozden A, Fischer-Zirnsak B, Collet C, de Vernejoul MC, Doneray H, Kayserili H, Kornak U. Sclerosing bone dysplasias with hallmarks of dysosteosclerosis in four patients carrying mutations in SLC29A3 and TCIRG1. Bone 2019; 120:495-503. [PMID: 30537558 DOI: 10.1016/j.bone.2018.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 11/23/2022]
Abstract
The osteopetroses and related sclerosing bone dysplasias can have a broad range of manifestations. Especially in the milder forms, sandwich vertebrae are an easily recognizable and reliable radiological hallmark. We report on four patients from three families presenting with sandwich vertebrae and platyspondyly. The long bone phenotypes were discordant with one patient showing modeling defects and patchy osteosclerosis, while the second displayed only metaphyseal sclerotic bands, and the third and fourth had extreme metaphyseal flaring with uniform osteosclerosis. Two of the four patients had experienced pathological fractures, two had developmental delay, but none showed cranial nerve damage, hepatosplenomegaly, or bone marrow failure. According to these clinical features the diagnoses ranged between intermediate autosomal recessive osteopetrosis and dysosteosclerosis. After exclusion of mutations in CLCN7 we performed gene panel and exome sequencing. Two novel mutations in SLC29A3 were found in the first two patients. In the third family a TCIRG1 C-terminal frameshift mutation in combination with a mutation at position +4 in intron 2 were detected. Our study adds two cases to the small group of individuals with SLC29A3 mutations diagnosed with dysosteosclerosis, and expands the phenotypic variability. The finding that intermediate autosomal recessive osteopetrosis due to TCIRG1 splice site mutations can also present with platyspondyly further increases the molecular heterogeneity of dysosteosclerosis-like sclerosing bone dysplasias.
Collapse
Affiliation(s)
- Antonia Howaldt
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | - Lisa-Marie Quell
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ayse Ozden
- Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Björn Fischer-Zirnsak
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Corinne Collet
- Service de Biochimie et Biologie Moléculaire, CHU Paris-GH St-Louis Lariboisière F. Widal - Hôpital Lariboisière, Paris, France
| | - Marie-Christine de Vernejoul
- INSERM U1132 BIOSCAR, Hôpital Lariboisière, 75010 Paris, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France; Service de Rhumatologie, GH Saint-Louis Lariboisière Fernand Widal, Paris, France
| | - Hakan Doneray
- Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Hülya Kayserili
- Medical Genetics Department, Koç University School of Medicine (KUSOM), Istanbul, Turkey
| | - Uwe Kornak
- Institut für Medizinische Genetik und Humangenetik, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
17
|
Penna S, Capo V, Palagano E, Sobacchi C, Villa A. One Disease, Many Genes: Implications for the Treatment of Osteopetroses. Front Endocrinol (Lausanne) 2019; 10:85. [PMID: 30837952 PMCID: PMC6389615 DOI: 10.3389/fendo.2019.00085] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/31/2019] [Indexed: 11/23/2022] Open
Abstract
Osteopetrosis is a condition characterized by increased bone mass due to defects in osteoclast function or formation. In the last decades, the molecular dissection of osteopetrosis has unveiled a plethora of molecular players responsible for different forms of the disease, some of which present also primary neurodegeneration that severely limits the therapy. Hematopoietic stem cell transplantation can cure the majority of them when performed in the first months of life, highlighting the relevance of an early molecular diagnosis. However, clinical management of these patients is constrained by the severity of the disease and lack of a bone marrow niche that may delay immune reconstitution. Based on osteopetrosis genetic heterogeneity and disease severity, personalized therapies are required for patients that are not candidate to bone marrow transplantation. This review briefly describes the genetics of osteopetrosis, its clinical heterogeneity, current therapy and innovative approaches undergoing preclinical evaluation.
Collapse
Affiliation(s)
- Sara Penna
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, Milan, Italy
- Translational and Molecular Medicine (DIMET), University of Milano-Bicocca, Monza, Italy
| | - Valentina Capo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, Milan, Italy
| | - Eleonora Palagano
- The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit, Milan, Italy
- Humanitas Research Hospital, Rozzano, Italy
| | - Cristina Sobacchi
- The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit, Milan, Italy
- Humanitas Research Hospital, Rozzano, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Hospital, Milan, Italy
- The National Research Council (CNR) Institute for Genetic and Biomedical Research (IRGB)- CNR-IRGB, Milan Unit, Milan, Italy
- *Correspondence: Anna Villa
| |
Collapse
|
18
|
Zhang XY, He JW, Fu WZ, Wang C, Zhang ZL. Novel mutations of TCIRG1 cause a malignant and mild phenotype of autosomal recessive osteopetrosis (ARO) in four Chinese families. Acta Pharmacol Sin 2017; 38:1456-1465. [PMID: 28816234 DOI: 10.1038/aps.2017.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/11/2017] [Indexed: 01/04/2023]
Abstract
Human autosomal recessive osteopetrosis (ARO), also known as infantile malignant osteopetrosis, is a rare genetic bone disorder that often causes death. Mutations in T-cell immune regulator 1 (TCIRG1) are a frequent cause of human ARO. Six additional genes (TNFSF11, TNFRSF11A, CLCN7, OSTM1, SNX10, PLEKHM1) were also found to be associated with human ARO. In order to expand the mutation spectrum and clinical diversity for a better understanding of the ARO phenotype and to further investigate the clinical characteristics of benign subjects with ARO, we here report five individuals with ARO from four unrelated Chinese families. X-ray examination was conducted and bone turnover markers were assayed. The gene of T-cell immune regulator 1 (TCIRG1) was screened and analyzed. Monocyte-induced osteoclasts were prepared and their resorption ability was studied in vitro. We identified five novel mutations (c.66delC, c.1020+1_1020+5dup, c.2181C>A, c.2236+6T>G, c.692delA) in these patients. Four patients displayed a malignant phenotype, three of them died, and one who received bone marrow transplantation survived. The remaining one, a 24-year-old male from a consanguineous family, was diagnosed based on radiological findings but presented no neurological or hematological defects. He was homozygous for c.2236+6T>G in intron 18; this mutation influenced the splicing process. An in vitro functional study of this novel splicing defect showed no resorption pits on dentine slices. TCIRG1-dependent osteopetrosis with a mild clinical course was observed for the first time in Chinese population. The present findings add to the wide range of phenotypes of Chinese patients with TCIRG1-dependent ARO and enrich the database of TCIRG1 mutations.
Collapse
|
19
|
Zhao W, Zhang Y, Yang S, Hao Y, Wang Z, Duan X. Analysis of two transcript isoforms of vacuolar ATPase subunit H in mouse and zebrafish. Gene 2017; 638:66-75. [PMID: 28970149 DOI: 10.1016/j.gene.2017.09.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022]
Abstract
ATP6V1H encodes the subunit H of vacuolar ATPase (V-ATPase) and has been recently proved to regulate osteoclast function. The alternative splicing of ATP6V1H gene results in two isoforms, and it is not clear whether and how the two isoforms function differently. In this report, we used bioinformatics methods to compare the differences of two isoforms in different species. The distributions and amounts of two isoforms were analyzed in eleven kinds of mouse tissues and mouse osteoclasts using RT-PCR, Q-PCR, western blot and immunohistochemical staining methods, respectively. In order to observe the in vivo biological differences of two isoforms during development, the zebrafish mRNA of two wild type atp6v1h transcripts as well as their mutant forms were also injected into zebrafish embryos, respectively. Bioinformatic analysis revealed that two isoforms were quite different in many ways, especially in protein size, internal space, phosphorylation state and H-bond binding. The amounts of two transcripts and the ratio of long and short transcript varied a lot from tissue to tissue or cell to cell, and osteoclasts were the cells only expressing long isoform among the tissues or cells we detected. The in vivo selective expression of two subunit H splice variants showed their different effects on the craniofacial development of zebrafish. The short isoform reduced the size of zebrafish head and did not play a complete function compared with the long isoform. We propose that long isoform of subunit H is necessary for the normal craniofacial bone development and the lack of short transcript might be necessary for the normal osteoclastic function.
Collapse
Affiliation(s)
- Wanmin Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yanli Zhang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Shaoqing Yang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Ying Hao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Zhe Wang
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xiaohong Duan
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Oral Diseases, Department of Oral Biology, Clinic of Oral Rare and Genetic Diseases, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
20
|
Thudium CS, Moscatelli I, Löfvall H, Kertész Z, Montano C, Bjurström CF, Karsdal MA, Schulz A, Richter J, Henriksen K. Regulation and Function of Lentiviral Vector-Mediated TCIRG1 Expression in Osteoclasts from Patients with Infantile Malignant Osteopetrosis: Implications for Gene Therapy. Calcif Tissue Int 2016; 99:638-648. [PMID: 27541021 DOI: 10.1007/s00223-016-0187-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/08/2016] [Indexed: 10/21/2022]
Abstract
Infantile malignant osteopetrosis (IMO) is a rare, recessive disorder characterized by increased bone mass caused by dysfunctional osteoclasts. The disease is most often caused by mutations in the TCIRG1 gene encoding a subunit of the V-ATPase involved in the osteoclasts capacity to resorb bone. We previously showed that osteoclast function can be restored by lentiviral vector-mediated expression of TCIRG1, but the exact threshold for restoration of resorption as well as the cellular response to vector-mediated TCIRG1 expression is unknown. Here we show that expression of TCIRG1 protein from a bicistronic TCIRG1/GFP lentiviral vector was only observed in mature osteoclasts, and not in their precursors or macrophages, in contrast to GFP expression, which was observed under all conditions. Thus, vector-mediated TCIRG1 expression appears to be post-transcriptionally regulated, preventing overexpression and/or ectopic expression and ensuring protein expression similar to that of wild-type osteoclasts. Codon optimization of TCIRG1 led to increased expression of mRNA but lower levels of protein and functional rescue. When assessing the functional rescue threshold in vitro, addition of 30 % CB CD34+ cells to IMO CD34+ patient cells was sufficient to completely normalize resorptive function after osteoclast differentiation. From both an efficacy and a safety perspective, these findings will clearly be of benefit during further development of gene therapy for osteopetrosis.
Collapse
Affiliation(s)
| | - Ilana Moscatelli
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, BMC A12, 221 84, Lund, Sweden
| | - Henrik Löfvall
- Nordic Bioscience, Herlev, Denmark
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, BMC A12, 221 84, Lund, Sweden
| | - Zsuzsanna Kertész
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, BMC A12, 221 84, Lund, Sweden
| | - Carmen Montano
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, BMC A12, 221 84, Lund, Sweden
| | - Carmen Flores Bjurström
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, BMC A12, 221 84, Lund, Sweden
| | | | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Ulm, Germany
| | - Johan Richter
- Department of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, BMC A12, 221 84, Lund, Sweden.
| | | |
Collapse
|
21
|
Ledemazel J, Plantaz D, Pagnier A, Girard P, Lasfargue M, Hullo E, Dietrich K, Collet C, Moshous D. [Malignant infantile osteopetrosis: Case report of a 5-month-old boy]. Arch Pediatr 2016; 23:389-93. [PMID: 26850155 DOI: 10.1016/j.arcped.2015.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/26/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
Malignant infantile osteopetrosis is a rare congenital disease characterized by a dysfunction of osteoclasts followed by an abnormal bone densification. We report the case of a 5-month-old infant in whom this disease was suspected because of the clinical (hepatosplenomegaly, gingival hypertrophy), hematological (pancytopenia and hypocalcemia), and radiological criteria (abnormal bone density, periosteal reaction). The genetic investigation confirmed the diagnosis. Compound heterozygous mutations in the CLCN7 gene were identified, including an as yet undescribed mutation. The second mutation had already been described as being responsible for severe and irreversible neurological damage in patients with osteopetrosis. Since this patient presented severely delayed development, he was not eligible for bone marrow transplantation.
Collapse
Affiliation(s)
- J Ledemazel
- Clinique universitaire de pédiatrie, HCE, CHU de Grenoble, CS10217, 38430 Grenoble cedex 09, France.
| | - D Plantaz
- Clinique universitaire de pédiatrie, HCE, CHU de Grenoble, CS10217, 38430 Grenoble cedex 09, France
| | - A Pagnier
- Clinique universitaire de pédiatrie, HCE, CHU de Grenoble, CS10217, 38430 Grenoble cedex 09, France
| | - P Girard
- Clinique universitaire de pédiatrie, HCE, CHU de Grenoble, CS10217, 38430 Grenoble cedex 09, France
| | - M Lasfargue
- Clinique universitaire de pédiatrie, HCE, CHU de Grenoble, CS10217, 38430 Grenoble cedex 09, France
| | - E Hullo
- Clinique universitaire de pédiatrie, HCE, CHU de Grenoble, CS10217, 38430 Grenoble cedex 09, France
| | - K Dietrich
- Clinique universitaire de pédiatrie, HCE, CHU de Grenoble, CS10217, 38430 Grenoble cedex 09, France
| | - C Collet
- Inserm UMR1132, biologie de l'os et du cartilage, service de biochimie et biologie moléculaire, hôpital Lariboisière, 75475 Paris cedex 10, France
| | - D Moshous
- Unité d'immunologie, hématologie et rhumatologie pédiatriques, hôpital Necker-Enfants-Malades, AP-HP, 75015 Paris, France
| |
Collapse
|
22
|
Palagano E, Blair HC, Pangrazio A, Tourkova I, Strina D, Angius A, Cuccuru G, Oppo M, Uva P, Van Hul W, Boudin E, Superti-Furga A, Faletra F, Nocerino A, Ferrari MC, Grappiolo G, Monari M, Montanelli A, Vezzoni P, Villa A, Sobacchi C. Buried in the Middle but Guilty: Intronic Mutations in the TCIRG1 Gene Cause Human Autosomal Recessive Osteopetrosis. J Bone Miner Res 2015; 30:1814-21. [PMID: 25829125 DOI: 10.1002/jbmr.2517] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/16/2015] [Accepted: 03/22/2015] [Indexed: 11/10/2022]
Abstract
Autosomal recessive osteopetrosis (ARO) is a rare genetic bone disease with genotypic and phenotypic heterogeneity, sometimes translating into delayed diagnosis and treatment. In particular, cases of intermediate severity often constitute a diagnostic challenge and represent good candidates for exome sequencing. Here, we describe the tortuous path to identification of the molecular defect in two siblings, in which osteopetrosis diagnosed in early childhood followed a milder course, allowing them to reach the adult age in relatively good conditions with no specific therapy. No clearly pathogenic mutation was identified either with standard amplification and resequencing protocols or with exome sequencing analysis. While evaluating the possible impact of a 3'UTR variant on the TCIRG1 expression, we found a novel single nucleotide change buried in the middle of intron 15 of the TCIRG1 gene, about 150 nucleotides away from the closest canonical splice site. By sequencing a number of independent cDNA clones covering exons 14 to 17, we demonstrated that this mutation reduced splicing efficiency but did not completely abrogate the production of the normal transcript. Prompted by this finding, we sequenced the same genomic region in 33 patients from our unresolved ARO cohort and found three additional novel single nucleotide changes in a similar location and with a predicted disruptive effect on splicing, further confirmed in one of them at the transcript level. Overall, we identified an intronic region in TCIRG1 that seems to be particularly prone to splicing mutations, allowing the production of a small amount of protein sufficient to reduce the severity of the phenotype usually associated with TCIRG1 defects. On this basis, we would recommend including TCIRG1 not only in the molecular work-up of severe infantile osteopetrosis but also in intermediate cases and carefully evaluating the possible effects of intronic changes.
Collapse
Affiliation(s)
- Eleonora Palagano
- UOS/IRGB, Milan Unit, National Research Council (CNR), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Harry C Blair
- Veteran's Affairs Medical Center and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alessandra Pangrazio
- UOS/IRGB, Milan Unit, National Research Council (CNR), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Irina Tourkova
- Veteran's Affairs Medical Center and Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dario Strina
- UOS/IRGB, Milan Unit, National Research Council (CNR), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Andrea Angius
- CRS4, Science and Technology Park Polaris, Piscina Manna, Pula, Italy.,Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Monserrato, Italy
| | - Gianmauro Cuccuru
- CRS4, Science and Technology Park Polaris, Piscina Manna, Pula, Italy
| | - Manuela Oppo
- CRS4, Science and Technology Park Polaris, Piscina Manna, Pula, Italy
| | - Paolo Uva
- CRS4, Science and Technology Park Polaris, Piscina Manna, Pula, Italy
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Eveline Boudin
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Andrea Superti-Furga
- Department of Pediatrics, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Flavio Faletra
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Agostino Nocerino
- Clinica Pediatrica, Azienda Ospedaliero-Universitaria "S Maria della Misericordia", Udine, Italy
| | - Matteo C Ferrari
- Hip and Prosthetic Replacement Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Guido Grappiolo
- Hip and Prosthetic Replacement Unit, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Marta Monari
- Clinical Investigation Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Alessandro Montanelli
- Clinical Investigation Laboratory, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Paolo Vezzoni
- UOS/IRGB, Milan Unit, National Research Council (CNR), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Anna Villa
- UOS/IRGB, Milan Unit, National Research Council (CNR), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| | - Cristina Sobacchi
- UOS/IRGB, Milan Unit, National Research Council (CNR), Milan, Italy.,Humanitas Clinical and Research Center, Rozzano, Italy
| |
Collapse
|