1
|
Tretter BL, Dolbow DR, Ooi V, Farkas GJ, Miller JM, Deitrich JN, Gorgey AS. Neurogenic Aging After Spinal Cord Injury: Highlighting the Unique Characteristics of Aging After Spinal Cord Injury. J Clin Med 2024; 13:7197. [PMID: 39685657 DOI: 10.3390/jcm13237197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
Emanating from several decades of study into the effects of the aging process after spinal cord injury (SCI), "accelerated aging" has become a common expression as the SCI accelerates the onset of age-related pathologies. However, the aging process follows a distinct trajectory, characterized by unique patterns of decline that differ from those observed in the general population without SCI. Aging brings significant changes to muscles, bones, and hormones, impacting overall physical function. Muscle mass and strength begin to decrease with a reduction in muscle fibers and impaired repair mechanisms. Bones become susceptible to fractures as bone density decreases. Hormonal changes combined with decreased physical activity accelerate the reduction of muscle mass and increase in body fat. Muscle atrophy and skeletal muscle fiber type transformation occur rapidly and in a unique pattern after SCI. Bone loss develops more rapidly and results in an increased risk of fractures in body regions unique to individuals with SCI. Other factors, such as excessive adiposity, decreased testosterone and human growth hormone, and increased systemic inflammation, contribute to a higher risk of neuropathically driven obesity, dyslipidemia, glucose intolerance, insulin resistance, and increasing cardiovascular disease risk. Cardiorespiratory changes after SCI result in lower exercise heart rates, decreased oxygenation, and mitochondrial dysfunction. While it is important to acknowledge the accelerated aging processes after SCI, it is essential to recognize the distinct differences in the aging process between individuals without physical disabilities and those with SCI. These differences, influenced by neuropathology, indicate that it may be more accurate to describe the aging process in individuals with chronic SCI as neurogenic accelerated aging (NAA). Research should continue to address conditions associated with NAA and how to ameliorate the accelerated rate of premature age-related conditions. This review focuses on the NAA processes and the differences between them and the aging process in those without SCI. Recommendations are provided to help slow the development of premature aging conditions.
Collapse
Affiliation(s)
- Brittany L Tretter
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - David R Dolbow
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
- Physical Therapy Program, William Carey University, Hattiesburg, MS 39401, USA
| | - Vincent Ooi
- College of Osteopathic Medicine, William Carey University, Hattiesburg, MS 39401, USA
| | - Gary J Farkas
- Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, Miami, FL 33136, USA
| | - Joshua M Miller
- Department of Kinesiology and Nutrition, College of Applied Health Sciences, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Jakob N Deitrich
- Spinal Cord Injury and Disorders Center, Richmond VA Medical Center, Spinal Cord Injury & Disorders Service, 1201 Broad Rock Blvd, Richmond, VA 23249, USA
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Richmond VA Medical Center, Spinal Cord Injury & Disorders Service, 1201 Broad Rock Blvd, Richmond, VA 23249, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
2
|
Crack LE, Simonian N, Schnitzer TJ, Edwards WB. Monthly treatment with romosozumab for 1 year increases bone mineral at the hip, but not the knee, in women with chronic spinal cord injury. JBMR Plus 2024; 8:ziae077. [PMID: 38911320 PMCID: PMC11193877 DOI: 10.1093/jbmrpl/ziae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/25/2024] Open
Abstract
Bone loss below the level of neurological lesion is a well-known complication of spinal cord injury (SCI). To date, most research has focused on pharmaceutical intervention using antiresorptives to prevent bone loss during the acute phase of SCI; however, limited research has investigated treatments for established osteoporosis during chronic SCI. Romosozumab, a monoclonal antibody with both antiresorptive and anabolic effects, has demonstrated significant increases in BMD for women with established PMO. Therefore, the purpose of this study was to examine the efficacy of monthly treatment with romosozumab to improve DXA-derived areal BMD at the hip, and CT-derived BMC and strength at the hip and knee in women with chronic SCI and an inability to ambulate. Twelve female participants with chronic SCI were recruited to receive 1 yr of monthly subcutaneous injections of romosozumab (210 mg). DXA and CT scans were taken at baseline, and months 3, 6, and 12 to quantify bone mineral, and finite element (FE) analysis was used to predict bone strength. Longitudinal mixed effects models were employed to determine the impact of treatment on bone properties. After 12 mo of treatment, areal BMD at the lumbar spine and total hip were significantly increased with median changes of 10.2% (IQR: 8.3-15.2%, p<.001) and 4.2% (IQR: 3.4-7.7%, p = .009), respectively. Improvements at the hip were primarily due to increases in trabecular, not cortical, bone and effects were sufficient to significantly increase FE-predicted strength by 20.3% (IQR: 9.5-37.0%, p = .004). Treatment with romosozumab did not lead to any significant improvement in bone mineral at the distal femur or proximal tibia. These findings provide promising results for romosozumab treatment to improve bone mineral and reduce fracture risk at the hip, but not the knee, in women with chronic SCI.
Collapse
Affiliation(s)
- Laura E Crack
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Narina Simonian
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States
| | - W Brent Edwards
- Human Performance Lab, Faculty of Kinesiology, University of Calgary, Calgary, AB T2N 1N4, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
3
|
Mazur CM, Edwards WB, Haider IT, Fang Y, Morse LR, Schnitzer TJ, Simonian N, Troy KL. Bone Mineral Loss at the Distal Femur and Proximal Tibia Following Spinal Cord Injury in Men and Women. J Clin Densitom 2023; 26:101380. [PMID: 37201436 DOI: 10.1016/j.jocd.2023.101380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
PURPOSE Spinal cord injury (SCI) causes rapid bone loss and increases risk of fragility fractures in the lower extremities. The majority of individuals with SCI are men, and few studies have investigated sex as a biological variable in SCI-induced osteoporosis. This cross-sectional study aimed to quantify sex-specific differences in bone mineral following SCI. METHODS Quantitative computed tomography (QCT) scans of the distal femur and proximal tibia were obtained at baseline of one of four clinical trials enrolling people who sustained SCI 1 month to 50 years prior to recruitment. Bone volume (BV), bone mineral content (BMC), bone mineral density (BMD), and bending strength index (BSI) were quantified in the integral, trabecular, and cortical bone in the epiphysis, metaphysis and diaphysis. Scans from 106 men and 31 women were analyzed to measure sex-specific effects on bone loss over time post-SCI. RESULTS BMC and BSI declined exponentially as a function of time post-SCI and were best described by separate decay curves for men and women. Women had BV, BMC, and BSI at 58-77% that of men in the acute and plateau phases, with both sexes showing similar rates of loss as a function of time post-SCI. Trabecular BMD was best described as an exponential decay versus time post-SCI, with no sex-specific differences. CONCLUSIONS Due to consistently lower BV, BMC, and BSI, women may be more susceptible to fractures after SCI than men.
Collapse
Affiliation(s)
- Courtney M Mazur
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ifaz T Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ying Fang
- Department of Physical Therapy, Rosalind Franklin University, North Chicago, IL, United States
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Narina Simonian
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA United States.
| |
Collapse
|
4
|
Bruce OL, Edwards WB. Sex disparities in tibia-fibula geometry and density are associated with elevated bone strain in females: A cross-validation study. Bone 2023; 173:116803. [PMID: 37201675 DOI: 10.1016/j.bone.2023.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Females are up to four times more likely to sustain a stress fracture than males. Our previous work, using statistical appearance modeling in combination with the finite element method, suggested that sex-related differences in tibial geometry may increase bone strain in females. The purpose of this study was to cross-validate these findings, by quantifying sex-related differences in tibia-fibula bone geometry, density, and finite element-predicted bone strain in a new cohort of young physically active adults. CT scans of the lower leg were collected for fifteen males (23.3 ± 4.3 years, 1.77 ± 0.09 m, 75.6 ± 10.0 kg) and fifteen females (22.9 ± 3.0 years, 1.67 ± 0.07 m, 60.9 ± 6.7 kg). A statistical appearance model was fit to each participant's tibia and fibula. The average female and male tibia-fibula complex, controlled for isotropic scaling, were then calculated. Bone geometry, density, and finite element-predicted bone strains in running were compared between the average female and male. The new cohort illustrated the same patterns as the cohort from the previous study: the tibial diaphysis of the average female was narrower and had greater cortical bone density. Peak strain and the volume of bone experiencing ≥4000 με were 10 % and 80 % greater, respectively, in the average female when compared to the average male, which was driven by a narrower diaphysis. The sex-related disparities in tibial geometry, density, and bone strain described by our previous model were also observed in this entirely new cohort. Disparities in tibial diaphysis geometry likely contribute to the elevated stress fracture risk observed in females.
Collapse
Affiliation(s)
- Olivia L Bruce
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada.
| | - W Brent Edwards
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB T2N 4Z6, Canada
| |
Collapse
|
5
|
YARROW JOSHUAF, WNEK RUSSELLD, CONOVER CHRISTINEF, REYNOLDS MICHAELC, BUCKLEY KINLEYH, KURA JAYACHANDRAR, SUTOR TOMMYW, OTZEL DANAM, MATTINGLY ALEXJ, BORST STEPHENE, CROFT SUMMERM, AGUIRRE JIGNACIO, BECK DARRENT, MCCULLOUGH DANIELLEJ. Passive Cycle Training Promotes Bone Recovery after Spinal Cord Injury without Altering Resting-State Bone Perfusion. Med Sci Sports Exerc 2023; 55:813-823. [PMID: 36728986 PMCID: PMC10090357 DOI: 10.1249/mss.0000000000003101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Spinal cord injury (SCI) produces diminished bone perfusion and bone loss in the paralyzed limbs. Activity-based physical therapy (ABPT) modalities that mobilize and/or reload the paralyzed limbs (e.g., bodyweight-supported treadmill training (BWSTT) and passive-isokinetic bicycle training) transiently promote lower-extremity blood flow (BF). However, it remains unknown whether ABPT alter resting-state bone BF or improve skeletal integrity after SCI. METHODS Four-month-old male Sprague-Dawley rats received T 9 laminectomy alone (SHAM; n = 13) or T 9 laminectomy with severe contusion SCI ( n = 48). On postsurgery day 7, SCI rats were stratified to undergo 3 wk of no ABPT, quadrupedal (q)BWSTT, or passive-isokinetic hindlimb bicycle training. Both ABPT regimens involved two 20-min bouts per day, performed 5 d·wk -1 . We assessed locomotor recovery, bone turnover with serum assays and histomorphometry, distal femur bone microstructure using in vivo microcomputed tomography, and femur and tibia resting-state bone BF after in vivo microsphere infusion. RESULTS All SCI animals displayed immediate hindlimb paralysis. SCI without ABPT exhibited uncoupled bone turnover and progressive cancellous and cortical bone loss. qBWSTT did not prevent these deficits. In comparison, hindlimb bicycle training suppressed surface-level bone resorption indices without suppressing bone formation indices and produced robust cancellous and cortical bone recovery at the distal femur. No bone BF deficits existed 4 wk after SCI, and neither qBWSTT nor bicycle altered resting-state bone perfusion or locomotor recovery. However, proximal tibia BF correlated with several histomorphometry-derived bone formation and resorption indices at this skeletal site across SCI groups. CONCLUSIONS These data indicate that passive-isokinetic bicycle training reversed cancellous and cortical bone loss after severe SCI through antiresorptive and/or bone anabolic actions, independent of locomotor recovery or changes in resting-state bone perfusion.
Collapse
Affiliation(s)
- JOSHUA F. YARROW
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, FL
| | - RUSSELL D. WNEK
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - CHRISTINE F. CONOVER
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - MICHAEL C. REYNOLDS
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - KINLEY H. BUCKLEY
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - JAYACHANDRA R. KURA
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - TOMMY W. SUTOR
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - DANA M. OTZEL
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - ALEX J. MATTINGLY
- Geriatrics Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - STEPHEN E. BORST
- Geriatrics Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL
| | - SUMMER M. CROFT
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL
| | - J. IGNACIO AGUIRRE
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL
| | - DARREN T. BECK
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine – Auburn Campus, Auburn, AL
| | - DANIELLE J. MCCULLOUGH
- Department of Medical Education, Edward Via College of Osteopathic Medicine – Auburn Campus, Auburn, AL
| |
Collapse
|
6
|
Lippi L, Folli A, Turco A, Moalli S, Curci C, Ammendolia A, de Sire A, Invernizzi M. The impact of rehabilitation in bone loss management of patients with spinal cord injury: A systematic review. J Back Musculoskelet Rehabil 2023; 36:1219-1235. [PMID: 37482985 DOI: 10.3233/bmr-230006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is a disabling condition characterized by multilevel skeletal muscle impairment and rapid cortical and trabecular bone loss. Rehabilitation is a cornerstone of the long-term management of patients with SCI; however, the optimal rehabilitation strategy for improving bone health has not been fully characterized. OBJECTIVE To characterize the current evidence supporting different rehabilitation interventions improving bone health in patients with SCI. METHODS On November 17th, 2022, five databases (PubMed, Scopus, Web of Science, Cochrane, and PEDro) were systematically searched for randomized controlled trials (RCTs) assessing SCI patients undergoing rehabilitation interventions. The primary outcomes were bone macroscopical effects. Secondary outcomes were changes in bone metabolisms and functional outcomes. RESULTS Out of 499 records, 11 RCTs met the eligibility criteria and were included. Electrical stimulation combined with physical exercise was assessed by 5 studies, standing intervention was assessed by 3 studies, vibration was assessed by 1 study, ultrasound therapy was assessed by 1 study, and electroacupuncture combined with a pulsed magnetic field was assessed by 1 study. The rehabilitation intervention was administered combined with pharmacological treatment (3 studies) or alone (8 studies). Positive effects in terms of BMD were reported by 3 studies. The quality assessment revealed some concerns in 9 out of 11 studies, in accordance with the Cochrane Risk of Bias assessment - version 2. CONCLUSION Our data suggest that multicomponent interventions including rehabilitation might be considered a suitable option to improve bone health management in SCI patients. Further studies are mandatory to characterize the optimal combination of non-pharmacological interventions reducing bone loss and improving the risk of fractures in patients with SCI.
Collapse
Affiliation(s)
- Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Arianna Folli
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy
| | - Alessio Turco
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy
| | - Stefano Moalli
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy
| | - Claudio Curci
- Physical Medicine and Rehabilitation Unit, Department of Neurosciences, ASST Carlo Poma, Mantova, Italy
| | - Antonio Ammendolia
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Alessandro de Sire
- Physical Medicine and Rehabilitation Unit, Department of Medical and Surgical Sciences, University of Catanzaro Magna Graecia, Catanzaro, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont "A. Avogadro", Novara, Italy
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| |
Collapse
|
7
|
Bruce OL, Baggaley M, Khassetarash A, Haider IT, Edwards WB. Tibial-fibular geometry and density variations associated with elevated bone strain and sex disparities in young active adults. Bone 2022; 161:116443. [PMID: 35589067 DOI: 10.1016/j.bone.2022.116443] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
Tibial stress fracture is a common injury in runners and military personnel. Elevated bone strain is believed to be associated with the development of stress fractures and is influenced by bone geometry and density. The purpose of this study was to characterize tibial-fibular geometry and density variations in young active adults, and to quantify the influence of these variations on finite element-predicted bone strain. A statistical appearance model characterising tibial-fibular geometry and density was developed from computed tomography scans of 48 young physically active adults. The model was perturbed ±1 and 2 standard deviations along each of the first five principal components to create finite element models. Average male and female finite element models, controlled for scale, were also generated. Muscle and joint forces in running, calculated using inverse dynamics-based static optimization, were applied to the finite element models. The resulting 95th percentile pressure-modified von Mises strain (peak strain) and strained volume (volume of elements above 4000 με) were quantified. Geometry and density variations described by principal components resulted in up to 12.0% differences in peak strain and 95.4% differences in strained volume when compared to the average tibia-fibula model. The average female illustrated 5.5% and 41.3% larger peak strain and strained volume, respectively, when compared to the average male, suggesting that sexual dimorphism in bone geometry may indeed contribute to greater stress fracture risk in females. Our findings identified important features in subject-specific geometry and density associated with elevated bone strain that may have implications for stress fracture risk.
Collapse
Affiliation(s)
- Olivia L Bruce
- Biomedical Engineering Graduate Program, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada; Human Performance Laboratory, Faculty of Kinesiology, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, 3280 Hospital Dr NW, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| | - Michael Baggaley
- Human Performance Laboratory, Faculty of Kinesiology, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, 3280 Hospital Dr NW, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| | - Arash Khassetarash
- Human Performance Laboratory, Faculty of Kinesiology, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, 3280 Hospital Dr NW, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| | - Ifaz T Haider
- Human Performance Laboratory, Faculty of Kinesiology, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, 3280 Hospital Dr NW, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| | - W Brent Edwards
- Biomedical Engineering Graduate Program, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada; Human Performance Laboratory, Faculty of Kinesiology, 2500 University Drive NW, University of Calgary, Calgary, AB T2N 1N4, Canada; McCaig Institute for Bone and Joint Health, 3280 Hospital Dr NW, University of Calgary, Calgary, AB T2N 4Z6, Canada.
| |
Collapse
|
8
|
Antoniou G, Benetos IS, Vlamis J, Pneumaticos SG. Bone Mineral Density Post a Spinal Cord Injury: A Review of the Current Literature Guidelines. Cureus 2022; 14:e23434. [PMID: 35494917 PMCID: PMC9038209 DOI: 10.7759/cureus.23434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 11/05/2022] Open
|
9
|
Sutor TW, Kura J, Mattingly AJ, Otzel DM, Yarrow JF. The Effects of Exercise and Activity-Based Physical Therapy on Bone after Spinal Cord Injury. Int J Mol Sci 2022; 23:608. [PMID: 35054791 PMCID: PMC8775843 DOI: 10.3390/ijms23020608] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 02/04/2023] Open
Abstract
Spinal cord injury (SCI) produces paralysis and a unique form of neurogenic disuse osteoporosis that dramatically increases fracture risk at the distal femur and proximal tibia. This bone loss is driven by heightened bone resorption and near-absent bone formation during the acute post-SCI recovery phase and by a more traditional high-turnover osteopenia that emerges more chronically, which is likely influenced by the continual neural impairment and musculoskeletal unloading. These observations have stimulated interest in specialized exercise or activity-based physical therapy (ABPT) modalities (e.g., neuromuscular or functional electrical stimulation cycling, rowing, or resistance training, as well as other standing, walking, or partial weight-bearing interventions) that reload the paralyzed limbs and promote muscle recovery and use-dependent neuroplasticity. However, only sparse and relatively inconsistent evidence supports the ability of these physical rehabilitation regimens to influence bone metabolism or to increase bone mineral density (BMD) at the most fracture-prone sites in persons with severe SCI. This review discusses the pathophysiology and cellular/molecular mechanisms that influence bone loss after SCI, describes studies evaluating bone turnover and BMD responses to ABPTs during acute versus chronic SCI, identifies factors that may impact the bone responses to ABPT, and provides recommendations to optimize ABPTs for bone recovery.
Collapse
Affiliation(s)
- Tommy W. Sutor
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; (T.W.S.); (J.K.)
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
| | - Jayachandra Kura
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; (T.W.S.); (J.K.)
| | - Alex J. Mattingly
- Geriatrics Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
| | - Dana M. Otzel
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
| | - Joshua F. Yarrow
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA; (T.W.S.); (J.K.)
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, FL 32608, USA;
- Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, FL 32611, USA
| |
Collapse
|
10
|
Mancuso ME, Wilzman AR, Murdock KE, Troy KL. Effect of External Mechanical Stimuli on Human Bone: a narrative review. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012006. [PMID: 36310606 PMCID: PMC9616042 DOI: 10.1088/2516-1091/ac41bc] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Bone is a living composite material that has the capacity to adapt and respond to both internal and external stimuli. This capacity allows bone to adapt its structure to habitual loads and repair microdamage. Although human bone evolved to adapt to normal physiologic loading (for example from gravitational and muscle forces), these same biological pathways can potentially be activated through other types of external stimuli such as pulsed electromagnetic fields, mechanical vibration, and others. This review summarizes what is currently known about how human bone adapts to various types of external stimuli. We highlight how studies on sports-specific athletes and other exercise interventions have clarified the role of mechanical loading on bone structure. We also discuss clinical scenarios, such as spinal cord injury, where mechanical loading is drastically reduced, leading to rapid bone loss and permanent alterations to bone structure. Finally, we highlight areas of emerging research and unmet clinical need.
Collapse
|
11
|
Edwards WB, Haider IT, Simonian N, Barroso J, Schnitzer TJ. Durability and delayed treatment effects of zoledronic acid on bone loss after spinal cord injury: a randomized, controlled trial. J Bone Miner Res 2021; 36:2127-2138. [PMID: 34278611 DOI: 10.1002/jbmr.4416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022]
Abstract
A single infusion of zoledronic acid (ZOL) after acute spinal cord injury (SCI) attenuates bone loss at the hip (proximal femur) and knee (distal femur and proximal tibia) for at least 6 months. The objective of this study was to examine the effects of timing and frequency of ZOL over 2 years. In this double-blind, placebo-controlled trial, we randomized 60 individuals with acute SCI (<120 days of injury) to receive either ZOL 5-mg infusion (n = 30) or placebo (n = 30). After 12 months, groups were again randomized to receive ZOL or placebo, resulting in four treatment groups for year 2: (i) ZOL both years; (ii) ZOL year 1, placebo year 2; (iii) placebo year 1, ZOL year 2; and (iv) placebo both years. Our primary outcome was bone loss at 12 months; compared to placebo, a single infusion of ZOL attenuated bone loss at the proximal femur, where median changes relative to baseline were -1.7% to -2.2% for ZOL versus -11.3% to -12.8% for placebo (p < 0.001). Similarly, the distal femur and proximal tibia showed changes of -4.7% to -9.6% for ZOL versus -8.9% to -23.0% for placebo (p ≤ 0.042). After 24 months, differences were significant at the proximal femur only (-3.2% to -6.0% for ZOL vs. -16.8% to -21.8% for placebo; p ≤ 0.018). Although not statistically significant, median bone density losses suggested some benefit from two annual infusions compared to a single baseline infusion, as well as from a single infusion 12 months after baseline compared to 2 years of placebo; therefore, further investigation in the 12-month to 24-month treatment window is warranted. No unanticipated adverse events associated with drug treatment were observed. In summary, ZOL 5-mg infusion after acute SCI was well-tolerated and may provide an effective therapeutic approach to prevent bone loss in the first few years following SCI. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ifaz T Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Narina Simonian
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Northwestern University Clinical and Translational Sciences Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joana Barroso
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
12
|
Yarrow JF, Wnek RD, Conover CF, Reynolds MC, Buckley KH, Kura JR, Sutor TW, Otzel DM, Mattingly AJ, Croft S, Aguirre JI, Borst SE, Beck DT, McCullough DJ. Bone loss after severe spinal cord injury coincides with reduced bone formation and precedes bone blood flow deficits. J Appl Physiol (1985) 2021; 131:1288-1299. [PMID: 34473574 DOI: 10.1152/japplphysiol.00444.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diminished bone perfusion develops in response to disuse and has been proposed as a mechanism underlying bone loss. Bone blood flow (BF) has not been investigated within the unique context of severe contusion spinal cord injury (SCI), a condition that produces neurogenic bone loss that is precipitated by disuse and other physiological consequences of central nervous system injury. Herein, 4-mo-old male Sprague-Dawley rats received T9 laminectomy (SHAM) or laminectomy with severe contusion SCI (n = 20/group). Time course assessments of hindlimb bone microstructure and bone perfusion were performed in vivo at 1- and 2-wk postsurgery via microcomputed tomography (microCT) and intracardiac microsphere infusion, respectively, and bone turnover indices were determined via histomorphometry. Both groups exhibited cancellous bone loss beginning in the initial postsurgical week, with cancellous and cortical bone deficits progressing only in SCI thereafter. Trabecular bone deterioration coincided with uncoupled bone turnover after SCI, as indicated by signs of ongoing osteoclast-mediated bone resorption and a near-complete absence of osteoblasts and cancellous bone formation. Bone BF was not different between groups at 1 wk, when both groups displayed bone loss. In comparison, femur and tibia perfusion was 30%-40% lower in SCI versus SHAM at 2 wk, with the most pronounced regional BF deficits occurring at the distal femur. Significant associations existed between distal femur BF and cancellous and cortical bone loss indices. Our data provide the first direct evidence indicating that bone BF deficits develop in response to SCI and temporally coincide with suppressed bone formation and with cancellous and cortical bone deterioration.NEW & NOTEWORTHY We provide the first direct evidence indicating femur and tibia blood flow (BF) deficits exist in conscious (awake) rats after severe contusion spinal cord injury (SCI), with the distal femur displaying the largest BF deficits. Reduced bone perfusion temporally coincided with unopposed bone resorption, as indicated by ongoing osteoclast-mediated bone resorption and a near absence of surface-level bone formation indices, which resulted in severe cancellous and cortical microstructural deterioration after SCI.
Collapse
Affiliation(s)
- Joshua F Yarrow
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida.,Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida.,Division of Endocrinology, Diabetes, and Metabolism, University of Florida College of Medicine, Gainesville, Florida
| | - Russell D Wnek
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Christine F Conover
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Michael C Reynolds
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Kinley H Buckley
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Jayachandra R Kura
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Tommy W Sutor
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Dana M Otzel
- Brain Rehabilitation Research Center, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Alex J Mattingly
- Geriatrics Research, Education, and Clinical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Summer Croft
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - J Ignacio Aguirre
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, Florida
| | - Stephen E Borst
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, North Florida/South Georgia Veterans Health System, Gainesville, Florida
| | - Darren T Beck
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, Alabama
| | - Danielle J McCullough
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine-Auburn Campus, Auburn, Alabama
| |
Collapse
|
13
|
Teguh DA, Nustad JL, Craven AE, Brooks DJ, Arlt H, Hu D, Baron R, Lanske B, Bouxsein ML. Abaloparatide treatment increases bone formation, bone density and bone strength without increasing bone resorption in a rat model of hindlimb unloading. Bone 2021; 144:115801. [PMID: 33338664 DOI: 10.1016/j.bone.2020.115801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
Disuse osteoporosis can result from prolonged bed rest, paralysis, casts, braces, fractures and other conditions. Abaloparatide (ABL) is a PTHrP analog that increases bone density and strength by stimulating osteogenesis with limited effects on bone resorption. We examined skeletal responses to abaloparatide in young adult male rats with normal weight-bearing and with hindlimb unloading via a pelvic harness. Rats were allocated to four groups (10-12 per group): normal weight-bearing plus vehicle treatment (CON-VEH), normal weight-bearing plus ABL treatment (CON-ABL), hindlimb-unloading plus vehicle (HLU-VEH), or hindlimb-unloading plus ABL (HLU-ABL). Rats received ABL (25 μg/kg/day, s.c.) or vehicle throughout the 28-day unloading period and were then sacrificed, at which time HLU-VEH rats exhibited reduced bone formation and significant deficits in tibial, femoral, and vertebral bone mass compared with CON-VEH. ABL treatment increased serum osteocalcin in CON and HLU animals while having no effect on the osteoclast marker TRACP-5b. Longitudinal peripheral quantitative computed tomography (pQCT) indicated that ABL increased trabecular and cortical bone mass in the tibia. ABL was also associated with improved trabecular and cortical bone mass and architectural parameters at the femur, tibia, and vertebrae by μCT. Tibial histomorphometry indicated increased trabecular and endocortical bone formation with HLU-ABL versus HLU-VEH and with CON-ABL versus CON-VEH, and ABL was also associated with lower trabecular and endocortical osteoclast surfaces. Vertebral finite element analysis indicated higher ultimate load and stiffness for CON-ABL versus CON-VEH and for HLU-ABL versus HLU-VEH. In summary, ABL was associated with improved trabecular and cortical bone density and architecture in normal weight-bearing and hindlimb-unloaded rats, with higher bone formation and no difference in bone resorption. ABL was also associated with improved bone biomechanical parameters. These results provide rationale for investigating the ability of abaloparatide to prevent or treat disuse osteoporosis in humans.
Collapse
Affiliation(s)
- Dian A Teguh
- Center for Advanced Orthopaedic Studies, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Jordan L Nustad
- Center for Advanced Orthopaedic Studies, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Amanda E Craven
- Center for Advanced Orthopaedic Studies, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Daniel J Brooks
- Center for Advanced Orthopaedic Studies, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | - Dorothy Hu
- Division of Bone and Mineral Research, Dept. of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Roland Baron
- Division of Bone and Mineral Research, Dept. of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA
| | | | - Mary L Bouxsein
- Center for Advanced Orthopaedic Studies, Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA; Endocrine Unit, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
14
|
Fang Y, Morse LR, Nguyen N, Battaglino RA, Goldstein RF, Troy KL. Functional electrical stimulation (FES)-assisted rowing combined with zoledronic acid, but not alone, preserves distal femur strength and stiffness in people with chronic spinal cord injury. Osteoporos Int 2021; 32:549-558. [PMID: 32888047 DOI: 10.1007/s00198-020-05610-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/25/2020] [Indexed: 01/04/2023]
Abstract
UNLABELLED We investigated the effect of 12 months of functional electrical stimulation-assisted rowing with and without zoledronic acid (ZA) on computationally estimated bone strength and stiffness in individuals with spinal cord injury. We found that rowing with ZA, but not rowing alone, improved stiffness at the distal femur, but not the proximal tibia. INTRODUCTION People with spinal cord injury (SCI) have high fracture risk at the knee after the injury. Therapies that prevent bone loss or stimulate an anabolic response in bone have been proposed to reduce fractures. Zoledronic acid (ZA) is a potent bisphosphonate that inhibits osteoclastic resorption. Functional electrical stimulation (FES)-assisted rowing is a potentially osteogenic exercise involving mechanical stimulation to the lower extremities. Here, we investigated the effect of FES-assisted rowing with and without ZA on bone strength and stiffness in individuals with SCI. METHODS Twenty individuals from a cohort of adults with SCI who participated in a clinical trial were included in the study. CT scans of their knees before and after the intervention were converted to finite element models. Bone failure strength (Tult) and stiffness were calculated at the proximal tibia and distal femur. RESULTS Tult at the distal femur increased 4.6% among people who received rowing + ZA and decreased 13.9% among those with rowing only (p < 0.05 for group). Torsional and compressive stiffness at the femur metaphysis increased in people with rowing + ZA (+ 3 to +4%) and decreased in people with rowing only (- 7 to -8%; p < 0.05). Tult in the proximal tibia decreased in everyone, but the loss was attenuated in the rowing + ZA group. People with initially stronger bone tended to lose more strength. CONCLUSION Overall, we observed increases in bone strength at the distal femur but not the proximal tibia, with FES-assisted rowing combined with ZA treatment. Rowing alone did not significantly prevent bone loss at either site, which might be attributed to insufficient mechanical loading.
Collapse
Affiliation(s)
- Y Fang
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA
| | - L R Morse
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - N Nguyen
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - R A Battaglino
- Department of Rehabilitation Medicine, University of Minnesota, Minneapolis, MN, USA
| | - R F Goldstein
- Spaulding Rehabilitation Hospital, Department of Physical Medicine and Rehabilitation, Harvard Medical School, Cambridge, MA, USA
| | - K L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
15
|
Akhter MP, Recker RR. High resolution imaging in bone tissue research-review. Bone 2021; 143:115620. [PMID: 32866682 DOI: 10.1016/j.bone.2020.115620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022]
Abstract
This review article focuses on imaging of bone tissue to understand skeletal health with regards to bone quality. Skeletal fragility fractures are due to bone diseases such as osteoporosis which result in low bone mass and bone mineral density (BMD) leading to high risk of fragility fractures. Recent advances in imaging and analysis technologies have highly benefitted the field of biological sciences. In particular, their application in skeletal health has been of significant importance in understanding bone mechanical behavior (structure and properties) at the tissue level. While synchrotron based microCT technique has remained the gold standard for non-destructive evaluation of structure in material and biological sciences, several lab based microCT systems have been developed to provide high resolution imaging of specimens with greater access, and ease of use in laboratory settings. Lab based microCT scanners are widely used in the bone field as a standard tool to evaluate three-dimensional (3D) morphologies of bone structure at image resolutions appropriate for bone samples from small animals to bone biopsy specimens from humans. Both synchrotron and standard lab based microCT systems provide high resolution imaging ex vivo for a small sized specimen. A few X-ray based systems are also commercially available for in vivo scanning at relatively low image resolutions. Synchrotron-based CT microscopy is being used for various ultra-high-resolution image analyses using complex 3D software. However, the synchrotron-based CT technology is in high demand, allows only limited numbers of specimens, expensive, requires complex additional instrumentation, and is not easily available to researchers as it requires access to a synchrotron source which is always limited. Therefore, desktop laboratory scanners (microXCT, Zeiss/Xradia, Scanco, SkyScan. etc.), mimicking the synchrotron based CT technology or image resolution, have been developed to solve the accessibility issues. These lab based scanners have helped both material science, and the bone field to investigate bone tissue morphologies at submicron mage resolutions. Considerable progress has been made in both in vivo and ex vivo imaging towards providing high resolution images of bone tissue. Both clinical and research imaging technologies will continue to improve and help understand osteoporosis and other related skeletal issues in order to develop targeted treatments for bone fragility. This review summarizes the high resolution imaging work in bone research.
Collapse
Affiliation(s)
- M P Akhter
- Creighton University Osteoporosis Research Center, Omaha, NE, United States of America.
| | - R R Recker
- Creighton University Osteoporosis Research Center, Omaha, NE, United States of America
| |
Collapse
|
16
|
McMillan DW, Nash MS, Gater DR, Valderrábano RJ. Neurogenic Obesity and Skeletal Pathology in Spinal Cord Injury. Top Spinal Cord Inj Rehabil 2021; 27:57-67. [PMID: 33814883 PMCID: PMC7983641 DOI: 10.46292/sci20-00035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) results in dramatic changes in body composition, with lean mass decreasing and fat mass increasing in specific regions that have important cardiometabolic implications. Accordingly, the recent Consortium for Spinal Cord Medicine (CSCM) released clinical practice guidelines for cardiometabolic disease (CMD) in SCI recommending the use of compartmental modeling of body composition to determine obesity in adults with SCI. This recommendation is guided by the fact that fat depots impact metabolic health differently, and in SCI adiposity increases around the viscera, skeletal muscle, and bone marrow. The contribution of skeletal muscle atrophy to decreased lean mass is self-evident, but the profound loss of bone is often less appreciated due to methodological considerations. General-population protocols for dual-energy x-ray absorptiometry (DXA) disregard assessment of the sites of greatest bone loss in SCI, but the International Society for Clinical Densitometry (ISCD) recently released an official position on the use of DXA to diagnose skeletal pathology in SCI. In this review, we discuss the recent guidelines regarding the evaluation and monitoring of obesity and bone loss in SCI. Then we consider the possible interactions of obesity and bone, including emerging evidence suggesting the possible influence of metabolic, autonomic, and endocrine function on bone health in SCI.
Collapse
Affiliation(s)
- David W. McMillan
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Mark S. Nash
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
- Department of Neurological Surgery, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - David R. Gater
- Christine E. Lynn Rehabilitation Center for the Miami Project to Cure Paralysis, UHealth/Jackson Memorial, Miami, Florida
- Department of Physical Medicine & Rehabilitation, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| | - Rodrigo J. Valderrábano
- Division of Endocrinology, University of Miami Leonard M. Miller School of Medicine, Miami, Florida
| |
Collapse
|
17
|
Stiffness and Strength Predictions From Finite Element Models of the Knee are Associated with Lower-Limb Fractures After Spinal Cord Injury. Ann Biomed Eng 2020; 49:769-779. [PMID: 32929557 DOI: 10.1007/s10439-020-02606-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is associated with bone fragility and fractures around the knee. The purpose of this investigation was to validate a computed tomography (CT) based finite element (FE) model of the proximal tibia and distal femur under biaxial loading, and to retrospectively quantify the relationship between model predictions and fracture incidence. Twenty-six cadaveric tibiae and femora (n = 13 each) were loaded to 300 N of compression, then internally rotated until failure. FE predictions of torsional stiffness (K) and strength (Tult) explained 74% (n = 26) and 93% (n = 7) of the variation in experimental measurements, respectively. Univariate analysis and logistic regression were subsequently used to determine if FE predictions and radiographic measurements from CT and dual energy X-ray absorptiometry (DXA) were associated with prevalent lower-limb fracture in 50 individuals with SCI (n = 14 fractures). FE and CT measures, but not DXA, were lower in individuals with fracture. FE predictions of Tult at the tibia demonstrated the highest odds ratio (4.98; p = 0.006) and receiver operating characteristic (0.84; p = 0.008) but did not significantly outperform other metrics. In conclusion, CT-based FE model predictions were associated with prevalent fracture risk after SCI; this technique could be a powerful tool in future clinical research.
Collapse
|
18
|
Chen J, Jin Z, Yao J, Wang H, Li Y, Ouyang Z, Wang Y, Niu W. Influence of the intelligent standing mobile robot on lower extremity physiology of complete spinal cord injury patients. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020. [DOI: 10.1016/j.medntd.2020.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
19
|
Spungen AM, Bauman WA, Biswas K, Jones KM, Snodgrass AJ, Goetz LL, Gorman PH, Kirshblum S, Sabharwal S, White KT, Asselin PK, Morin KG, Cirnigliaro CM, Huang GD. The design of a randomized control trial of exoskeletal-assisted walking in the home and community on quality of life in persons with chronic spinal cord injury. Contemp Clin Trials 2020; 96:106102. [PMID: 32800962 DOI: 10.1016/j.cct.2020.106102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
There are more than 300,000 estimated cases of spinal cord injury (SCI) in the United States, and approximately 27,000 of these are Veterans. Immobilization from SCI results in adverse secondary medical conditions and reduced quality of life. Veterans with SCI who have completed rehabilitation after injury and are unable to ambulate receive a wheelchair as standard of care. Powered exoskeletons are a technology that offers an alternative form of limited mobility by enabling over-ground walking through an external framework for support and computer-controlled motorized hip and knee joints. Few studies have reported the safety and efficacy for use of these devices in the home and community environments, and none evaluated their impact on patient-centered outcomes through a randomized clinical trial (RCT). Absence of reported RCTs for powered exoskeletons may be due to a range of challenges, including designing, statistically powering, and conducting such a trial within an appropriate experimental framework. An RCT for the study of exoskeletal-assisted walking in the home and community environments also requires the need to address key factors such as: avoiding selection bias, participant recruitment and retention, training, and safety concerns, particularly in the home environment. These points are described here in the context of a national, multisite Department of Veterans Affairs Cooperative Studies Program-sponsored trial. The rationale and methods for the study design were focused on providing a template for future studies that use powered exoskeletons or other strategies for walking and mobility in people with immobilization due to SCI.
Collapse
Affiliation(s)
- Ann M Spungen
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY 10468, United States of America; Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| | - William A Bauman
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY 10468, United States of America; Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| | - Kousick Biswas
- Cooperative Studies Program Coordinating Center, VA Maryland Health Care System, Perry Point, MD 21902, United States of America.
| | - Karen M Jones
- Cooperative Studies Program Coordinating Center, VA Maryland Health Care System, Perry Point, MD 21902, United States of America.
| | - Amanda J Snodgrass
- VA Cooperative Studies Program Clinical Research Pharmacy Coordinating Center, Albuquerque, NM 87106, United States of America; University of New Mexico, College of Pharmacy, Albuquerque, NM 87106, United States of America.
| | - Lance L Goetz
- Hunter Holmes McGuire VA Medical Center, Richmond, VA 23249, United States of America; Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, VA 23298, United States of America.
| | - Peter H Gorman
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America; VA Maryland Healthcare System, Baltimore, MD 21201, United States of America.
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, West Orange, NJ 07052, United States of America; Rutgers New Jersey Medical School, Newark, NJ 07103, United States of America; Kessler Foundation, West Orange, NJ 07052, United States of America.
| | - Sunil Sabharwal
- VA Boston Health Care System, Boston, MA 02130, United States of America; Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02115, United States of America.
| | - Kevin T White
- James A Haley Veterans' Hospital, Tampa, FL 33612, United States of America; University of South Florida, Tampa, FL 33612, United States of America.
| | - Pierre K Asselin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY 10468, United States of America; Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| | - Kel G Morin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY 10468, United States of America.
| | - Christopher M Cirnigliaro
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY 10468, United States of America.
| | - Grant D Huang
- Cooperative Studies Program Central Office, VA Office of Research and Development, Washington, DC 20420, United States of America.
| |
Collapse
|
20
|
Bone Loss and the Current Diagnosis of Osteoporosis and Risk of Fragility Fracture in Persons with Spinal Cord Injury. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020. [DOI: 10.1007/s40141-020-00268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Zleik N, Weaver F, Harmon RL, Le B, Radhakrishnan R, Jirau-Rosaly WD, Craven BC, Raiford M, Hill JN, Etingen B, Guihan M, Heggeness MH, Ray C, Carbone L. Prevention and management of osteoporosis and osteoporotic fractures in persons with a spinal cord injury or disorder: A systematic scoping review. J Spinal Cord Med 2019; 42:735-759. [PMID: 29745791 PMCID: PMC6830234 DOI: 10.1080/10790268.2018.1469808] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objectives: The primary objective was to review the literature regarding methodologies to assess fracture risk, to prevent and treat osteoporosis and to manage osteoporotic fractures in SCI/D.Study Design: Scoping review.Settings/Participants: Human adult subjects with a SCI/D.Outcome measures: Strategies to identify persons with SCI/D at risk for osteoporotic fractures, nonpharmacological and pharmacological therapies for osteoporosis and management of appendicular fractures.Results: 226 articles were included in the scoping review. Risk of osteoporotic fractures in SCI is predicted by a combination of DXA-defined low BMD plus clinical and demographic characteristics. Screening for secondary causes of osteoporosis, in particular hyperparathyroidism, hyperthyroidism, vitamin D insufficiency and hypogonadism, should be considered. Current antiresorptive therapies for treatment of osteoporosis have limited efficacy. Use of surgery to treat fractures has increased and outcomes are good and comparable to conservative treatment in most cases. A common adverse event following fracture was delayed healing.Conclusions: Most of the research in this area is limited by small sample sizes, weak study designs, and significant variation in populations studied. Future research needs to address cohort definition and study design issues.
Collapse
Affiliation(s)
- Nour Zleik
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia, USA
- Department of Medicine, Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Frances Weaver
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, Illinois, USA
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Robert L. Harmon
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia, USA
| | - Brian Le
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia, USA
- Department of Medicine, Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | | | - Wanda D. Jirau-Rosaly
- Department of Medicine, Division of Geriatrics, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - B. Catharine Craven
- Department of Medicine, Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada
| | - Mattie Raiford
- School of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Jennifer N. Hill
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Bella Etingen
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, Illinois, USA
| | - Marylou Guihan
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, Illinois, USA
| | - Michael H. Heggeness
- Department of Orthopaedic Surgery, University of Kansas School of Medicine, Wichita, Kansas, USA
| | - Cara Ray
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, Illinois, USA
- Department of Public Health Sciences, Stritch School of Medicine, Loyola University, Maywood, Illinois, USA
| | - Laura Carbone
- Charlie Norwood Veterans Administration Medical Center, Augusta, Georgia, USA
- Department of Medicine, Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
22
|
Haider IT, Simonian N, Saini AS, Leung FM, Edwards WB, Schnitzer TJ. Open-label clinical trial of alendronate after teriparatide therapy in people with spinal cord injury and low bone mineral density. Spinal Cord 2019; 57:832-842. [DOI: 10.1038/s41393-019-0303-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/09/2022]
|
23
|
Lobos S, Cooke A, Simonett G, Ho C, Boyd SK, Edwards WB. Trabecular Bone Score at the Distal Femur and Proximal Tibia in Individuals With Spinal Cord Injury. J Clin Densitom 2019; 22:249-256. [PMID: 29776736 DOI: 10.1016/j.jocd.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
Rapid declines in bone mineral density (BMD) at the knee after spinal cord injury (SCI) are associated with an increased risk of fracture. Evaluation of bone quality using the trabecular bone score (TBS) may provide a complimentary measure to BMD assessment to examine bone health and fracture risk after SCI. The purpose of this study was to assess bone mineral density (BMD) and trabecular bone score (TBS) at the knee in individuals with and without SCI. Nine individuals with complete SCI (mean time since SCI 2.9 ± 3.8 yr) and 9 non-SCI controls received dual-energy X-ray absorptiometry scans of the right knee using the lumbar spine protocol. BMD and TBS were quantified at epiphyseal, metaphyseal, diaphyseal, and total bone regions of the distal femur and proximal tibia. Individuals with SCI illustrated significantly lower total BMD at the distal femur (23%; p = 0.029) and proximal tibia (19%; p = 0.02) when compared with non-SCI controls. Despite these marked differences in BMD from both locations, significant differences in total TBS were observed at the distal femur only (6%; p = 0.023). The observed differences in total BMD and TBS could be attributed to reductions in epiphyseal rather than metaphyseal or diaphysis measurements. The relationship between TBS and duration of SCI was well explained by a logarithmic trend at the distal femoral epiphysis (r2 = 0.54, p = 0.025). The logarithmic trend would predict that after 3 yr of SCI, TBS would be approximately 6% lower than the non-SCI controls. Further evaluation is needed to determine if TBS measures at the knee provide important information about bone quality that is not captured by traditional BMD.
Collapse
Affiliation(s)
- Stacey Lobos
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Anne Cooke
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada
| | - Gillian Simonett
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Chester Ho
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Canada; Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.
| |
Collapse
|
24
|
Cirnigliaro CM, Myslinski MJ, Asselin P, Hobson JC, Specht A, La Fountaine MF, Kirshblum SC, Forrest GF, Dyson-Hudson T, Spungen AM, Bauman WA. Progressive Sublesional Bone Loss Extends into the Second Decade After Spinal Cord Injury. J Clin Densitom 2019; 22:185-194. [PMID: 30503961 DOI: 10.1016/j.jocd.2018.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/25/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The rate of areal bone mineral density (aBMD) loss at the knee (distal femur (DF) and proximal tibia ) and hip (femoral neck (FN) and total hip (TH)) was determined in persons with traumatic spinal cord injury (SCI) who were stratified into subgroups based on time since injury (TSI). DESIGN Cross-sectional retrospective review. SETTING Department of Veterans Affairs Medical Center and Private Rehabilitation Hospital. PARTICIPANTS Data on 105 individuals with SCI (TSI ≤12 months, n = 19; TSI 1-5 years, n = 35; 6-10 years, n = 19; TSI 11-20 years, n = 16; TSI >20 years, n = 15) and 17 able-bodied reference (ABref) controls. INTERVENTIONS NA Main Outcome Measures: The knee and hip aBMD values were obtained by dual energy X-ray absorptiometry (GE Lunar iDXA) using standard clinical software for the proximal femur employed in conjunction with proprietary research orthopedic knee software applications. Young-normal (T-score) and age-matched (Z-scores) standardized scores for the FN and TH were obtained using the combined GE Lunar/National Health and Nutrition Examination Survey (NHANES III) combined reference database. RESULTS When groups were stratified and compared as epochs of TSI, significantly lower mean aBMD and reference scores were observed as TSI increased, despite similar mean ages of participants among the majority of TSI epoch subgroups. Loss in aBMD occurred at the distal femur (DF), proximal tibia (PT), FN, and TH with 46%, 49%, 32%, and 43% of the variance in loss, respectively, described by the exponential decay curves with a time to steady state (tss) occurring at 14.6, 11.3, 14, and 6.2 years, respectively, after SCI. CONCLUSIONS Sublesional bone loss after SCI was marked and occurred as an inverse function of TSI. For aBMD at the hip and knee, tss extended into the second decade after SCI.
Collapse
Affiliation(s)
- Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA.
| | - Mary Jane Myslinski
- Department of Physical Therapy, School of Biomedical and Health Sciences, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Pierre Asselin
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Joshua C Hobson
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Adam Specht
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Michael F La Fountaine
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA; The Institute for Advanced Study of Rehabilitation and Sports Science, School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA
| | - Steven C Kirshblum
- Kessler Institute for Rehabilitation, West Orange, NJ, USA; Kessler Foundation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Gail F Forrest
- Kessler Foundation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Trevor Dyson-Hudson
- Kessler Foundation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Ann M Spungen
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William A Bauman
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Departments of Medicine and Rehabilitation Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
25
|
Haider IT, Lobos SM, Simonian N, Schnitzer TJ, Edwards WB. Bone fragility after spinal cord injury: reductions in stiffness and bone mineral at the distal femur and proximal tibia as a function of time. Osteoporos Int 2018; 29:2703-2715. [PMID: 30334093 PMCID: PMC6369927 DOI: 10.1007/s00198-018-4733-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Computed tomography and finite element modeling were used to assess bone structure at the knee as a function of time after spinal cord injury. Analyzed regions experienced degradation in stiffness, mineral density, and content. Changes were well described as an exponential decay over time, reaching a steady state 3.5 years after injury. INTRODUCTION Spinal cord injury (SCI) is associated with bone fragility and an increased risk of fracture around the knee. The purpose of this study was to investigate bone stiffness and mineral content at the distal femur and proximal tibia, using finite element (FE) and computed tomography (CT) measures. A cross-sectional design was used to compare differences between non-ambulatory individuals with SCI as a function of time after injury (0-50 years). METHODS CT scans of the knee were obtained from 101 individuals who experienced an SCI 30 days to 50 years prior to participation. Subject-specific FE models were used to estimate stiffness under axial compression and torsional loading, and CT data was analyzed to assess volumetric bone mineral density (vBMD) and bone mineral content (BMC) for integral, cortical, and trabecular compartments of the epiphyseal, metaphyseal, and diaphyseal regions of the distal femur and proximal tibia. RESULTS Bone degradation was well described as an exponential decay over time (R2 = 0.33-0.83), reaching steady-state levels within 3.6 years of SCI. Individuals at a steady state had 40 to 85% lower FE-derived bone stiffness and robust decreases in CT mineral measures, compared to individuals who were recently injured (t ≤ 47 days). Temporal and spatial patterns of bone loss were similar between the distal femur and proximal tibia. CONCLUSIONS After SCI, individuals experienced rapid and profound reductions in bone stiffness and bone mineral at the knee. FE models predicted similar reductions to axial and torsional stiffness, suggesting that both failure modes may be clinically relevant. Importantly, CT-derived measures of bone mineral alone underpredicted the impacts of SCI, compared to FE-derived measures of stiffness. TRIAL REGISTRATION ClinicalTrials.gov (NCT01225055, NCT02325414).
Collapse
Affiliation(s)
- I T Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, USA.
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, USA.
| | - S M Lobos
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, USA
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, USA
| | - N Simonian
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Northwestern University Clinical and Translational Sciences Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - T J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Physical Medicine and Rehabilitation, Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, 60611, USA
| | - W B Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, T2N 1N4, USA
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 1N4, USA
| |
Collapse
|
26
|
Edwards WB, Simonian N, Haider IT, Anschel AS, Chen D, Gordon KE, Gregory EK, Kim KH, Parachuri R, Troy KL, Schnitzer TJ. Effects of Teriparatide and Vibration on Bone Mass and Bone Strength in People with Bone Loss and Spinal Cord Injury: A Randomized, Controlled Trial. J Bone Miner Res 2018; 33:1729-1740. [PMID: 29905973 DOI: 10.1002/jbmr.3525] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/21/2018] [Accepted: 06/03/2018] [Indexed: 01/29/2023]
Abstract
Spinal cord injury (SCI) is associated with marked bone loss and an increased risk of fracture. We randomized 61 individuals with chronic SCI and low bone mass to receive either teriparatide 20 μg/d plus sham vibration 10 min/d (n = 20), placebo plus vibration 10 min/d (n = 20), or teriparatide 20 μg/d plus vibration 10 min/d (n = 21). Patients were evaluated for 12 months; those who completed were given the opportunity to participate in an open-label extension where all participants (n = 25) received teriparatide 20 μg/d for an additional 12 months and had the optional use of vibration (10 min/d). At the end of the initial 12 months, both groups treated with teriparatide demonstrated a significant increase in areal bone mineral density (aBMD) at the spine (4.8% to 5.5%). The increase in spine aBMD was consistent with a marked response in serum markers of bone metabolism (ie, CTX, P1NP, BSAP), but no treatment effect was observed at the hip. A small but significant increase (2.2% to 4.2%) in computed tomography measurements of cortical bone at the knee was observed in all groups after 12 months; however, the magnitude of response was not different amongst treatment groups and improvements to finite element-predicted bone strength were not observed. Teriparatide treatment after the 12-month extension resulted in further increases to spine aBMD (total increase from baseline 7.1% to 14.4%), which was greater in patients initially randomized to teriparatide. Those initially randomized to teriparatide also demonstrated 4.4% to 6.7% improvements in hip aBMD after the 12-month extension, while all groups displayed increases in cortical bone measurements at the knee. To summarize, teriparatide exhibited skeletal activity in individuals with chronic SCI that was not augmented by vibration stimulation. Without additional confirmatory data, the location-specific responses to teriparatide would not be expected to provide clinical benefit in this population. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Narina Simonian
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Northwestern University Clinical and Translational Sciences Institute, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ifaz T Haider
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada.,McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Alan S Anschel
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, USA
| | - David Chen
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, USA
| | - Keith E Gordon
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Edward Hines Jr. VA Hospital, Hines, IL, USA
| | - Elaine K Gregory
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ki H Kim
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Rehabilitation Institute of Chicago (d.b.a. Shirley Ryan AbilityLab), Chicago, IL, USA
| | | | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Thomas J Schnitzer
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
27
|
Lobos S, Cooke A, Simonett G, Ho C, Boyd SK, Edwards WB. Assessment of Bone Mineral Density at the Distal Femur and the Proximal Tibia by Dual-Energy X-ray Absorptiometry in Individuals With Spinal Cord Injury: Precision of Protocol and Relation to Injury Duration. J Clin Densitom 2018; 21:338-346. [PMID: 28662973 DOI: 10.1016/j.jocd.2017.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
Abstract
Spinal cord injury (SCI) is characterized by marked bone loss at the knee, and there is a need for established dual-energy X-ray absorptiometry (DXA) protocols to examine bone mineral density (BMD) at this location to track therapeutic progress and to monitor fracture risk. The purpose of this study was to quantify the precision and reliability of a DXA protocol for BMD assessment at the distal femur and the proximal tibia in individuals with SCI. The protocol was subsequently used to investigate the relationship between BMD and duration of SCI. Nine individuals with complete SCI and 9 able-bodied controls underwent 3 repeat DXA scans in accordance with the short-term precision methodology recommended by the International Society of Clinical Densitometry. The DXA protocol demonstrated a high degree of precision with the root-mean-square standard deviation ranging from 0.004 to 0.052 g/cm2 and the root-mean-square coefficient of variation ranging from 0.6% to 4.4%, depending on the bone, the region of interest, and the rater. All measurements of intra- and inter-rater reliability were excellent with an intraclass correlation of ≥0.950. The relationship between the BMD and the duration of SCI was well described by a logarithmic trend (r2 = 0.68-0.92). Depending on the region of interest, the logarithmic trends would predict that, after 3 yr of SCI, BMD at the knee would be 43%-19% lower than that in the able-bodied reference group. We believe the DXA protocol has the level of precision and reliability required for short-term assessments of BMD at the distal femur and the proximal tibia in people with SCI. However, further work is required to determine the degree to which this protocol may be used to assess longitudinal changes in BMD after SCI to examine clinical interventions and to monitor fracture risk.
Collapse
Affiliation(s)
- Stacey Lobos
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - Anne Cooke
- McCaig Institute for Bone and Joint Health, University of Calgary, University of Calgary, Calgary, Canada
| | - Gillian Simonett
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Chester Ho
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Steven K Boyd
- McCaig Institute for Bone and Joint Health, University of Calgary, University of Calgary, Calgary, Canada; Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada; McCaig Institute for Bone and Joint Health, University of Calgary, University of Calgary, Calgary, Canada; Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, University of Calgary, Calgary, Canada.
| |
Collapse
|
28
|
Bethel M, Bailey L, Weaver F, Harmon RL, Priebe MM, Le B, Aslam H, Fausel Z, Hoenig H, Carbone LD. A historical study of appendicular fractures in veterans with traumatic chronic spinal cord injury: 2002-2007. J Spinal Cord Med 2016; 39:686-692. [PMID: 26899918 PMCID: PMC5137562 DOI: 10.1080/10790268.2016.1149930] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE Describe the incidence and distribution of appendicular fractures in a cohort of veterans with spinal cord injury (SCI). DESIGN Retrospective, observational study of fractures in veterans with a chronic traumatic SCI. SETTING The Veterans Health Administration (VA) healthcare system. PARTICIPANTS Veterans included in the VA Spinal Cord Dysfunction Registry from Fiscal Years (FY) FY2002-FY2007. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Description of fractures by site and number. Mortality at one year following incident fracture among men with single vs. multiple fractures. RESULTS Male and female veterans sustained incident fractures with similar observed frequency (10.5% vs 11.5%). The majority of fractures occurred in the lower extremities for both men and women. In men, a complete extent of injury (compared to incomplete) was associated with 41% greater relative risk (RR) of incident fracture (RR 1.41, 95% confidence interval [1.17, 1.70]) among those with tetraplegia, but not paraplegia. Furthermore, many men (33.9%, n = 434) sustained multiple fractures over the course of the study. There were no differences in mortality between men who sustained a single fracture and those who had multiple fractures. CONCLUSIONS The extent of injury may be an important predictor of fracture risk for male veterans with tetraplegia. Once a fracture occurs, male veterans with SCI appear to be at high risk for additional fractures.
Collapse
Affiliation(s)
- Monique Bethel
- Subspecialty Service, Department of Veterans Affairs Medical Center, Augusta, GA, USA,Department of Medicine, Georgia Regents University, Augusta, GA, USA,Correspondence to: Monique Bethel, Charlie Norwood Veterans Affairs Medical Center, 950 15th Street, Augusta, GA 30912, USA.
| | - Lauren Bailey
- Center of Innovation for Complex Chronic Healthcare, Edward J. Hines, Jr. VA Hospital, Hines, IL, USA,Department of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Frances Weaver
- Center of Innovation for Complex Chronic Healthcare, Edward J. Hines, Jr. VA Hospital, Hines, IL, USA,Stritch School of Medicine, Loyola University, Maywood, IL, USA
| | - Robert L. Harmon
- Subspecialty Service, Department of Veterans Affairs Medical Center, Augusta, GA, USA
| | - Michael M. Priebe
- Subspecialty Service, Department of Veterans Affairs Medical Center, Augusta, GA, USA
| | - Brian Le
- Subspecialty Service, Department of Veterans Affairs Medical Center, Augusta, GA, USA,Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - Hammad Aslam
- Subspecialty Service, Department of Veterans Affairs Medical Center, Augusta, GA, USA,Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | - Zachary Fausel
- Subspecialty Service, Department of Veterans Affairs Medical Center, Augusta, GA, USA,Department of Medicine, Georgia Regents University, Augusta, GA, USA
| | | | - Laura D. Carbone
- Subspecialty Service, Department of Veterans Affairs Medical Center, Augusta, GA, USA,Department of Medicine, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
29
|
Troy KL, Morse LR. Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction. Top Spinal Cord Inj Rehabil 2015; 21:267-74. [PMID: 26689691 PMCID: PMC4750811 DOI: 10.1310/sci2104-267] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. METHODS We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. CONCLUSIONS Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail.
Collapse
Affiliation(s)
- Karen L. Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
| | - Leslie R. Morse
- Spaulding-Harvard SCI Model System, Spaulding Rehabilitation Hospital, Boston, Massachusetts
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
30
|
Abstract
Spinal cord injury (SCI) is characterized by marked bone loss and an increased risk of fracture with high complication rate. Recent research based on advanced imaging analysis, including quantitative computed tomography (QCT) and patient-specific finite element (FE) modeling, has provided new and important insights into the magnitude and temporal pattern of bone loss, as well as the associated changes to bone structure and strength, following SCI. This work has illustrated the importance of early therapeutic treatment to prevent bone loss after SCI and may someday serve as the basis for a clinical fracture risk assessment tool for the SCI population. This review provides an update on the epidemiology of fracture after SCI and discusses new findings and significant developments related to bone loss and fracture risk assessment in the SCI population based on QCT analysis and patient-specific FE modeling.
Collapse
Affiliation(s)
- W Brent Edwards
- Human Performance Laboratory, Faculty of Kinesiology, and Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada,
| | | |
Collapse
|