1
|
Dzubanova M, Bond JM, Craige SM, Tencerova M. NOX4-reactive oxygen species axis: critical regulators of bone health and metabolism. Front Cell Dev Biol 2024; 12:1432668. [PMID: 39188529 PMCID: PMC11345137 DOI: 10.3389/fcell.2024.1432668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024] Open
Abstract
Bone marrow stromal cells (BMSCs) play a significant role in bone metabolism as they can differentiate into osteoblasts, bone marrow adipocytes (BMAds), and chondrocytes. BMSCs chronically exposed to nutrient overload undergo adipogenic programming, resulting in bone marrow adipose tissue (BMAT) formation. BMAT is a fat depot transcriptionally, metabolically, and morphologically distinct from peripheral adipose depots. Reactive oxygen species (ROS) are elevated in obesity and serve as important signals directing BMSC fate. ROS produced by the NADPH oxidase (NOX) family of enzymes, such as NOX4, may be responsible for driving BMSC adipogenesis at the expense of osteogenic differentiation. The dual nature of ROS as both cellular signaling mediators and contributors to oxidative stress complicates their effects on bone metabolism. This review discusses the complex interplay between ROS and BMSC differentiation in the context of metabolic bone diseases.Special attention is paid to the role of NOX4-ROS in regulating cellular processes within the bone marrow microenvironment and potential target in metabolic bone diseases.
Collapse
Affiliation(s)
- Martina Dzubanova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Science, Charles University, Prague, Czechia
| | - Jacob M. Bond
- Translational Biology, Medicine, and Health, Virginia Tech, Roanoke, VA, United States
| | - Siobhan M. Craige
- Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, United States
| | - Michaela Tencerova
- Laboratory of Molecular Physiology of Bone, Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
2
|
Liu X, Gu Y, Kumar S, Amin S, Guo Q, Wang J, Fang CL, Cao X, Wan M. Oxylipin-PPARγ-initiated adipocyte senescence propagates secondary senescence in the bone marrow. Cell Metab 2023; 35:667-684.e6. [PMID: 37019080 PMCID: PMC10127143 DOI: 10.1016/j.cmet.2023.03.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023]
Abstract
The chronic use of glucocorticoids decreases bone mass and quality and increases bone-marrow adiposity, but the underlying mechanisms remain unclear. Here, we show that bone-marrow adipocyte (BMAd) lineage cells in adult mice undergo rapid cellular senescence upon glucocorticoid treatment. The senescent BMAds acquire a senescence-associated secretory phenotype, which spreads senescence in bone and bone marrow. Mechanistically, glucocorticoids increase the synthesis of oxylipins, such as 15d-PGJ2, for peroxisome proliferator-activated receptor gamma (PPARγ) activation. PPARγ stimulates the expression of key senescence genes and also promotes oxylipin synthesis in BMAds, forming a positive feedback loop. Transplanting senescent BMAds into the bone marrow of healthy mice is sufficient to induce the secondary spread of senescent cells and bone-loss phenotypes, whereas transplanting BMAds harboring a p16INK4a deletion did not show such effects. Thus, glucocorticoid treatment induces a lipid metabolic circuit that robustly triggers the senescence of BMAd lineage cells that, in turn, act as the mediators of glucocorticoid-induced bone deterioration.
Collapse
Affiliation(s)
- Xiaonan Liu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yiru Gu
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Surendra Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sahran Amin
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Qiaoyue Guo
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiekang Wang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ching-Lien Fang
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xu Cao
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Age and gender differences in vertebral bone marrow adipose tissue and bone mineral density, based on MRI and quantitative CT. Eur J Radiol 2023; 159:110669. [PMID: 36608598 DOI: 10.1016/j.ejrad.2022.110669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
PURPOSE To investigate the age and gender differences in vertebral bone marrow adipose tissue (BMAT) and volumetric bone mineral density (vBMD). METHOD A total of 427 healthy adults, including 175 males (41 %) and 252 females (59 %) with an age range of 21-82 years, underwent MRI and quantitative CT examinations of the lumbar spine (L2-L4), and the corresponding BMAT and vBMD values were measured. The age-related progressions of BMAT and vBMD in men and women were evaluated and compared. RESULTS In males, vertebral BMAT rose gradually throughout life, while in females, BMAT increased sharply between 41 and 60 years of age. In participants aged < 40 years, BMAT was greater in males compared to females (p ≤ 0.01), while after the age of 60, BMAT was higher in females (p < 0.05). In males, vBMD decreased gradually with age, while in females, there was a sharp decrease in vBMD after the age of 40 years. At age of 31-40 years, vBMD was higher in females (P < 0.002), while at age > 60 years, vBMD was higher in males (61-70 years, P < 0.01; > 70 years, P = 0.02). CONCLUSIONS We found significant age and gender differences in lumbar BMAT and vBMD. These findings will help to improve our understanding of the interaction between bone marrow fat content and bone mineral density in the ageing process.
Collapse
|
4
|
Kastrenopoulou A, Kypreos KE, Papachristou NI, Georgopoulos S, Mastora I, Papadimitriou-Olivgeri I, Spentzopoulou A, Nikitovic D, Kontogeorgakos V, Blair HC, Papachristou DJ. ApoA1 Deficiency Reshapes the Phenotypic and Molecular Characteristics of Bone Marrow Adipocytes in Mice. Int J Mol Sci 2022; 23:4834. [PMID: 35563223 PMCID: PMC9100701 DOI: 10.3390/ijms23094834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/05/2023] Open
Abstract
In the present study, we studied the effect of apolipoprotein A-1 (APOA1) on the spatial and molecular characteristics of bone marrow adipocytes, using well-characterized ApoA1 knockout mice. APOA1 is a central regulator of high-density lipoprotein cholesterol (HDL-C) metabolism, and thus HDL; our recent work showed that deficiency of APOA1 increases bone marrow adiposity in mice. We found that ApoA1 deficient mice have greatly elevated adipocytes within their bone marrow compared to wild type counterparts. Morphologically, the increased adipocytes were similar to white adipocytes, and displayed proximal tibial-end localization. Marrow adipocytes from wild type mice were significantly fewer and did not display a bone-end distribution pattern. The mRNA levels of the brown/beige adipocyte-specific markers Ucp1, Dio2, Pat2, and Pgc1a; and the expression of leptin were greatly reduced in the ApoA1 knock-out in comparison to the wild-type mice. In the knock-out mice, adiponectin was remarkably elevated. In keeping with the close ties of hematopoietic stem cells and marrow adipocytes, using flow cytometry we found that the elevated adiposity in the ApoA1 knockout mice is associated with a significant reduction in the compartments of hematopoietic stem cells and common myeloid, but not of the common lymphoid, progenitors. Moreover, the 'beiging'-related marker osteopontin and the angiogenic factor VEGF were also reduced in the ApoA1 knock-out mice, further supporting the notion that APOA1-and most probably HDL-C-regulate bone marrow microenvironment, favoring beige/brown adipocyte characteristics.
Collapse
Affiliation(s)
- Afroditi Kastrenopoulou
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, School of Medical, University of Patras, 26504 Patras, Greece; (A.K.); (N.I.P.); (S.G.); (I.M.); (I.P.-O.); (A.S.)
| | - Kyriakos E. Kypreos
- Department of Pharmacology, School of Medical, University of Patras, 26504 Patras, Greece;
| | - Nicholaos I. Papachristou
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, School of Medical, University of Patras, 26504 Patras, Greece; (A.K.); (N.I.P.); (S.G.); (I.M.); (I.P.-O.); (A.S.)
| | - Stavros Georgopoulos
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, School of Medical, University of Patras, 26504 Patras, Greece; (A.K.); (N.I.P.); (S.G.); (I.M.); (I.P.-O.); (A.S.)
| | - Ioulia Mastora
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, School of Medical, University of Patras, 26504 Patras, Greece; (A.K.); (N.I.P.); (S.G.); (I.M.); (I.P.-O.); (A.S.)
| | - Ioanna Papadimitriou-Olivgeri
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, School of Medical, University of Patras, 26504 Patras, Greece; (A.K.); (N.I.P.); (S.G.); (I.M.); (I.P.-O.); (A.S.)
| | - Argyro Spentzopoulou
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, School of Medical, University of Patras, 26504 Patras, Greece; (A.K.); (N.I.P.); (S.G.); (I.M.); (I.P.-O.); (A.S.)
| | - Dragana Nikitovic
- Laboratory of Department of Anatomy-Histology-Embryology, School of Medical, University of Crete, 71110 Heraklion, Greece;
| | - Vassilios Kontogeorgakos
- Department of Orthopeadic Surgery, School of Medicine, University of Athens, 11527 Athens, Greece;
| | - Harry C. Blair
- Pittsburgh VA Medical Center, Pittsburgh, PA 15261, USA
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dionysios J. Papachristou
- Laboratory of Bone and Soft Tissue Studies, Department of Anatomy-Histology-Embryology, Unit of Bone and Soft Tissue Studies, School of Medical, University of Patras, 26504 Patras, Greece; (A.K.); (N.I.P.); (S.G.); (I.M.); (I.P.-O.); (A.S.)
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
5
|
Lelis Carvalho A, Treyball A, Brooks DJ, Costa S, Neilson RJ, Reagan MR, Bouxsein ML, Motyl KJ. TRPM8 modulates temperature regulation in a sex-dependent manner without affecting cold-induced bone loss. PLoS One 2021; 16:e0231060. [PMID: 34086678 PMCID: PMC8177490 DOI: 10.1371/journal.pone.0231060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
Trpm8 (transient receptor potential cation channel, subfamily M, member 8) is expressed by sensory neurons and is involved in the detection of environmental cold temperatures. TRPM8 activity triggers an increase in uncoupling protein 1 (Ucp1)-dependent brown adipose tissue (BAT) thermogenesis. Bone density and marrow adipose tissue are both influenced by rodent housing temperature and brown adipose tissue, but it is unknown if TRPM8 is involved in the co-regulation of thermogenesis and bone homeostasis. To address this, we examined the bone phenotypes of one-year-old Trpm8 knockout mice (Trpm8-KO) after a 4-week cold temperature challenge. Male Trpm8-KO mice had lower bone mineral density than WT, with smaller bone size (femur length and cross-sectional area) being the most striking finding, and exhibited a delayed cold acclimation with increased BAT expression of Dio2 and Cidea compared to WT. In contrast to males, female Trpm8-KO mice had low vertebral bone microarchitectural parameters, but no genotype-specific alterations in body temperature. Interestingly, Trpm8 was not required for cold-induced trabecular bone loss in either sex, but bone marrow adipose tissue in females was significantly suppressed by Trpm8 deletion. In summary, we identified sex differences in the role of TRPM8 in maintaining body temperature, bone microarchitecture and marrow adipose tissue. Identifying mechanisms through which cold temperature and BAT influence bone could help to ameliorate potential bone side effects of obesity treatments designed to stimulate thermogenesis.
Collapse
Affiliation(s)
- Adriana Lelis Carvalho
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Annika Treyball
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Daniel J. Brooks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
| | - Samantha Costa
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Ryan J. Neilson
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States of America
| | - Michaela R. Reagan
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States of America
- Tufts University School of Medicine, Tufts University, Boston, MA, United States of America
- Graduate School of Biomedical Sciences and Engineering, The University of Maine, Orono, ME, United States of America
| | - Mary L. Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States of America
| | - Katherine J. Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, United States of America
- Tufts University School of Medicine, Tufts University, Boston, MA, United States of America
- Graduate School of Biomedical Sciences and Engineering, The University of Maine, Orono, ME, United States of America
| |
Collapse
|
6
|
Diffusion-weighted magnetic resonance imaging of mandibular bone marrow: do apparent diffusion coefficient values of the cervical vertebrae and mandible correlate with age? Oral Radiol 2021; 38:72-79. [PMID: 33877509 DOI: 10.1007/s11282-021-00528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/10/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES The objective of this investigation was to assess the correlation between the mandible and cervical vertebrae bone marrow apparent diffusion coefficient (ADC), obtained by diffusion-weighted magnetic resonance imaging (DWI), with age; to verify the correlation between ADC values from the mandible and the cervical vertebrae; to describe and assess the differences between ADC values obtained from DWI examinations of distinct mandible areas as well as cervical vertebrae. METHODS Thirty imaging examinations with DWI for that included the mandible and C1, C2, C3, and C4 vertebrae in the same examination were included. ADC values were collected from 7 distinct areas in the mandible and the cervical vertebrae. Differences between ADC values and non-parametric correlations were performed. RESULTS A total of 270 regions were assessed. No significant difference was found between ADC values of all areas tested. An inverse correlation was found between C2, C3, and C4 vertebrae ADC values and age. The significant correlation of anatomic area ADC values and age were presented as graphics to verify if the linear trend of ADC values and age are in accordance with the literature CONCLUSIONS: The mandible area that most correlates with the cervical vertebrae, using ADC values, is the posterior trabecular area, below the inferior molars. Also, C2, C3, and C4 vertebrae ADC values inversely correlate with age, which demonstrates the bone qualitative changes in bone composition. ADC values may be useful for the qualitative assessment of bone quality to screen patients at osteoporosis risk.
Collapse
|
7
|
Cheng X, Li K, Zhang Y, Wang L, Xu L, Liu Y, Duanmu Y, Chen D, Tian W, Blake GM. The accurate relationship between spine bone density and bone marrow in humans. Bone 2020; 134:115312. [PMID: 32145459 DOI: 10.1016/j.bone.2020.115312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/29/2020] [Accepted: 03/03/2020] [Indexed: 01/11/2023]
Abstract
CONTEXT The accuracy of QCT measurements of lumbar spine trabecular volumetric bone mineral density (vBMD) is decreased due to differences in the amount of bone marrow adipose tissue (BMAT). OBJECTIVE To correct vBMD measurements for differences in marrow composition and investigate the true relationship between vBMD and BMAT. DESIGN Cross-sectional study. SETTING University teaching hospital. PARTICIPANTS Healthy Chinese subjects (233 women, 167 men) aged between 21 and 82 years. MAIN OUTCOME MEASURES vBMD and BMAT were measured using QCT (120 kV) and chemical shift-encoded MRI of the L2-L4 vertebrae. vBMD measurements were standardized to the European Spine Phantom (ESP) and corrected for differences in BMAT. Linear regression was used to analyze BMAT, ESP adjusted vBMD (vBMDESPcorr) and BMAT corrected vBMD (vBMDBMATcorr) against age and corrected vBMD against BMAT. RESULTS BMAT in the L2-L4 vertebral bodies increased with age in both sexes, with a faster rate of change in women compared with men (0.54%/year vs. 0.27%/year, P < 0.0001). After vBMD measurements were corrected for BMAT there were statistically significant changes in the slope of the regression line with age in both sexes (women: -3.00 ± 0.13 vs. -2.57 ± 0.11 mg/cm3/year, P < 0.0001; men: -1.92 ± 0.15 vs. -1.70 ± 0.14 mg/cm3/year, P < 0.0001). When vBMDBMATcorr was plotted against BMAT, vBMD decreased linearly with increasing BMAT in both sexes (women: -3.30 ± 0.18 mg/cm3/%; men: -2.69 ± 0.25 mg/cm3/%, P = 0.048). CONCLUSION Our approach reveals the true relationship between vBMD and BMAT and provides a new tool for studying the interaction between bone and marrow adipose tissue.
Collapse
Affiliation(s)
- Xiaoguang Cheng
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Kai Li
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yong Zhang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Ling Wang
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Li Xu
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yandong Liu
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yangyang Duanmu
- Department of Radiology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Di Chen
- Department of Community Medical Care, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Wei Tian
- Department of Spine Surgery, The Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital, Beijing 100035, China.
| | - Glen M Blake
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
8
|
Coutel X, Delattre J, Marchandise P, Falgayrac G, Béhal H, Kerckhofs G, Penel G, Olejnik C. Mandibular bone is protected against microarchitectural alterations and bone marrow adipose conversion in ovariectomized rats. Bone 2019; 127:343-352. [PMID: 31276849 DOI: 10.1016/j.bone.2019.06.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/02/2019] [Accepted: 06/29/2019] [Indexed: 02/05/2023]
Abstract
Osteoporosis is a disease that leads to a loss of bone mass and to alterations in the bone microarchitecture that occur in a site-specific manner; however it remains controversial in the jaw. The involvement of bone marrow adipose tissue (BMAT) in the bone metabolism has been suggested in several physiopathological contexts, such as in aging and osteoporosis. To test whether the BMAT content is related to mandibular bone loss, this study aimed to investigate the potential correlations between the trabecular bone microarchitecture on one hand and BMAT content and its spatial distribution in relation to bone surface on the other hand during aging and ovariectomy (OVX) during a long-term follow-up in a mature rat model. No age-related microarchitectural or BMAT changes were observed in the mandible. The OVX-induced bone loss was three-fold lower in the mandible than in the tibia and was observed only in the alveolar bone (not in the condyle). We also report a delayed increase in the mandibular BMAT content that remained 4-6-fold lower compared to tibia. This low BMAT content in the mandible was located at a distance from the trabecular bone surface (only 5% in contact with the bone surface versus 87% in the tibia). These findings highlight a specific mandibular response to OVX, in particular fewer microarchitectural alterations compared to that in the tibia. For the latter, the trabecular bone thickness and surface were correlated with the BMAT content. Oral functions may have a protective effect on the mandibular BMAT conversion in an OVX context.
Collapse
Affiliation(s)
- Xavier Coutel
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France.
| | - Jérôme Delattre
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Pierre Marchandise
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Guillaume Falgayrac
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Hélène Béhal
- Univ. Lille, CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, Unité de Méthodologie et Biostatistiques, F-59000 Lille, France
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium; Institute of Experimental and Clinical Research, UCLouvain, Woluwe, Belgium; Department Materials Engineering, KU Leuven, Leuven, Belgium; Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Guillaume Penel
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| | - Cécile Olejnik
- Univ. Lille, Univ. Littoral Côte d'Opale, CHU Lille, EA 4490 - PMOI, F-59000 Lille, France
| |
Collapse
|
9
|
Hafidi ME, Buelna-Chontal M, Sánchez-Muñoz F, Carbó R. Adipogenesis: A Necessary but Harmful Strategy. Int J Mol Sci 2019; 20:ijms20153657. [PMID: 31357412 PMCID: PMC6696444 DOI: 10.3390/ijms20153657] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is considered to significantly increase the risk of the development of a vast range of metabolic diseases. However, adipogenesis is a complex physiological process, necessary to sequester lipids effectively to avoid lipotoxicity in other tissues, like the liver, heart, muscle, essential for maintaining metabolic homeostasis and has a crucial role as a component of the innate immune system, far beyond than only being an inert mass of energy storage. In pathophysiological conditions, adipogenesis promotes a pro-inflammatory state, angiogenesis and the release of adipokines, which become dangerous to health. It results in a hypoxic state, causing oxidative stress and the synthesis and release of harmful free fatty acids. In this review, we try to explain the mechanisms occurring at the breaking point, at which adipogenesis leads to an uncontrolled lipotoxicity. This review highlights the types of adipose tissue and their functions, their way of storing lipids until a critical point, which is associated with hypoxia, inflammation, insulin resistance as well as lipodystrophy and adipogenesis modulation by Krüppel-like factors and miRNAs.
Collapse
Affiliation(s)
- Mohammed El Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Mabel Buelna-Chontal
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología "Ignacio Chávez", México City 14080, Mexico.
| |
Collapse
|
10
|
Li Y, Meng Y, Yu X. The Unique Metabolic Characteristics of Bone Marrow Adipose Tissue. Front Endocrinol (Lausanne) 2019; 10:69. [PMID: 30800100 PMCID: PMC6375842 DOI: 10.3389/fendo.2019.00069] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/24/2019] [Indexed: 02/05/2023] Open
Abstract
Bone marrow adipose tissue (MAT) is distinct from white adipose tissue (WAT) or brown adipose tissue (BAT) for its location, feature and function. As a largely ignored adipose depot, it is situated in bone marrow space and resided with bone tissue side-by-side. MAT is considered not only as a regulator of bone metabolism through paracrine, but also as a functionally particular adipose tissue that may contribute to global metabolism. Adipokines, inflammatory factors and other molecules derived from bone marrow adipocytes may exert systematic effects. In this review, we summary the evidence from several aspects including development, distribution, histological features and phenotype to elaborate the basic characteristics of MAT. We discuss the association between bone metabolism and MAT, and highlight our current understanding of this special adipose tissue. We further demonstrate the probable relationship between MAT and energy metabolism, as well as glucose metabolism. On the basis of preliminary results from animal model and clinical studies, we propose that MAT has its unique secretory and metabolic function, although there is no in-depth study at present.
Collapse
Affiliation(s)
- Yujue Li
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Meng
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xijie Yu ;
| |
Collapse
|
11
|
Coutel X, Olejnik C, Marchandise P, Delattre J, Béhal H, Kerckhofs G, Penel G. A Novel microCT Method for Bone and Marrow Adipose Tissue Alignment Identifies Key Differences Between Mandible and Tibia in Rats. Calcif Tissue Int 2018; 103:189-197. [PMID: 29383407 DOI: 10.1007/s00223-018-0397-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022]
Abstract
Bone homeostasis is influenced by the bone marrow adipose tissue (BMAT). BMAT distribution varies from one anatomical location in the skeleton to another. We developed an advanced microfocus computed tomography imaging and analysis protocol that allows accurate alignment of both the BMAT distribution and bone micro-architecture as well as calculation of the distance of the BMAT adipocytes from the bone surface. Using this protocol, we detected a different spatial BMAT distribution between the rat tibia and mandible: in the proximal metaphysis of the tibia a large amount of BMAT (~ 20% of the total BMAT) was located close to the bone surface (< 20 µm), whereas in the alveolar ridge ~ 30% of the total BMAT was located between 40 and 60 µm from the bone surface. In the alveolar ridge of rats, the trabecular bone volume was 48.3% higher compared to the proximal metaphysis of the tibia (p < 0.0001) and the percentage of adiposity determined to the relative marrow volume was lower (1.5%) compared to the proximal metaphysis of the tibia (9%, p = 0.0002). Interestingly, in the tibia a negative correlation was found between the percentage of adiposity in the total volume and the trabecular thickness (r =- 0.74, p = 0.037). The present study highlights that in comparison to tibial proximal metaphysis, the mandibular bone exhibits a massive trabecular network and a low BMAT content with almost no contact with the bone surface. These findings are of great interest because of the importance of the fat-bone interaction and its potential relevance to several resorptive bone diseases.
Collapse
Affiliation(s)
- Xavier Coutel
- Univ.Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, 59000, Lille, France.
| | - Cécile Olejnik
- Univ.Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, 59000, Lille, France
| | - Pierre Marchandise
- Univ.Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, 59000, Lille, France
| | - Jérôme Delattre
- Univ.Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, 59000, Lille, France
| | - Hélène Béhal
- Univ. Lille, CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, Unité de Méthodologie et Biostatistiques, 59000, Lille, France
| | - Greet Kerckhofs
- Department of Development and Regeneration, Skeletal Biology and Engineering Center, KU Leuven, Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Guillaume Penel
- Univ.Lille, Univ. Littoral Côte d'Opale, EA 4490 - PMOI - Physiopathologie des Maladies Osseuses Inflammatoires, 59000, Lille, France
| |
Collapse
|
12
|
Tencerova M, Figeac F, Ditzel N, Taipaleenmäki H, Nielsen TK, Kassem M. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice. J Bone Miner Res 2018; 33:1154-1165. [PMID: 29444341 DOI: 10.1002/jbmr.3408] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/11/2022]
Abstract
Obesity represents a risk factor for development of insulin resistance and type 2 diabetes. In addition, it has been associated with increased adipocyte formation in the bone marrow (BM) along with increased risk for bone fragility fractures. However, little is known on the cellular mechanisms that link obesity, BM adiposity, and bone fragility. Thus, in an obesity intervention study in C57BL/6J mice fed with a high-fat diet (HFD) for 12 weeks, we investigated the molecular and cellular phenotype of bone marrow adipose tissue (BMAT), BM progenitor cells, and BM microenvironment in comparison to peripheral adipose tissue (AT). HFD decreased trabecular bone mass by 29%, cortical thickness by 5%, and increased BM adiposity by 184%. In contrast to peripheral AT, BMAT did not exhibit pro-inflammatory phenotype. BM progenitor cells isolated from HFD mice exhibited decreased mRNA levels of inflammatory genes (Tnfα, IL1β, Lcn2) and did not manifest an insulin resistant phenotype evidenced by normal levels of pAKT after insulin stimulation as well as normal levels of insulin signaling genes. In addition, BM progenitor cells manifested enhanced adipocyte differentiation in HFD condition. Thus, our data demonstrate that BMAT expansion in response to HFD exerts a deleterious effect on the skeleton. Continuous recruitment of progenitor cells to adipogenesis leads to progenitor cell exhaustion, decreased recruitment to osteoblastic cells, and decreased bone formation. In addition, the absence of insulin resistance and inflammation in the BM suggest that BMAT buffers extra energy in the form of triglycerides and thus plays a role in whole-body energy homeostasis. © 2018 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense C, Denmark.,Danish Diabetes Academy, Odense C, Denmark
| | - Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense C, Denmark
| | - Nicholas Ditzel
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense C, Denmark
| | - Hanna Taipaleenmäki
- Molecular Skeletal Biology Laboratory, Department of Trauma, Hand, and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tina Kamilla Nielsen
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense C, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Odense C, Denmark.,Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen, Denmark.,Stem Cell Unit, Department of Anatomy, Faculty of Medicine, King Saud University, Kingdom of Saudi Arabia
| |
Collapse
|