1
|
Mizukami Y, Kawao N, Ohira T, Hashimoto D, Okada K, Matsuo O, Kaji H. Roles of Plasminogen Activator Inhibitor-1 in Heterotopic Ossification Induced by Achilles Tenotomy in Thermal Injured Mice. Calcif Tissue Int 2024; 114:535-549. [PMID: 38467838 DOI: 10.1007/s00223-024-01193-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 03/13/2024]
Abstract
Heterotopic ossification (HO) is the process by which ectopic bone forms at an extraskeletal site. Inflammatory conditions induce plasminogen activator inhibitor 1 (PAI-1), an inhibitor of fibrinolysis, which regulates osteogenesis. In the present study, we investigated the roles of PAI-1 in the pathophysiology of HO induced by trauma/burn treatment using PAI-1-deficient mice. PAI-1 deficiency significantly promoted HO and increased the number of alkaline phosphatase (ALP)-positive cells in Achilles tendons after trauma/burn treatment. The mRNA levels of inflammation markers were elevated in Achilles tendons of both wild-type and PAI-1-deficient mice after trauma/burn treatment and PAI-1 mRNA levels were elevated in Achilles tendons of wild-type mice. PAI-1 deficiency significantly up-regulated the expression of Runx2, Osterix, and type 1 collagen in Achilles tendons 9 weeks after trauma/burn treatment in mice. In in vitro experiments, PAI-1 deficiency significantly increased ALP activity and mineralization in mouse osteoblasts. Moreover, PAI-1 deficiency significantly increased ALP activity and up-regulated osteocalcin expression during osteoblastic differentiation from mouse adipose-tissue-derived stem cells, but suppressed the chondrogenic differentiation of these cells. In conclusion, the present study showed that PAI-1 deficiency promoted HO in Achilles tendons after trauma/burn treatment partly by enhancing osteoblast differentiation and ALP activity in mice. Endogenous PAI-1 may play protective roles against HO after injury and inflammation.
Collapse
Affiliation(s)
- Yuya Mizukami
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Takashi Ohira
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Daiki Hashimoto
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Osamu Matsuo
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Faculty of Medicine, Kindai University, 377-2 Ohnohigashi, Osakasayama, 589-8511, Japan.
| |
Collapse
|
2
|
Juan C, Bancroft AC, Choi JH, Nunez JH, Pagani CA, Lin YS, Hsiao EC, Levi B. Intersections of Fibrodysplasia Ossificans Progressiva and Traumatic Heterotopic Ossification. Biomolecules 2024; 14:349. [PMID: 38540768 PMCID: PMC10968060 DOI: 10.3390/biom14030349] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Heterotopic ossification (HO) is a debilitating pathology where ectopic bone develops in areas of soft tissue. HO can develop as a consequence of traumatic insult or as a result of dysregulated osteogenic signaling, as in the case of the orphan disease fibrodysplasia ossificans progressiva (FOP). Traumatic HO (tHO) formation is mediated by the complex interplay of signaling between progenitor, inflammatory, and nerve cells, among others, making it a challenging process to understand. Research into the pathogenesis of genetically mediated HO (gHO) in FOP has established a pathway involving uninhibited activin-like kinase 2 receptor (ALK2) signaling that leads to downstream osteogenesis. Current methods of diagnosis and treatment lag behind pre-mature HO detection and progressive HO accumulation, resulting in irreversible decreases in range of motion and chronic pain for patients. As such, it is necessary to draw on advancements made in the study of tHO and gHO to better diagnose, comprehend, prevent, and treat both.
Collapse
Affiliation(s)
- Conan Juan
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Alec C. Bancroft
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
- Baylor College of Medicine, Houston, TX 77030, USA
| | - Ji Hae Choi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Johanna H. Nunez
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Chase A. Pagani
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| | - Yen-Sheng Lin
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Edward C. Hsiao
- Division of Endocrinology and Metabolism, Department of Medicine, the Institute for Human Genetics, and the Program in Craniofacial Biology, University of California San Francisco Medical Center, San Francisco, CA 94143, USA;
| | - Benjamin Levi
- Center for Organogenesis, Regeneration, and Trauma, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA (J.H.C.)
| |
Collapse
|
3
|
Cao G, Zhang S, Wang Y, Quan S, Yue C, Yao J, Alexander PG, Tan H. Pathogenesis of acquired heterotopic ossification: Risk factors, cellular mechanisms, and therapeutic implications. Bone 2023; 168:116655. [PMID: 36581258 DOI: 10.1016/j.bone.2022.116655] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
Heterotopic ossification (HO), including hereditary and acquired HO, is the formation of extraskeletal bone in skeletal muscle and surrounding soft tissues. Acquired HO is often caused by range of motion, explosion injury, nerve injury or burns. Severe HO can lead to pain and limited joint activity, affecting functional rehabilitation and quality of life. Increasing evidence shows that inflammatory processes and mesenchymal stem cells (MSCs) can drive HO. However, explicit knowledge about the specific mechanisms that result in HO and related cell precursors is still limited. Moreover, there are no effective methods to prevent or reduce HO formation. In this review, we provide an update of known risk factors and relevant cellular origins for HO. In particular, we focus on the underlying mechanisms of MSCs in acquired HO, which follow the osteogenic program. We also discuss the latest therapeutic value and implications for acquired HO. Our review highlights the current gaps in knowledge regarding the pathogenesis of acquired HO and identifies potential targets for the prevention and treatment of HO.
Collapse
Affiliation(s)
- Guorui Cao
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China.
| | - Shaoyun Zhang
- Department of Orthopedics, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan Province, People's Republic of China
| | - Yixuan Wang
- Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Songtao Quan
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China
| | - Chen Yue
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China
| | - Junna Yao
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China
| | - Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, United States of America.
| | - Honglue Tan
- Department of Knee Surgery, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, Henan Province, People's Republic of China.
| |
Collapse
|
4
|
Tu B, Li J, Sun Z, Zhang T, Liu H, Yuan F, Fan C. Macrophage-Derived TGF-β and VEGF Promote the Progression of Trauma-Induced Heterotopic Ossification. Inflammation 2023; 46:202-216. [PMID: 35986177 DOI: 10.1007/s10753-022-01723-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/17/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
Heterotopic ossification (HO) is a pathological bone formation process caused by musculoskeletal trauma. HO is characterized by aberrant endochondral ossification and angiogenesis. Our previous studies have indicated that macrophage inflammation is involved in traumatic HO formation. In this study, we found that macrophage infiltration and TGF-β signaling activation are presented in human HO. Depletion of macrophages effectively suppressed traumatic HO formation in a HO mice model, and macrophage depletion significantly inhibited the activation of TGF-β/Smad2/3 signaling. In addition, the TGF-β blockade created by a neutralizing antibody impeded ectopic bone formation in vivo. Notably, endochondral ossification and angiogenesis are attenuated following macrophage depletion or TGF-β inhibition. Furthermore, our observations on macrophage polarization revealed that M2 macrophages, rather than M1 macrophages, play a critical role in supporting HO development by enhancing the osteogenic and chondrogenic differentiation of mesenchymal stem cells. Our findings on ectopic bone formation in HO patients and the mice model indicate that M2 macrophages are an important contributor for HO development, and that inhibition of M2 polarization or TGF-β activity may be a potential method of therapy for traumatic HO.
Collapse
Affiliation(s)
- Bing Tu
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Ziyang Sun
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Tongtong Zhang
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Hang Liu
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China
| | - Feng Yuan
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, No. 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
5
|
Bohner M, Maazouz Y, Ginebra MP, Habibovic P, Schoenecker JG, Seeherman H, van den Beucken JJ, Witte F. Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification. Acta Biomater 2022; 145:1-24. [PMID: 35398267 DOI: 10.1016/j.actbio.2022.03.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/15/2022]
Abstract
Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction. STATEMENT OF SIGNIFICANCE: The ability to regenerate bone in a spatially controlled and reproducible manner is an essential prerequisite for the treatment of large bone defects. As such, understanding the mechanism leading to heterotopic ossification (HO), a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues, would be very useful. Unfortunately, the mechanism(s) behind HO is(are) poorly understood. The present study reviews the literature on HO and based on it, proposes that HO can be caused by a combination of inflammation and calcification. This mechanism helps to better understand current strategies to prevent and treat HO. It also shows new opportunities to improve the treatment of bone defects in orthopedic and dental procedures.
Collapse
|
6
|
Tseng HW, Kulina I, Girard D, Gueguen J, Vaquette C, Salga M, Fleming W, Jose B, Millard SM, Pettit AR, Schroder K, Thomas G, Wheeler L, Genêt F, Banzet S, Alexander KA, Lévesque JP. Interleukin-1 Is Overexpressed in Injured Muscles Following Spinal Cord Injury and Promotes Neurogenic Heterotopic Ossification. J Bone Miner Res 2022; 37:531-546. [PMID: 34841579 DOI: 10.1002/jbmr.4482] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Neurogenic heterotopic ossifications (NHOs) form in periarticular muscles after severe spinal cord (SCI) and traumatic brain injuries. The pathogenesis of NHO is poorly understood with no effective preventive treatment. The only curative treatment remains surgical resection of pathological NHOs. In a mouse model of SCI-induced NHO that involves a transection of the spinal cord combined with a muscle injury, a differential gene expression analysis revealed that genes involved in inflammation such as interleukin-1β (IL-1β) were overexpressed in muscles developing NHO. Using mice knocked-out for the gene encoding IL-1 receptor (IL1R1) and neutralizing antibodies for IL-1α and IL-1β, we show that IL-1 signaling contributes to NHO development after SCI in mice. Interestingly, other proteins involved in inflammation that were also overexpressed in muscles developing NHO, such as colony-stimulating factor-1, tumor necrosis factor, or C-C chemokine ligand-2, did not promote NHO development. Finally, using NHO biopsies from SCI and TBI patients, we show that IL-1β is expressed by CD68+ macrophages. IL-1α and IL-1β produced by activated human monocytes promote calcium mineralization and RUNX2 expression in fibro-adipogenic progenitors isolated from muscles surrounding NHOs. Altogether, these data suggest that interleukin-1 promotes NHO development in both humans and mice. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Hsu-Wen Tseng
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Irina Kulina
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Dorothée Girard
- Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France.,INSERM UMR-MD 1197, Université de Paris-Saclay, Gif-sur-Yvette, France
| | - Jules Gueguen
- Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France.,INSERM UMR-MD 1197, Université de Paris-Saclay, Gif-sur-Yvette, France
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, Australia.,Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| | - Marjorie Salga
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia.,Unité Péri Opératoire du Handicap (UPOH), PMR Department, Versailles Saint-Quentin-en-Yvelines University (UVSQ); UFR Simone Veil - Santé, END: ICAP, INSERM U1179, Hôpital Raymond-Poincaré, Assistance Publique - Hôpitaux de Paris (AP-HP), Garches, France.,Université de Versailles Saint-Quentin-en-Yvelines (UVSQ); UFR Simone Veil - Santé, END: ICAP, INSERM U1179, Montigny-le-Bretonneux, France
| | - Whitney Fleming
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Beulah Jose
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Susan M Millard
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Allison R Pettit
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, Saint Lucia, Australia
| | - Gethin Thomas
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Australia
| | - Lawrie Wheeler
- The University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Australia
| | - François Genêt
- Unité Péri Opératoire du Handicap (UPOH), PMR Department, Versailles Saint-Quentin-en-Yvelines University (UVSQ); UFR Simone Veil - Santé, END: ICAP, INSERM U1179, Hôpital Raymond-Poincaré, Assistance Publique - Hôpitaux de Paris (AP-HP), Garches, France.,Université de Versailles Saint-Quentin-en-Yvelines (UVSQ); UFR Simone Veil - Santé, END: ICAP, INSERM U1179, Montigny-le-Bretonneux, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), Clamart, France.,INSERM UMR-MD 1197, Université de Paris-Saclay, Gif-sur-Yvette, France
| | - Kylie A Alexander
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| | - Jean-Pierre Lévesque
- Mater Research Institute - The University of Queensland, Woolloongabba, Australia
| |
Collapse
|
7
|
Alexander KA, Tseng HW, Kulina I, Fleming W, Vaquette C, Genêt F, Ruitenberg MJ, Lévesque JP. Lymphocytes Are Not Required for Neurogenic Heterotopic Ossification Development after Spinal Cord Injury. Neurotrauma Rep 2022; 3:87-96. [PMID: 35317305 PMCID: PMC8935476 DOI: 10.1089/neur.2021.0072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Neurogenic heterotopic ossifications (NHOs) are incapacitating complications of traumatic brain and spinal cord injuries (SCI) that manifest as abnormal bone formation in periarticular muscles. Using a unique model of NHO after SCI in genetically unmodified mice, we have previously established that the innate immune system plays a key driving role in NHO pathogenesis. The role of adaptive immune cells in NHO pathogenesis, however, remains unexplored in this model. Here we established that B lymphocytes were reduced in the spleen and blood after SCI and increased in muscles of mice in which NHO develops, whereas minimal changes in T cell frequencies were noted. Interestingly, Rag1-/- mice lacking mature T and B lymphocytes, developed NHO, similar to wild-type mice. Finally, mice that underwent splenectomy before SCI and muscle damage also developed NHO to the same extent as non-splenectomized SCI controls. Overall, our findings show that functional T and B lymphocytes have minimal influence or dispensable contributions to NHO development after experimental SCI in mice.
Collapse
Affiliation(s)
- Kylie A. Alexander
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Irina Kulina
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Whitney Fleming
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Herston, QLD, Australia
| | - François Genêt
- UPOH (Unité Péri Opératoire du Handicap, Perioperative Disability Unit), Physical and Rehabilitation Medicine department, Raymond-Poincaré Hospital, Assistance Publique–Hôpitaux de Paris (AP-HP), Garches, France
- Versailles Saint-Quentin-en-Yvelines University (UVSQ); UFR Simone Veil—Santé, END: ICAP, Inserm U1179, Montigny-le-Bretonneux, France
| | | | - Jean-Pierre Lévesque
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
8
|
MyD88 Is Not Required for Muscle Injury-Induced Endochondral Heterotopic Ossification in a Mouse Model of Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9060630. [PMID: 34206078 PMCID: PMC8227787 DOI: 10.3390/biomedicines9060630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.
Collapse
|
9
|
Alexander KA, Tseng HW, Salga M, Genêt F, Levesque JP. When the Nervous System Turns Skeletal Muscles into Bones: How to Solve the Conundrum of Neurogenic Heterotopic Ossification. Curr Osteoporos Rep 2020; 18:666-676. [PMID: 33085000 DOI: 10.1007/s11914-020-00636-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Neurogenic heterotopic ossification (NHO) is the abnormal formation of extra-skeletal bones in periarticular muscles after damage to the central nervous system (CNS) such as spinal cord injury (SCI), traumatic brain injury (TBI), stroke, or cerebral anoxia. The purpose of this review is to summarize recent developments in the understanding of NHO pathophysiology and pathogenesis. Recent animal models of NHO and recent findings investigating the communication between CNS injury, tissue inflammation, and upcoming NHO therapeutics are discussed. RECENT FINDINGS Animal models of NHO following TBI or SCI have shown that NHO requires the combined effects of a severe CNS injury and soft tissue damage, in particular muscular inflammation and the infiltration of macrophages into damaged muscles plays a key role. In the context of a CNS injury, the inflammatory response to soft tissue damage is exaggerated and persistent with excessive signaling via substance P-, oncostatin M-, and TGF-β1-mediated pathways. This review provides an overview of the known animal models and mechanisms of NHO and current therapeutic interventions for NHO patients. While some of the inflammatory mechanisms leading to NHO are common with other forms of traumatic and genetic heterotopic ossifications (HO), NHOs uniquely involve systemic changes in response to CNS injury. Future research into these CNS-mediated mechanisms is likely to reveal new targetable pathways to prevent NHO development in patients.
Collapse
Affiliation(s)
- Kylie A Alexander
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Marjorie Salga
- Department of Physical Medicine and Rehabilitation, CIC 1429, Raymond Poincaré Hospital, APHP, Garches, France
- END:ICAP U1179 INSERM, University of Versailles Saint Quentin en Yvelines, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - François Genêt
- Department of Physical Medicine and Rehabilitation, CIC 1429, Raymond Poincaré Hospital, APHP, Garches, France
- END:ICAP U1179 INSERM, University of Versailles Saint Quentin en Yvelines, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Jean-Pierre Levesque
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
10
|
Pulik Ł, Dyrek N, Piwowarczyk A, Jaśkiewicz K, Sarzyńska S, Łęgosz P. The update on scales and questionnaires used to assess cervical spine disorders. PHYSICAL THERAPY REVIEWS 2020. [DOI: 10.1080/10833196.2020.1814124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Łukasz Pulik
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
| | - Nicola Dyrek
- Student Scientific Association of Reconstructive and Oncology Orthopaedics of the Department of Orthopedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Piwowarczyk
- Student Scientific Association of Reconstructive and Oncology Orthopaedics of the Department of Orthopedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
| | - Kaja Jaśkiewicz
- Department and Clinic of Internal Diseases, Pneumonology, and Allergology, Medical University of Warsaw, Warsaw, Poland
| | - Sylwia Sarzyńska
- Student Scientific Association of Reconstructive and Oncology Orthopaedics of the Department of Orthopedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
| | - Paweł Łęgosz
- Department of Orthopedics and Traumatology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Pulik Ł, Mierzejewski B, Ciemerych MA, Brzóska E, Łęgosz P. The Survey of Cells Responsible for Heterotopic Ossification Development in Skeletal Muscles-Human and Mouse Models. Cells 2020; 9:cells9061324. [PMID: 32466405 PMCID: PMC7349686 DOI: 10.3390/cells9061324] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 12/18/2022] Open
Abstract
Heterotopic ossification (HO) manifests as bone development in the skeletal muscles and surrounding soft tissues. It can be caused by injury, surgery, or may have a genetic background. In each case, its development might differ, and depending on the age, sex, and patient's conditions, it could lead to a more or a less severe outcome. In the case of the injury or surgery provoked ossification development, it could be, to some extent, prevented by treatments. As far as genetic disorders are concerned, such prevention approaches are highly limited. Many lines of evidence point to the inflammatory process and abnormalities in the bone morphogenetic factor signaling pathway as the molecular and cellular backgrounds for HO development. However, the clear targets allowing the design of treatments preventing or lowering HO have not been identified yet. In this review, we summarize current knowledge on HO types, its symptoms, and possible ways of prevention and treatment. We also describe the molecules and cells in which abnormal function could lead to HO development. We emphasize the studies involving animal models of HO as being of great importance for understanding and future designing of the tools to counteract this pathology.
Collapse
Affiliation(s)
- Łukasz Pulik
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland;
| | - Bartosz Mierzejewski
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland; (B.M.); (M.A.C.)
| | - Maria A. Ciemerych
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland; (B.M.); (M.A.C.)
| | - Edyta Brzóska
- Department of Cytology, Faculty of Biology, University of Warsaw, Miecznikowa 1 St, 02-096 Warsaw, Poland; (B.M.); (M.A.C.)
- Correspondence: (E.B.); (P.Ł.); Tel.: +48-22-5542-203 (E.B.); +48-22-5021-514 (P.Ł.)
| | - Paweł Łęgosz
- Department of Orthopaedics and Traumatology, Medical University of Warsaw, Lindley 4 St, 02-005 Warsaw, Poland;
- Correspondence: (E.B.); (P.Ł.); Tel.: +48-22-5542-203 (E.B.); +48-22-5021-514 (P.Ł.)
| |
Collapse
|
12
|
The effect of celecoxib in traumatic heterotopic ossification around temporomandibular joint in mice. Osteoarthritis Cartilage 2020; 28:502-515. [PMID: 32061965 DOI: 10.1016/j.joca.2020.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/15/2019] [Accepted: 01/17/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE In this study, the role of inflammation in traumatic heterotopic ossification around temporomandibular joint (THO-TMJ), as well as the preventive and treatment effect of celecoxib in THO-TMJ both in vivo and in vitro were explored. DESIGN A surgically-induced THO-TMJ mouse model and a co-culture model of ATDC-5 or MC3T3-E1 and RAW-264.7 cells were used in this study for in vivo and in vitro research. RESULTS A series of inflammatory factors, such as CD3, CD68, CD20, IL-10, IL-6 and TNF-α, were activated 48 h after trauma in a THO-TMJ model. Local trauma initiated systemic inflammatory responses as well as T cell- and macrophage-mediated local inflammatory responses around TMJ. In addition, expression of COX-2 was significantly elevated. The findings also showed that local injection of celecoxib could effectively alleviate the inflammatory response around TMJ at the early stage of trauma and inhibit the formation of THO-TMJ in vivo. Meanwhile, celecoxib could inhibit chondrogenic differentiation of ATDC-5 and osteogenic differentiation of MC3T3-E1 under inflammatory condition in vitro. Furthermore, celecoxib could inhibit the expression of Bmpr1b in the injured condylar cartilage at the initiation stage of THO-TMJ, which implied that Bmpr1b expressed by the residual condylar cartilage might be related to the pathogenesis of THO-TMJ. CONCLUSIONS Inflammation played a crucial role in the pathogenesis of THO-TMJ, and anti-inflammation might be a possible choice to inhibit THO-TMJ, which provided scientific clues for the mechanisms, pharmacotherapy and molecular intervention of THO-TMJ.
Collapse
|
13
|
Inhibition of immune checkpoints prevents injury-induced heterotopic ossification. Bone Res 2019; 7:33. [PMID: 31700694 PMCID: PMC6823457 DOI: 10.1038/s41413-019-0074-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/06/2019] [Accepted: 08/18/2019] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO), true bone formation in soft tissue, is closely associated with abnormal injury/immune responses. We hypothesized that a key underlying mechanism of HO might be injury-induced dysregulation of immune checkpoint proteins (ICs). We found that the earliest stages of HO are characterized by enhanced infiltration of polarized macrophages into sites of minor injuries in an animal model of HO. The non-specific immune suppressants, Rapamycin and Ebselen, prevented HO providing evidence of the central role of the immune responses. We examined the expression pattern of ICs and found that they are dysregulated in HO lesions. More importantly, loss of function of inhibitory ICs (including PD1, PD-L1, and CD152) markedly inhibited HO, whereas loss of function of stimulatory ICs (including CD40L and OX-40L) facilitated HO. These findings suggest that IC inhibitors may provide a therapeutic approach to prevent or limit the extent of HO.
Collapse
|
14
|
Alexander KA, Tseng HW, Fleming W, Jose B, Salga M, Kulina I, Millard SM, Pettit AR, Genêt F, Levesque JP. Inhibition of JAK1/2 Tyrosine Kinases Reduces Neurogenic Heterotopic Ossification After Spinal Cord Injury. Front Immunol 2019; 10:377. [PMID: 30899259 PMCID: PMC6417366 DOI: 10.3389/fimmu.2019.00377] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/14/2019] [Indexed: 12/20/2022] Open
Abstract
Neurogenic heterotopic ossifications (NHO) are very incapacitating complications of traumatic brain and spinal cord injuries (SCI) which manifest as abnormal formation of bone tissue in periarticular muscles. NHO are debilitating as they cause pain, partial or total joint ankylosis and vascular and nerve compression. NHO pathogenesis is unknown and the only effective treatment remains surgical resection, however once resected, NHO can re-occur. To further understand NHO pathogenesis, we developed the first animal model of NHO following SCI in genetically unmodified mice, which mimics most clinical features of NHO in patients. We have previously shown that the combination of (1) a central nervous system lesion (SCI) and (2) muscular damage (via an intramuscular injection of cardiotoxin) is required for NHO development. Furthermore, macrophages within the injured muscle play a critical role in driving NHO pathogenesis. More recently we demonstrated that macrophage-derived oncostatin M (OSM) is a key mediator of both human and mouse NHO. We now report that inflammatory monocytes infiltrate the injured muscles of SCI mice developing NHO at significantly higher levels compared to mice without SCI. Muscle infiltrating monocytes and neutrophils expressed OSM whereas mouse muscle satellite and interstitial cell expressed the OSM receptor (OSMR). In vitro recombinant mouse OSM induced tyrosine phosphorylation of the transcription factor STAT3, a downstream target of OSMR:gp130 signaling in muscle progenitor cells. As STAT3 is tyrosine phosphorylated by JAK1/2 tyrosine kinases downstream of OSMR:gp130, we demonstrated that the JAK1/2 tyrosine kinase inhibitor ruxolitinib blocked OSM driven STAT3 tyrosine phosphorylation in mouse muscle progenitor cells. We further demonstrated in vivo that STAT3 tyrosine phosphorylation was not only significantly higher but persisted for a longer duration in injured muscles of SCI mice developing NHO compared to mice with muscle injury without SCI. Finally, administration of ruxolitinib for 7 days post-surgery significantly reduced STAT3 phosphorylation in injured muscles in vivo as well as NHO volume at all analyzed time-points up to 3 weeks post-surgery. Our results identify the JAK/STAT3 signaling pathway as a potential therapeutic target to reduce NHO development following SCI.
Collapse
Affiliation(s)
- Kylie A Alexander
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Whitney Fleming
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Beulah Jose
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Marjorie Salga
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia.,CIC-IT 1429, Service de Médecine Physique et de Réadaptation, Raymond Poincaré University Hospital, AP-HP, Garches, France
| | - Irina Kulina
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Susan M Millard
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Allison R Pettit
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| | - François Genêt
- CIC-IT 1429, Service de Médecine Physique et de Réadaptation, Raymond Poincaré University Hospital, AP-HP, Garches, France.,Université de Versailles Saint Quentin en Yvelines, END:ICAP Inserm U1179, Montigny le Bretonneux, France
| | - Jean-Pierre Levesque
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|