1
|
Zheng S, Zhao X, Wu H, Cuan X, Cheng X, He D. Molecular Subtypes and Immune Microenvironment Characterization of the Annulus Fibrosus in Intervertebral Disc Degeneration: Insights From Translation Factor-Related Gene Analysis. JOR Spine 2025; 8:e70064. [PMID: 40196451 PMCID: PMC11974580 DOI: 10.1002/jsp2.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/05/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Objective This study aims to examine the role of translation factors (TF) in intervertebral disc degeneration (IVDD) and to evaluate their clinical relevance through unsupervised clustering methods. Methods Gene expression data were retrieved from the GEO database, and the expression levels of translation factor-related genes (TFGs) were extracted for analysis. Results Two distinct molecular clusters were identified based on the differential expression of nine significantly altered TFGs. Immune infiltration was notably higher in Cluster C2 compared to Cluster C1. Subsequently, two gene clusters were identified based on the differentially expressed genes between the clusters. A Sankey diagram illustrated a high degree of consistency between the molecular clusters and the gene clusters. Additionally, four machine learning models were developed and evaluated, with the SVM model being utilized to construct a nomogram for predicting the incidence of IVDD. Validation using external datasets and clinical samples confirmed the low expression of EEF2K, which was further analyzed in a pan-cancer context. Conclusion The identification and comprehensive assessment of the two molecular clusters offer significant insights for the classification and treatment of individuals with IVDD.
Collapse
Affiliation(s)
- Sikuan Zheng
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
- Institute of Orthopedics of Jiangxi ProvinceNanchangJiangxi ProvinceChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseaseNanchangJiangxi ProvinceChina
| | - Xiaokun Zhao
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
- Institute of Orthopedics of Jiangxi ProvinceNanchangJiangxi ProvinceChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseaseNanchangJiangxi ProvinceChina
| | - Hui Wu
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
- Institute of Orthopedics of Jiangxi ProvinceNanchangJiangxi ProvinceChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseaseNanchangJiangxi ProvinceChina
| | - Xuhui Cuan
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
| | - Xigao Cheng
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
- Institute of Orthopedics of Jiangxi ProvinceNanchangJiangxi ProvinceChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseaseNanchangJiangxi ProvinceChina
| | - Dingwen He
- Department of OrthopedicsThe Second Affiliated Hospital of Nanchang UniversityNanchangJiangxi ProvinceChina
- Institute of Orthopedics of Jiangxi ProvinceNanchangJiangxi ProvinceChina
- Institute of Minimally Invasive OrthopedicsNanchang UniversityNanchangJiangxi ProvinceChina
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord DiseaseNanchangJiangxi ProvinceChina
| |
Collapse
|
2
|
Román-Trufero M, Kleijn IT, Blighe K, Zhou J, Saavedra-García P, Gaffar A, Christoforou M, Bellotti A, Abrahams J, Atrih A, Lamont D, Gierlinski M, Jayaprakash P, Michel AM, Aboagye EO, Yuneva M, Masson GR, Shahrezaei V, Auner HW. An ISR-independent role of GCN2 prevents excessive ribosome biogenesis and mRNA translation. Life Sci Alliance 2025; 8:e202403014. [PMID: 40032489 PMCID: PMC11876863 DOI: 10.26508/lsa.202403014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/05/2025] Open
Abstract
The integrated stress response (ISR) is a corrective physiological programme to restore cellular homeostasis that is based on the attenuation of global protein synthesis and a resource-enhancing transcriptional programme. GCN2 is the oldest of four kinases that are activated by diverse cellular stresses to trigger the ISR and acts as the primary responder to amino acid shortage and ribosome collisions. Here, using a broad multi-omics approach, we uncover an ISR-independent role of GCN2. GCN2 inhibition or depletion in the absence of discernible stress causes excessive protein synthesis and ribosome biogenesis, perturbs the cellular translatome, and results in a dynamic and broad loss of metabolic homeostasis. Cancer cells that rely on GCN2 to keep protein synthesis in check under conditions of full nutrient availability depend on GCN2 for survival and unrestricted tumour growth. Our observations describe an ISR-independent role of GCN2 in regulating the cellular proteome and translatome and suggest new avenues for cancer therapies based on unleashing excessive mRNA translation.
Collapse
Affiliation(s)
- Mónica Román-Trufero
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Istvan T Kleijn
- Department of Mathematics, Imperial College London, London, UK
| | | | - Jinglin Zhou
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Paula Saavedra-García
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Abigail Gaffar
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Marilena Christoforou
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Axel Bellotti
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Joel Abrahams
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Abdelmadjid Atrih
- FingerPrints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Douglas Lamont
- FingerPrints Proteomics Facility, School of Life Sciences, University of Dundee, Dundee, UK
| | - Marek Gierlinski
- Data Analysis Group, Division of Computational Biology, School of Life Sciences, University of Dundee, Dundee, UK
| | | | | | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| | | | - Glenn R Masson
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK
| | | | - Holger W Auner
- Division of Haematology and Central Haematology Laboratory, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Hugh and Josseline Langmuir Centre for Myeloma Research, Department of Immunology and Inflammation, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Piecyk M, Ferraro-Peyret C, Laville D, Perros F, Chaveroux C. Novel insights into the GCN2 pathway and its targeting. Therapeutic value in cancer and lessons from lung fibrosis development. FEBS J 2024; 291:4867-4889. [PMID: 38879870 DOI: 10.1111/febs.17203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 11/14/2024]
Abstract
Defining the mechanisms that allow cells to adapt to environmental stress is critical for understanding the progression of chronic diseases and identifying relevant drug targets. Among these, activation of the pathway controlled by the eIF2-alpha kinase GCN2 is critical for translational and metabolic reprogramming of the cell in response to various metabolic, proteotoxic, and ribosomal stressors. However, its role has frequently been investigated through the lens of a stress pathway signaling via the eIF2α-activating transcription factor 4 (ATF4) downstream axis, while recent advances in the field have revealed that the GCN2 pathway is more complex than previously thought. Indeed, this kinase can be activated through a variety of mechanisms, phosphorylate substrates other than eIF2α, and regulate cell proliferation in a steady state. This review presents recent findings regarding the fundamental mechanisms underlying GCN2 signaling and function, as well as the development of drugs that modulate its activity. Furthermore, by comparing the literature on GCN2's antagonistic roles in two challenging pathologies, cancer and pulmonary diseases, the benefits, and drawbacks of GCN2 targeting, particularly inhibition, are discussed.
Collapse
Affiliation(s)
- Marie Piecyk
- Department of Biochemistry and Molecular Biology, Hospices Civils de Lyon, Lyon Sud Hospital, Pierre-Bénite, France
- Center for Innovation in Cancerology of Lyon (CICLY) EA 3738, Faculty of Medicine and Maieutic Lyon Sud, University Lyon I, Oullins, France
| | - Carole Ferraro-Peyret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, France
- Hospices Civils de Lyon, Plateforme AURAGEN, France
| | - David Laville
- Department of Pathology, Hospices Civils de Lyon, East Hospital Group, Bron, France
| | - Frédéric Perros
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, University of Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Cedric Chaveroux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, France
| |
Collapse
|
4
|
Stegen S, Carmeliet G. Metabolic regulation of skeletal cell fate and function. Nat Rev Endocrinol 2024; 20:399-413. [PMID: 38499689 DOI: 10.1038/s41574-024-00969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/20/2024]
Abstract
Bone development and bone remodelling during adult life are highly anabolic processes requiring an adequate supply of oxygen and nutrients. Bone-forming osteoblasts and bone-resorbing osteoclasts interact closely to preserve bone mass and architecture and are often located close to blood vessels. Chondrocytes within the developing growth plate ensure that bone lengthening occurs before puberty, but these cells function in an avascular environment. With ageing, numerous bone marrow adipocytes appear, often with negative effects on bone properties. Many studies have now indicated that skeletal cells have specific metabolic profiles that correspond to the nutritional microenvironment and their stage-specific functions. These metabolic networks provide not only skeletal cells with sufficient energy, but also biosynthetic intermediates that are necessary for proliferation and extracellular matrix synthesis. Moreover, these metabolic pathways control redox homeostasis to avoid oxidative stress and safeguard cell survival. Finally, several intracellular metabolites regulate the activity of epigenetic enzymes and thus control the fate and function of skeletal cells. The metabolic profile of skeletal cells therefore not only reflects their cellular state, but can also drive cellular activity. Insight into skeletal cell metabolism will thus not only advance our understanding of skeletal development and homeostasis, but also of skeletal disorders, such as osteoarthritis, diabetic bone disease and bone malignancies.
Collapse
Affiliation(s)
- Steve Stegen
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
| |
Collapse
|
5
|
Xiao Y, Xie X, Chen Z, Yin G, Kong W, Zhou J. Advances in the roles of ATF4 in osteoporosis. Biomed Pharmacother 2023; 169:115864. [PMID: 37948991 DOI: 10.1016/j.biopha.2023.115864] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Osteoporosis (OP) is characterized by reduced bone mass, decreased strength, and enhanced bone fragility fracture risk. Activating transcription factor 4 (ATF4) plays a role in cell differentiation, proliferation, apoptosis, redox balance, amino acid uptake, and glycolipid metabolism. ATF4 induces the differentiation of bone marrow mesenchymal stem cells (BM-MSCs) into osteoblasts, increases osteoblast activity, and inhibits osteoclast formation, promoting bone formation and remodeling. In addition, ATF4 mediates the energy metabolism in osteoblasts and promotes angiogenesis. ATF4 is also involved in the mediation of adipogenesis. ATF4 can selectively accumulate in osteoblasts. ATF4 can directly interact with RUNT-related transcription factor 2 (RUNX2) and up-regulate the expression of osteocalcin (OCN) and osterix (Osx). Several upstream factors, such as Wnt/β-catenin and BMP2/Smad signaling pathways, have been involved in ATF4-mediated osteoblast differentiation. ATF4 promotes osteoclastogenesis by mediating the receptor activator of nuclear factor κ-B (NF-κB) ligand (RANKL) signaling. Several agents, such as parathyroid (PTH), melatonin, and natural compounds, have been reported to regulate ATF4 expression and mediate bone metabolism. In this review, we comprehensively discuss the biological activities of ATF4 in maintaining bone homeostasis and inhibiting OP development. ATF4 has become a therapeutic target for OP treatment.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Department of Orthopaetics, First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Xunlu Xie
- Department of Pathology, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Zhixi Chen
- Department of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Guoqiang Yin
- Ganzhou Hospital Affiliated to Nanchang University, Ganzhou 341000, China
| | - Weihao Kong
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
6
|
Lungu O, Toscani D, Burroughs-Garcia J, Giuliani N. The Metabolic Features of Osteoblasts: Implications for Multiple Myeloma (MM) Bone Disease. Int J Mol Sci 2023; 24:ijms24054893. [PMID: 36902326 PMCID: PMC10003241 DOI: 10.3390/ijms24054893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The study of osteoblast (OB) metabolism has recently received increased attention due to the considerable amount of energy used during the bone remodeling process. In addition to glucose, the main nutrient for the osteoblast lineages, recent data highlight the importance of amino acid and fatty acid metabolism in providing the fuel necessary for the proper functioning of OBs. Among the amino acids, it has been reported that OBs are largely dependent on glutamine (Gln) for their differentiation and activity. In this review, we describe the main metabolic pathways governing OBs' fate and functions, both in physiological and pathological malignant conditions. In particular, we focus on multiple myeloma (MM) bone disease, which is characterized by a severe imbalance in OB differentiation due to the presence of malignant plasma cells into the bone microenvironment. Here, we describe the most important metabolic alterations involved in the inhibition of OB formation and activity in MM patients.
Collapse
Affiliation(s)
- Oxana Lungu
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | | | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Hematology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy
- Correspondence:
| |
Collapse
|
7
|
Chlebek C, Rosen CJ. The Role of Bone Cell Energetics in Altering Bone Quality and Strength in Health and Disease. Curr Osteoporos Rep 2023; 21:1-10. [PMID: 36435911 DOI: 10.1007/s11914-022-00763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW Bone quality and strength are diminished with age and disease but can be improved by clinical intervention. Energetic pathways are essential for cellular function and drive osteogenic signaling within bone cells. Altered bone quality is associated with changes in the energetic activity of bone cells following diet-based or therapeutic interventions. Energetic pathways may directly or indirectly contribute to changes in bone quality. The goal of this review is to highlight tissue-level and bioenergetic changes in bone health and disease. RECENT FINDINGS Bone cell energetics are an expanding field of research. Early literature primarily focused on defining energetic activation throughout the lifespan of bone cells. Recent studies have begun to connect bone energetic activity to health and disease. In this review, we highlight bone cell energetic demands, the effect of substrate availability on bone quality, altered bioenergetics associated with disease treatment and development, and additional biological factors influencing bone cell energetics. Bone cells use several energetic pathways during differentiation and maturity. The orchestration of bioenergetic pathways is critical for healthy cell function. Systemic changes in substrate availability alter bone quality, potentially due to the direct effects of altered bone cell bioenergetic activity. Bone cell bioenergetics may also contribute directly to the development and treatment of skeletal diseases. Understanding the role of energetic pathways in the cellular response to disease will improve patient treatment.
Collapse
Affiliation(s)
- Carolyn Chlebek
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA
| | - Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, USA.
| |
Collapse
|
8
|
Abstract
Amino acid metabolism regulates essential cellular functions, not only by fueling protein synthesis, but also by supporting the biogenesis of nucleotides, redox factors and lipids. Amino acids are also involved in tricarboxylic acid cycle anaplerosis, epigenetic modifications, next to synthesis of neurotransmitters and hormones. As such, amino acids contribute to a broad range of cellular processes such as proliferation, matrix synthesis and intercellular communication, which are all critical for skeletal cell functioning. Here we summarize recent work elucidating how amino acid metabolism supports and regulates skeletal cell function during bone growth and homeostasis, as well as during skeletal disease. The most extensively studied amino acid is glutamine, and osteoblasts and chondrocytes rely heavily on this non-essential amino acid during for their functioning and differentiation. Regulated by lineage-specific transcription factors such as SOX9 and osteoanabolic agents such as parathyroid hormone or WNT, glutamine metabolism has a wide range of metabolic roles, as it fuels anabolic processes by producing nucleotides and non-essential amino acids, maintains redox balance by generating the antioxidant glutathione and regulates cell-specific gene expression via epigenetic mechanisms. We also describe how other amino acids affect skeletal cell functions, although further work is needed to fully understand their effect. The increasing number of studies using stable isotope labelling in several skeletal cell types at various stages of differentiation, together with conditional inactivation of amino acid transporters or enzymes in mouse models, will allow us to obtain a more complete picture of amino acid metabolism in skeletal cells.
Collapse
Affiliation(s)
| | | | - Steve Stegen
- Corresponding author at: Clinical and Experimental Endocrinology, KU Leuven, O&N1bis, Herestraat 49 box 902, 3000 Leuven, Belgium.
| |
Collapse
|
9
|
Jiménez JA, Lawlor ER, Lyssiotis CA. Amino acid metabolism in primary bone sarcomas. Front Oncol 2022; 12:1001318. [PMID: 36276057 PMCID: PMC9581121 DOI: 10.3389/fonc.2022.1001318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/19/2022] [Indexed: 12/30/2022] Open
Abstract
Primary bone sarcomas, including osteosarcoma (OS) and Ewing sarcoma (ES), are aggressive tumors with peak incidence in childhood and adolescence. The intense standard treatment for these patients consists of combined surgery and/or radiation and maximal doses of chemotherapy; a regimen that has not seen improvement in decades. Like other tumor types, ES and OS are characterized by dysregulated cellular metabolism and a rewiring of metabolic pathways to support the biosynthetic demands of malignant growth. Not only are cancer cells characterized by Warburg metabolism, or aerobic glycolysis, but emerging work has revealed a dependence on amino acid metabolism. Aside from incorporation into proteins, amino acids serve critical functions in redox balance, energy homeostasis, and epigenetic maintenance. In this review, we summarize current studies describing the amino acid metabolic requirements of primary bone sarcomas, focusing on OS and ES, and compare these dependencies in the normal bone and malignant tumor contexts. We also examine insights that can be gleaned from other cancers to better understand differential metabolic susceptibilities between primary and metastatic tumor microenvironments. Lastly, we discuss potential metabolic vulnerabilities that may be exploited therapeutically and provide better-targeted treatments to improve the current standard of care.
Collapse
Affiliation(s)
- Jennifer A. Jiménez
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Elizabeth R. Lawlor
- Department of Pediatrics, University of Washington, Seattle, WA, United States,Seattle Children’s Research Institute, Seattle, WA, United States,*Correspondence: Elizabeth R. Lawlor, ; Costas A. Lyssiotis,
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States,Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan Medical School, Ann Arbor, MI, United States,*Correspondence: Elizabeth R. Lawlor, ; Costas A. Lyssiotis,
| |
Collapse
|
10
|
Role of Essential Amino Acids in Age-Induced Bone Loss. Int J Mol Sci 2022; 23:ijms231911281. [PMID: 36232583 PMCID: PMC9569615 DOI: 10.3390/ijms231911281] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Age-induced osteoporosis is a global problem. Essential amino acids (EAAs) work as an energy source and a molecular pathway modulator in bone, but their functions have not been systematically reviewed in aging bone. This study aimed to discuss the contribution of EAAs on aging bone from in vitro, in vivo, and human investigations. In aged people with osteoporosis, serum EAAs were detected changing up and down, without a well-established conclusion. The supply of EAAs in aged people either rescued or did not affect bone mineral density (BMD) and bone volume. In most signaling studies, EAAs were proven to increase bone mass. Lysine, threonine, methionine, tryptophan, and isoleucine can increase osteoblast proliferation, activation, and differentiation, and decrease osteoclast activity. Oxidized L-tryptophan promotes bone marrow stem cells (BMSCs) differentiating into osteoblasts. However, the oxidation product of tryptophan called kynurenine increases osteoclast activity, and enhances the differentiation of adipocytes from BMSCs. Taken together, in terms of bone minerals and volume, more views consider EAAs to have a positive effect on aging bone, but the function of EAAs in bone metabolism has not been fully demonstrated and more studies are needed in this area in the future.
Collapse
|
11
|
Shen L, Yu Y, Karner CM. SLC38A2 provides proline and alanine to regulate postnatal bone mass accrual in mice. Front Physiol 2022; 13:992679. [PMID: 36213239 PMCID: PMC9538353 DOI: 10.3389/fphys.2022.992679] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
Amino acids have recently emerged as important regulators of osteoblast differentiation and bone formation. Osteoblasts require a continuous supply of amino acids to sustain biomass production to fuel cell proliferation, osteoblast differentiation and bone matrix production. We recently identified proline as an essential amino acid for bone development by fulfilling unique synthetic demands that are associated with osteoblast differentiation. Osteoblasts rely on the amino acid transporter SLC38A2 to provide proline to fuel endochondral ossification. Despite this, very little is known about the function or substrates of SLC38A2 during bone homeostasis. Here we demonstrate that the neutral amino acid transporter SLC38A2 is expressed in osteoblast lineage cells and provides proline and alanine to osteoblast lineage cells. Genetic ablation of SLC38A2 using Prrx1Cre results in decreased bone mass in both male and female mice due to a reduction in osteoblast numbers and bone forming activity. Decreased osteoblast numbers are attributed to impaired proliferation and osteogenic differentiation of skeletal stem and progenitor cells. Collectively, these data highlight the necessity of SLC38A2-mediated proline and alanine uptake during postnatal bone formation and bone homeostasis.
Collapse
Affiliation(s)
- Leyao Shen
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yilin Yu
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Courtney M. Karner
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, United States
- *Correspondence: Courtney M. Karner,
| |
Collapse
|
12
|
Shen L, Yu Y, Zhou Y, Pruett-Miller SM, Zhang GF, Karner CM. SLC38A2 provides proline to fulfil unique synthetic demands arising during osteoblast differentiation and bone formation. eLife 2022; 11:76963. [PMID: 35261338 PMCID: PMC9007586 DOI: 10.7554/elife.76963] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular differentiation is associated with the acquisition of a unique protein signature which is essential to attain the ultimate cellular function and activity of the differentiated cell. This is predicted to result in unique biosynthetic demands that arise during differentiation. Using a bioinformatic approach, we discovered osteoblast differentiation is associated with increased demand for the amino acid proline. When compared to other differentiated cells, osteoblast-associated proteins including RUNX2, OSX, OCN and COL1A1 are significantly enriched in proline. Using a genetic and metabolomic approach, we demonstrate that the neutral amino acid transporter SLC38A2 acts cell autonomously to provide proline to facilitate the efficient synthesis of proline-rich osteoblast proteins. Genetic ablation of SLC38A2 in osteoblasts limits both osteoblast differentiation and bone formation in mice. Mechanistically, proline is primarily incorporated into nascent protein with little metabolism observed. Collectively, these data highlight a requirement for proline in fulfilling the unique biosynthetic requirements that arise during osteoblast differentiation and bone formation.
Collapse
Affiliation(s)
- Leyao Shen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yilin Yu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Yunji Zhou
- Department of Biostatistics and Bioinformatics, Duke University, Durham, United States
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St Jude Children's Research Hospital, Memphis, United States
| | - Guo-Fang Zhang
- Sarah W Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, United States
| | - Courtney M Karner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Osteoblasts are responsible for bone matrix production during bone development and homeostasis. Much is known about the transcriptional regulation and signaling pathways governing osteoblast differentiation. However, less is known about how osteoblasts obtain or utilize nutrients to fulfill the energetic demands associated with osteoblast differentiation and bone matrix synthesis. The goal of this review is to highlight and discuss what is known about the role and regulation of bioenergetic metabolism in osteoblasts with a focus on more recent studies. RECENT FINDINGS Bioenergetic metabolism has emerged as an important regulatory node in osteoblasts. Recent studies have begun to identify the major nutrients and bioenergetic pathways favored by osteoblasts as well as their regulation during differentiation. Here, we highlight how osteoblasts obtain and metabolize glucose, amino acids, and fatty acids to provide energy and other metabolic intermediates. In addition, we highlight the signals that regulate nutrient uptake and metabolism and focus on how energetic metabolism promotes osteoblast differentiation. Bioenergetic metabolism provides energy and other metabolites that are critical for osteoblast differentiation and activity. This knowledge contributes to a more comprehensive understanding of osteoblast biology and may inform novel strategies to modulate osteoblast differentiation and bone anabolism in patients with bone disorders.
Collapse
Affiliation(s)
- Leyao Shen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guoli Hu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Courtney M Karner
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
14
|
Ye J, Xiao J, Wang J, Ma Y, Zhang Y, Zhang Q, Zhang Z, Yin H. The Interaction Between Intracellular Energy Metabolism and Signaling Pathways During Osteogenesis. Front Mol Biosci 2022; 8:807487. [PMID: 35155568 PMCID: PMC8832142 DOI: 10.3389/fmolb.2021.807487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
Osteoblasts primarily mediate bone formation, maintain bone structure, and regulate bone mineralization, which plays an important role in bone remodeling. In the past decades, the roles of cytokines, signaling proteins, and transcription factors in osteoblasts have been widely studied. However, whether the energy metabolism of cells can be regulated by these factors to affect the differentiation and functioning of osteoblasts has not been explored in depth. In addition, the signaling and energy metabolism pathways are not independent but closely connected. Although energy metabolism is mediated by signaling pathways, some intermediates of energy metabolism can participate in protein post-translational modification. The content of intermediates, such as acetyl coenzyme A (acetyl CoA) and uridine diphosphate N-acetylglucosamine (UDP-N-acetylglucosamine), determines the degree of acetylation and glycosylation in terms of the availability of energy-producing substrates. The utilization of intracellular metabolic resources and cell survival, proliferation, and differentiation are all related to the integration of metabolic and signaling pathways. In this paper, the interaction between the energy metabolism pathway and osteogenic signaling pathway in osteoblasts and bone marrow mesenchymal stem cells (BMSCs) will be discussed.
Collapse
Affiliation(s)
- Jiapeng Ye
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Jirimutu Xiao
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, China
| | - Jianwei Wang
- Department of Orthopedics and Traumatology, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- *Correspondence: Jianwei Wang, ; Heng Yin,
| | - Yong Ma
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Yafeng Zhang
- Department of Orthopedics and Traumatology, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
| | - Qiang Zhang
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Zongrui Zhang
- Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Heng Yin
- Department of Orthopedics and Traumatology, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, China
- *Correspondence: Jianwei Wang, ; Heng Yin,
| |
Collapse
|
15
|
Sun W, Yan J, Ma H, Wu J, Zhang Y. Autophagy-Dependent Ferroptosis-Related Signature is Closely Associated with the Prognosis and Tumor Immune Escape of Patients with Glioma. Int J Gen Med 2022; 15:253-270. [PMID: 35023963 PMCID: PMC8747759 DOI: 10.2147/ijgm.s343046] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
Background Ferroptosis is an autophagy-dependent form of cell death, sometimes called “ferritinophagy”. Its related pathway has been proven to regulate the programmed death of glioma stem cells. Mining autophagy-dependent ferroptosis-related gene (AD-FRG) signature could facilitate the discovery of mechanisms and therapeutic targets showing drug resistance to chemotherapeutic drugs. Methods We exhaustively searched HADB, MSigDB and FerrDb datasets and obtained 25 genes confirmed to exist in autophagy and ferroptosis death pathways. Glioma gene expression and clinicopathological data were collected from TCGA and CGGA datasets. Results Lasso regression and Cox regression analysis were carried out to construct a nine AD-FRGs signature (SIRT1, MTDH, HSPB1, CISD2, HMOX1, ATG7, MTOR, PRKAA2 and EIF2AK4). ROC curve showed that nine genes signature could effectively predict 1- (AUC = 0.869), 3- (AUC = 0.922) and 5-year (AUC = 0.870) survival rates. Immunohistochemical images confirmed the protein expression level of the gene model. The prognostic nomogram of risk score, age, WHO grade, isocitrate dehydrogenase (IDH) wild-type condition, 1p/19q co-deletion state was built. The calibration curve demonstrated that the prediction of the nomogram is highly consistent with the actual results. Moreover, tumor microenvironment analysis showed that the high-risk group was associated with high immune infiltration status and high tumor purity. Correlation analysis showed that the expression of SIRT1, CISD2 and HSPB1 might be related to macrophage infiltration and immunotolerance in glioma tissues. Conclusion Based on autophagy-dependent ferroptosis-related genes, we established gene signature and nomogram that maybe effectively predict the overall survival rate of glioma and correlate with the immunosuppressive tumor microenvironment (TME).
Collapse
Affiliation(s)
- Wenjie Sun
- Laboratory of Molecular Neurobiology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Junqiang Yan
- Laboratory of Molecular Neurobiology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Hongxia Ma
- Laboratory of Molecular Neurobiology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Jiannan Wu
- Laboratory of Molecular Neurobiology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Yongjiang Zhang
- Laboratory of Molecular Neurobiology, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, People's Republic of China
| |
Collapse
|
16
|
Sharma D, Yu Y, Shen L, Zhang GF, Karner CM. SLC1A5 provides glutamine and asparagine necessary for bone development in mice. eLife 2021; 10:71595. [PMID: 34647520 PMCID: PMC8553342 DOI: 10.7554/elife.71595] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/12/2021] [Indexed: 12/03/2022] Open
Abstract
Osteoblast differentiation is sequentially characterized by high rates of proliferation followed by increased protein and matrix synthesis, processes that require substantial amino acid acquisition and production. How osteoblasts obtain or maintain intracellular amino acid production is poorly understood. Here, we identify SLC1A5 as a critical amino acid transporter during bone development. Using a genetic and metabolomic approach, we show SLC1A5 acts cell autonomously to regulate protein synthesis and osteoblast differentiation. SLC1A5 provides both glutamine and asparagine which are essential for osteoblast differentiation. Mechanistically, glutamine and to a lesser extent asparagine support amino acid biosynthesis. Thus, osteoblasts depend on Slc1a5 to provide glutamine and asparagine, which are subsequently used to produce non-essential amino acids and support osteoblast differentiation and bone development.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States
| | - Yilin Yu
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Leyao Shen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Guo-Fang Zhang
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Duke University Medical Center, Durham, United States.,Department of Medicine, Duke University School of Medicine, Durham, United States
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, United States.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States.,Charles and Jane Pak Center for Mineral Metabolism and Clinical Research. University of Texas Southwestern Medical Center at Dallas, Dallas, United States
| |
Collapse
|
17
|
Jin D, Wek SA, Kudlapur NT, Cantara WA, Bakhtina M, Wek RC, Musier-Forsyth K. Disease-associated mutations in a bifunctional aminoacyl-tRNA synthetase gene elicit the integrated stress response. J Biol Chem 2021; 297:101203. [PMID: 34537243 PMCID: PMC8511952 DOI: 10.1016/j.jbc.2021.101203] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the charging of specific amino acids onto cognate tRNAs, an essential process for protein synthesis. Mutations in ARSs are frequently associated with a variety of human diseases. The human EPRS1 gene encodes a bifunctional glutamyl-prolyl-tRNA synthetase (EPRS) with two catalytic cores and appended domains that contribute to nontranslational functions. In this study, we report compound heterozygous mutations in EPRS1, which lead to amino acid substitutions P14R and E205G in two patients with diabetes and bone diseases. While neither mutation affects tRNA binding or association of EPRS with the multisynthetase complex, E205G in the glutamyl-tRNA synthetase (ERS) region of EPRS is defective in amino acid activation and tRNAGlu charging. The P14R mutation induces a conformational change and altered tRNA charging kinetics in vitro. We propose that the altered catalytic activity and conformational changes in the EPRS variants sensitize patient cells to stress, triggering an increased integrated stress response (ISR) that diminishes cell viability. Indeed, patient-derived cells expressing the compound heterozygous EPRS show heightened induction of the ISR, suggestive of disruptions in protein homeostasis. These results have important implications for understanding ARS-associated human disease mechanisms and development of new therapeutics.
Collapse
Affiliation(s)
- Danni Jin
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA
| | - Sheree A Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis Indiana, USA
| | - Nathan T Kudlapur
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA
| | - William A Cantara
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis Indiana, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus Ohio, USA.
| |
Collapse
|
18
|
Suzuki A, Iwata J. Amino acid metabolism and autophagy in skeletal development and homeostasis. Bone 2021; 146:115881. [PMID: 33578033 PMCID: PMC8462526 DOI: 10.1016/j.bone.2021.115881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
Bone is an active organ that is continuously remodeled throughout life via formation and resorption; therefore, a fine-tuned bone (re)modeling is crucial for bone homeostasis and is closely connected with energy metabolism. Amino acids are essential for various cellular functions as well as an energy source, and their synthesis and catabolism (e.g., metabolism of carbohydrates and fatty acids) are regulated through numerous enzymatic cascades. In addition, the intracellular levels of amino acids are maintained by autophagy, a cellular recycling system for proteins and organelles; under nutrient deprivation conditions, autophagy is strongly induced to compensate for cellular demands and to restore the amino acid pool. Metabolites derived from amino acids are known to be precursors of bioactive molecules such as second messengers and neurotransmitters, which control various cellular processes, including cell proliferation, differentiation, and homeostasis. Thus, amino acid metabolism and autophagy are tightly and reciprocally regulated in our bodies. This review discusses the current knowledge and potential links between bone diseases and deficiencies in amino acid metabolism and autophagy.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Shen L, Sharma D, Yu Y, Long F, Karner CM. Biphasic regulation of glutamine consumption by WNT during osteoblast differentiation. J Cell Sci 2021; 134:jcs251645. [PMID: 33262314 PMCID: PMC7823158 DOI: 10.1242/jcs.251645] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/19/2020] [Indexed: 01/01/2023] Open
Abstract
Osteoblasts are the principal bone-forming cells. As such, osteoblasts have enhanced demand for amino acids to sustain high rates of matrix synthesis associated with bone formation. The precise systems utilized by osteoblasts to meet these synthetic demands are not well understood. WNT signaling is known to rapidly stimulate glutamine uptake during osteoblast differentiation. Using a cell biology approach, we identified two amino acid transporters, γ(+)-LAT1 and ASCT2 (encoded by Slc7a7 and Slc1a5, respectively), as the primary transporters of glutamine in response to WNT. ASCT2 mediates the majority of glutamine uptake, whereas γ(+)-LAT1 mediates the rapid increase in glutamine uptake in response to WNT. Mechanistically, WNT signals through the canonical β-catenin (CTNNB1)-dependent pathway to rapidly induce Slc7a7 expression. Conversely, Slc1a5 expression is regulated by the transcription factor ATF4 downstream of the mTORC1 pathway. Targeting either Slc1a5 or Slc7a7 using shRNA reduced WNT-induced glutamine uptake and prevented osteoblast differentiation. Collectively, these data highlight the critical nature of glutamine transport for WNT-induced osteoblast differentiation.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Leyao Shen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Deepika Sharma
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yilin Yu
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopaedics, The Children's Hospital of Philadelphia, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Courtney M Karner
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
20
|
van Gastel N, Carmeliet G. Metabolic regulation of skeletal cell fate and function in physiology and disease. Nat Metab 2021; 3:11-20. [PMID: 33398192 DOI: 10.1038/s42255-020-00321-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023]
Abstract
The skeleton is diverse in its functions, which include mechanical support, movement, blood cell production, mineral storage and endocrine regulation. This multifaceted role is achieved through an interplay of osteoblasts, chondrocytes, bone marrow adipocytes and stromal cells, all generated from skeletal stem cells. Emerging evidence shows the importance of cellular metabolism in the molecular control of the skeletal system. The different skeletal cell types not only have distinct metabolic demands relating to their particular functions but also are affected by microenvironmental constraints. Specific metabolites control skeletal stem cell maintenance, direct lineage allocation and mediate cellular communication. Here, we discuss recent findings on the roles of cellular metabolism in determining skeletal stem cell fate, coordinating osteoblast and chondrocyte function, and organizing stromal support of haematopoiesis. We also consider metabolic dysregulation in skeletal ageing and degenerative diseases, and provide an outlook on how the field may evolve in the coming years.
Collapse
Affiliation(s)
- Nick van Gastel
- de Duve Institute, Brussels, Belgium.
- Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| | - Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Yashin AI, Wu D, Arbeev K, Yashkin AP, Akushevich I, Bagley O, Duan M, Ukraintseva S. Roles of interacting stress-related genes in lifespan regulation: insights for translating experimental findings to humans. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2021; 5:357-379. [PMID: 34825130 PMCID: PMC8612394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
AIM Experimental studies provided numerous evidence that caloric/dietary restriction may improve health and increase the lifespan of laboratory animals, and that the interplay among molecules that sense cellular stress signals and those regulating cell survival can play a crucial role in cell response to nutritional stressors. However, it is unclear whether the interplay among corresponding genes also plays a role in human health and lifespan. METHODS Literature about roles of cellular stressors have been reviewed, such as amino acid deprivation, and the integrated stress response (ISR) pathway in health and aging. Single nucleotide polymorphisms (SNPs) in two candidate genes (GCN2/EIF2AK4 and CHOP/DDIT3) that are closely involved in the cellular stress response to amino acid starvation, have been selected using information from experimental studies. Associations of these SNPs and their interactions with human survival in the Health and Retirement Study data have been estimated. The impact of collective associations of multiple interacting SNP pairs on survival has been evaluated, using a recently developed composite index: the SNP-specific Interaction Polygenic Risk Score (SIPRS). RESULTS Significant interactions have been found between SNPs from GCN2/EIF2AK4 and CHOP/DDI3T genes that were associated with survival 85+ compared to survival between ages 75 and 85 in the total sample (males and females combined) and in females only. This may reflect sex differences in genetic regulation of the human lifespan. Highly statistically significant associations of SIPRS [constructed for the rs16970024 (GCN2/EIF2AK4) and rs697221 (CHOP/DDIT3)] with survival in both sexes also been found in this study. CONCLUSION Identifying associations of the genetic interactions with human survival is an important step in translating the knowledge from experimental to human aging research. Significant associations of multiple SNPxSNP interactions in ISR genes with survival to the oldest old age that have been found in this study, can help uncover mechanisms of multifactorial regulation of human lifespan and its heterogeneity.
Collapse
|