1
|
Kumar N, Priyadarshi H, Parhi J, Pandey PK, Kumar D. Acute toxicity of mercury in response to metallothionein expression and oxidative and cellular metabolic stress in Barbonymus gonionotus. Sci Rep 2025; 15:12022. [PMID: 40199902 PMCID: PMC11978849 DOI: 10.1038/s41598-025-95697-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
Mercury (Hg) is one of the most harmful contaminates posing significant health risks to ecosystems worldwide. Fish, recognized for its affordability and accessibility, serves as a vital source of protein for the global population. To understand the impact of Hg exposure, an experiment was conducted using Barbonymus gonionotus (average weight: 9.64 ± 0.76 g) to determine the median lethal concentration (96 h-LC50) and the definitive dose of Hg. This study employed a static, non-renewable bio-assay to assess acute toxicity, using Hg concentrations of 0.3, 0.4, 0.5, 0.6, and 0.7 mg L⁻¹ in the definitive acute toxicity test. These concentrations were further evaluated for their effects on stress and cellular biomarkers, including metallothionein expression, oxidative stress indicators, histopathology, and bioaccumulation. Metallothionein (MT) expression in the liver was evaluated at 48 and 96 h, while oxidative stress markers were assessed in the liver, gill, kidney, and brain tissues. Additionally, glycolytic enzyme activity in the liver, gill, muscle, and kidney, as well as protein metabolic enzymes in the liver, gill, and kidney, were examined over the 96-hour exposure period to understand the effects of Hg at varying concentrations on B. gonionotus. Histopathological changes in the liver and gill and observed, along with the bioaccumulation of Hg in experimental water and different fish tissues. The study concluded that acute Hg exposure caused significant adverse effects on metallothionein expression, stress biomarkers, and the cellular and metabolic activities of B. gonionotus.
Collapse
Affiliation(s)
- Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India.
| | - Himanshu Priyadarshi
- College of Fisheries, Central Agriculture University (Imphal), Lembuchera, Agartala, Tripura, 799210, India
| | - Janmejay Parhi
- College of Fisheries, Central Agriculture University (Imphal), Lembuchera, Agartala, Tripura, 799210, India
| | - Pramod Kumar Pandey
- College of Fisheries, Central Agriculture University (Imphal), Lembuchera, Agartala, Tripura, 799210, India
| | - Devendra Kumar
- College of Fisheries, Central Agriculture University (Imphal), Lembuchera, Agartala, Tripura, 799210, India
| |
Collapse
|
2
|
Martins RX, Carvalho M, Maia ME, Flor B, Souza T, Rocha TL, Félix LM, Farias D. 2,4-D Herbicide-Induced Hepatotoxicity: Unveiling Disrupted Liver Functions and Associated Biomarkers. TOXICS 2024; 12:35. [PMID: 38250991 PMCID: PMC10818579 DOI: 10.3390/toxics12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
2,4-dichlorophenoxyacetic acid (2,4-D) is a widely used herbicide worldwide and is frequently found in water samples. This knowledge has prompted studies on its effects on non-target organisms, revealing significant alterations to liver structure and function. In this review, we evaluated the literature on the hepatotoxicity of 2,4-D, focusing on morphological damages, toxicity biomarkers and affected liver functions. Searches were conducted on PubMed, Web of Science and Scopus and 83 articles were selected after curation. Among these studies, 72% used in vivo models and 30% used in vitro models. Additionally, 48% used the active ingredient, and 35% used commercial formulations in exposure experiments. The most affected biomarkers were related to a decrease in antioxidant capacity through alterations in the activities of catalase, superoxide dismutase and the levels of malondialdehyde. Changes in energy metabolism, lipids, liver function, and xenobiotic metabolism were also identified. Furthermore, studies about the effects of 2,4-D in mixtures with other pesticides were found, as well as hepatoprotection trials. The reviewed data indicate the essential role of reduction in antioxidant capacity and oxidative stress in 2,4-D-induced hepatotoxicity. However, the mechanism of action of the herbicide is still not fully understood and further research in this area is necessary.
Collapse
Affiliation(s)
- Rafael Xavier Martins
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Matheus Carvalho
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Maria Eduarda Maia
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Bruno Flor
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Terezinha Souza
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia 74055-110, Brazil;
| | - Luís M. Félix
- Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- Inov4Agro, Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Davi Farias
- Post-Graduation Program in Biochemistry, Department of Biochemistry and Molecular Biology, Building 907, Campus Pici, Federal University of Ceará, Fortaleza 60455-970, Brazil; (R.X.M.); (M.E.M.)
- Laboratory for Risk Assessment of Novel Technologies, Department of Molecular Biology, Federal University of Paraiba, João Pessoa 58050-085, Brazil; (M.C.); (B.F.); (T.S.)
| |
Collapse
|
3
|
Liang X, Csenki Z, Ivánovics B, Bock I, Csorbai B, Molnár J, Vásárhelyi E, Griffitts J, Ferincz Á, Urbányi B, Ács A. Biochemical Marker Assessment of Chronic Carbamazepine Exposure at Environmentally Relevant Concentrations in Juvenile Common Carp ( Cyprinus carpio). Antioxidants (Basel) 2022; 11:antiox11061136. [PMID: 35740033 PMCID: PMC9219654 DOI: 10.3390/antiox11061136] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Worldwide, the anticonvulsant drug carbamazepine (CBZ) is the most frequently identified pharmaceutical residue detected in rivers. Reported chronic effects of CBZ in non-target freshwater organisms, particularly fish, include oxidative stress and damage to liver tissues. Studies on CBZ effects in fish are mostly limited to zebrafish and rainbow trout studies. Furthermore, there are only a few chronic CBZ studies using near environmental concentrations. In this study, we provide data on subacute effects of CBZ exposure (28 days) to common carp (Cyprinus carpio), employing a set of biochemical markers of damage and exposure. CBZ was found to induce a significant change in the hepatic antioxidant status of fish subjected to 5 µg/L. Moreover, with increasing concentrations, enzymatic and non-enzymatic biomarkers of oxidative defence (catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), DNA strand breaks)), toxicant biotransformation (ethoxyresorufin-o-demethylase (EROD), glutathione-S-transferase (GST)), and organ and tissue damage (lactate dehydrogenase (LDH), cetylcholinesterase (AChE)) were altered. The AChE, LDH, and lipid peroxidation (LPO) results indicate the occurrence of apoptotic process activation and tissue damage after 28 days of exposure to CBZ. These findings suggest significant adverse effects of CBZ exposure to common carp at concentrations often found in surface waters.
Collapse
Affiliation(s)
- Xinyue Liang
- Department of Freshwater Fish Ecology, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (X.L.); (Á.F.)
| | - Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (Z.C.); (B.I.); (I.B.); (E.V.); (J.G.)
| | - Bence Ivánovics
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (Z.C.); (B.I.); (I.B.); (E.V.); (J.G.)
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (Z.C.); (B.I.); (I.B.); (E.V.); (J.G.)
| | - Balázs Csorbai
- Department of Aquaculture, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (B.C.); (J.M.); (B.U.)
| | - József Molnár
- Department of Aquaculture, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (B.C.); (J.M.); (B.U.)
| | - Erna Vásárhelyi
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (Z.C.); (B.I.); (I.B.); (E.V.); (J.G.)
| | - Jeffrey Griffitts
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (Z.C.); (B.I.); (I.B.); (E.V.); (J.G.)
| | - Árpád Ferincz
- Department of Freshwater Fish Ecology, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (X.L.); (Á.F.)
| | - Béla Urbányi
- Department of Aquaculture, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (B.C.); (J.M.); (B.U.)
| | - András Ács
- Department of Freshwater Fish Ecology, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., H-2100 Gödöllő, Hungary; (X.L.); (Á.F.)
- Correspondence:
| |
Collapse
|
4
|
García-Medina S, Galar-Martínez M, Cano-Viveros S, Ruiz-Lara K, Gómez-Oliván LM, Islas-Flores H, Gasca-Pérez E, Pérez-Pastén-Borja R, Arredondo-Tamayo B, Hernández-Varela J, Chanona-Pérez JJ. Bioaccumulation and oxidative stress caused by aluminium nanoparticles and the integrated biomarker responses in the common carp (Cyprinus carpio). CHEMOSPHERE 2022; 288:132462. [PMID: 34626656 DOI: 10.1016/j.chemosphere.2021.132462] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The use of nanoparticles (NPs) in various industries has experienced significant growth due to the advantages they offer, so the increase in their use has generated the continuous discharge of these products in numerous water bodies, which can affect the organisms that inhabit them. Previous studies have shown that Al is capable of producing oxidative stress in aquatic organisms; however, so far the impact of AlNP on hydrobionts is limited. Therefore, the objective of this work was to determine the oxidative stress produced by AlNP in liver, gill and blood of Cyprinus carpio, as well as their bioconcentration factor (BCF) in various tissues. For this purpose, the organisms were exposed to 50 μg L-1 AlNP for 12-96 h. Subsequently, the tissues were obtained and the activity of antioxidant enzymes, oxidative damage to lipids and proteins were determined, and the BCF was calculated for liver, brain, gill and muscle. The results showed alterations in the activity of antioxidant enzymes and increased levels of lipoperoxidation, hydroperoxides and oxidized proteins. When establishing the integrated biomarker response, it was observed that the liver is the most affected organ and these effects are related to the Al content in the tissue. Finally, it was observed that muscle and gills presented a higher BCF, compared to brain and liver. These findings show that AlNP are capable of generating oxidative stress in carp, affecting tissue function and accumulating, which represents an important risk for the health of fish such as common carp.
Collapse
Affiliation(s)
- Sandra García-Medina
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico.
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico.
| | - Selene Cano-Viveros
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Karina Ruiz-Lara
- Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col, Residencial Colón, Toluca, Estado de México, 50120, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col, Residencial Colón, Toluca, Estado de México, 50120, Mexico
| | - Eloy Gasca-Pérez
- Cátedra CONACYT, Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Ricardo Pérez-Pastén-Borja
- Laboratorio de Toxicología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Benjamín Arredondo-Tamayo
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - Josué Hernández-Varela
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| | - José Jorge Chanona-Pérez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu, Esq. Manuel L. Stampa s/n, Gustavo A. Madero, Ciudad de México, 07738, Mexico
| |
Collapse
|
5
|
Leitão RG, Silva MP, Diniz MS, Guerra M. Mapping the distribution of mercury (II) chloride in zebrafish organs by benchtop micro-energy dispersive X-ray fluorescence: A proof of concept. J Trace Elem Med Biol 2022; 69:126874. [PMID: 34700157 DOI: 10.1016/j.jtemb.2021.126874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 09/06/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Mercury (Hg) is a globally ubiquitous pollutant and one of the most dangerous metal contaminants, which presents a high risk of bioaccumulation in living organisms. In this study, we mapped the distribution of Hg and other trace elements in zebrafish (Danio rerio), which were exposed to mercury (II) chloride in order to assess its toxicity, bioaccumulation and distribution in fish organs. METHODS Adult zebrafish were exposed for 7 days to different concentrations of mercury (II) chloride and the elemental distribution was obtained through the micro-energy dispersive X-ray fluorescence technique (μ-EDXRF). RESULTS The results showed that Hg levels, measured in fish tissues, were indicative of bioaccumulation within some of its organs (e.g. visceral mass, gills), and that the physiological processes of accumulation were highly dose-dependent. In addition, the results showed higher concentrations of Hg in the gills. Moreover, other trace elements (e.g. Fe, Cu and Zn) levels were not altered after fish exposure to mercury(II) chloride. CONCLUSION The μ-EDXRF results were assessed along with the determination of some oxidative stress biomarkers (e.g. antioxidant enzymes) to understand the effects behind the Hg bioaccumulation and toxicity. These results suggest that the metabolic changes in zebrafish due to the exposure to Hg are consistent with oxidative stress.
Collapse
Affiliation(s)
- Roberta G Leitão
- LIBPhys - UNL, Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics, Physics Department, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal.
| | - Maria P Silva
- LIBPhys - UNL, Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics, Physics Department, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Mario S Diniz
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry/Department of Life Sciences, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Mauro Guerra
- LIBPhys - UNL, Laboratory for Instrumentation, Biomedical Engineering and Radiation Physics, Physics Department, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
6
|
Quiroga-Santos EH, Galar-Martínez M, García-Medina S, Gasca-Pérez E, Cano-Viveros S, Ruíz-Lara K, Gómez-Oliván LM, Islas-Flores H. Geno-cytotoxicity and congenital malformations produced by relevant environmental concentrations of aluminum, diclofenac and their mixture on Cyprinus carpio. An interactions study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103555. [PMID: 33309951 DOI: 10.1016/j.etap.2020.103555] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Several studies highlight the presence of aluminum and diclofenac in water bodies around the world and their ability to induce oxidative stress and a negative effect on biomolecules in several aquatic species. However, studies evaluating the toxic effect of mixtures of these contaminants are scarce. The objective of this work was to determine the genotoxic, cytotoxic and embryotoxic effect of the mixture of aluminum and diclofenac at environmentally relevant concentrations on Cyprinus carpio. Juveniles of Cyprinus carpio were exposed to 0.31 μg L-1 of diclofenac, 24.45 mg L-1 of aluminum, and a mixture of both contaminants at the same concentrations for 12, 24, 48, 72 and 96 h. After the exposure time the liver, gills and blood were extracted and the following biomarkers were evaluated: micronucleus frequency, comet assay, caspase activity and TUNEL test. On the other hand, Cyprinus carpio embryos were exposed to diclofenac (0.31 μg L-1), aluminum (0.06 mg L-1) and their mixture at the same concentrations and exposure time. Microscopic observation was performed to evaluate embryonic development at 12, 24, 48, 72 and 96 h. Diclofenac (0.31 μg L-1) induces significant increases in micronucleus frequency with respect to control (p < 0.05), in all tissues. Aluminum (24.45 mg L-1) significantly increases DNA damage index in liver and blood cells with respect to control (p < 0.05). All treatments increase caspases activity in all tissues with respect to control (p < 0.05). Diclofenac increases the percentage of TUNEL-positive cells in liver and blood; while aluminum and the mixture increases it significantly in gills and blood with respect to the control (p < 0.05). The mixture significantly delays embryonic development, while aluminum and the mixture significantly increase teratogenic index with respect to control (p < 0.05). In conclusion, exposure to environmental concentrations of aluminium, diclofenac and their mixture induces genotoxic damage, cell death by apoptosis and negative effects on the development of Cyprinus carpio and the toxic response is modified by the interaction of the xenobiotics.
Collapse
Affiliation(s)
- Eldher Hissadam Quiroga-Santos
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, México D.F., Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, México D.F., Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, México D.F., Mexico.
| | - Eloy Gasca-Pérez
- Cátedra CONACYT, Laboratorio de Toxicología Acuática, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, México City, Mexico
| | - Selene Cano-Viveros
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, México D.F., Mexico
| | - Karina Ruíz-Lara
- Laboratorio de Toxicología Acuática, Sección de Graduados e Investigación, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y Cerrada de Manuel Stampa, Col. Industrial Vallejo, C.P. 007700, México D.F., Mexico
| | - Leobardo Manuel Gómez-Oliván
- Universidad Autónoma del Estado de México, Facultad de Química, Departamento de Farmacia. Paseo Tollocan, esq. Paseo Colón, Toluca, Estado de México, C. P. 50100, Mexico
| | - Hariz Islas-Flores
- Universidad Autónoma del Estado de México, Facultad de Química, Departamento de Farmacia. Paseo Tollocan, esq. Paseo Colón, Toluca, Estado de México, C. P. 50100, Mexico
| |
Collapse
|
7
|
Es Ruiz de Arcaute C, Ossana NA, Pérez-Iglesias JM, Soloneski S, Larramendy ML. Auxinic herbicides induce oxidative stress on Cnesterodon decemmaculatus (Pisces: Poeciliidae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20485-20498. [PMID: 31102211 DOI: 10.1007/s11356-019-05169-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Pesticides might increase the production of reactive oxygen species (ROS). Dicamba (DIC) and 2,4-dichlorophenoxyacetic acid (2,4-D) are auxinic herbicides commonly applied in agroecosystems to control unwanted weeds. We analysed the oxidative damage exerted on the fish Cnesterodon decemmaculatus by an acute exposure to DIC- and 2,4-D-based herbicides formulations Banvel® and DMA®, respectively. The Endo III- and Fpg-modified alkaline comet assay was employed for detecting DNA damage caused by oxidative stress, whereas enzymatic and non-enzymatic biomarkers such as the activities of catalase (CAT), glutathione-S-transferase (GST), acetylcholinesterase (AChE), and glutathione content (GSH) were used to assess antioxidant response to these two herbicides. At the DNA level, results demonstrate that both auxinic herbicides induce oxidative damage at purines level. An increase on CAT and GST activities were detected in 48 h- and 96 h-treated specimens with both auxinics. GSH content decreased in fish exposed to DIC during 48 h and to 2,4-D after 96 h of exposure. Additionally, a diminished AChE activity in specimens treated with DIC and 2,4-D was observed only after 96 h. Total protein content decreased in fish exposed to both auxinics during 96 h. These results represent the first evaluation of oxidative damage related to DIC and 2,4-D exposure on a fish species as the Neotropical freshwater teleost C. decemmaculatus.
Collapse
Affiliation(s)
- Celeste Es Ruiz de Arcaute
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia A Ossana
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Programa de Ecofisiología Aplicada, Instituto de Ecología y Desarrollo Sustentable (PRODEA-INEDES), Universidad Nacional de Lujan, C.C. 221, Luján, Argentina
| | - Juan Manuel Pérez-Iglesias
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Sonia Soloneski
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo L Larramendy
- Cátedra de Citología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 64 Nro. 3 (esq. 120), B1904AMA, La Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Gasca-Pérez E, Galar-Martínez M, García-Medina S, Pérez-Coyotl IA, Ruiz-Lara K, Cano-Viveros S, Pérez-Pastén Borja R, Gómez-Oliván LM. Short-term exposure to carbamazepine causes oxidative stress on common carp (Cyprinus carpio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:96-103. [PMID: 30639901 DOI: 10.1016/j.etap.2018.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
The aim of this research was to determine the bioconcentration factor and if subacute exposure to carbamazepine (2 mg L-1) modifies the oxidative state of liver, gills and brain of Cyprinus carpio. This was measured through the following biomarkers: hydroperoxide and protein carbonyl content, lipid peroxidation degree, as well as superoxide dismutase, catalase and glutathione peroxidase activity. Carbamazepine concentration in carp's tissue was also determined by liquid chromatography with a diode arrangement detector. An increase in lipid peroxidation degree, hydroperoxide and protein carbonyl content, and a decrease in the activity of the antioxidant enzymes (P < 0.05) with respect to control was observed. Also, there is an increase in the concentration of carbamazepina present in the organs with respect to the water in the system, which denotes bioconcentration of the drug. In conclusion, carbamazepine is bioconcentrated and produces oxidative stress on the common carp (C. carpio).
Collapse
Affiliation(s)
- Eloy Gasca-Pérez
- Cátedra CONACYT, Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico; Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico.
| | - Marcela Galar-Martínez
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico.
| | - Sandra García-Medina
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico
| | - Isabel A Pérez-Coyotl
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico
| | - Karina Ruiz-Lara
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico
| | - Selene Cano-Viveros
- Laboratory of Aquatic Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico
| | - Ricardo Pérez-Pastén Borja
- Laboratory of Molecular and Cellular Toxicology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, AV. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo., Ciudad de México, CP, 07700, Mexico
| | - Leobardo M Gómez-Oliván
- Laboratory of Environmental Toxicology, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| |
Collapse
|
9
|
Serdar O, Yildirim NC, Tatar S, Yildirim N, Ogedey A. Antioxidant biomarkers in Gammarus pulex to evaluate the efficiency of electrocoagulation process in landfill leachate treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:12538-12544. [PMID: 29464603 DOI: 10.1007/s11356-018-1491-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
The discharge of landfill leachate into the environment without effective treatment poses a serious threat for the aquatic ecosystems. This present study was undertaken to evaluate whether electrocoagulation process is efficient for treatment landfill leachate (LL) or not by using antioxidant biomarkers in Gammarus pulex. Glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), and catalase (CAT) activities and malondialdehyde (MDA) and glutathione (GSH) levels in G. pulex exposed to untreated, treated, and diluted rates 1/10 and 1/20 in both LL during 24 and 96 h were tested. Physiochemical characteristics of leachate (chemical oxygen demand, electrical conductivity, pH, phosphate, turbidity, NH3, Cl-, and color) were determined pre and post treatment. All physiochemical characteristics of LL decreased after treatment process. GSH-Px and CAT activities and GSH and MDA levels were increased in untreated groups when compared to control (p < 0.05). After treatment by electrocoagulation, MDA and GSH levels and CAT activities were returned to control values. In conclusion, the abilities of LL to stimulate oxidative stress in G. pulex have been proven. The results revealed that antioxidant parameters are useful biomarkers for determining the treatment efficiency of the electrocoagulation process.
Collapse
Affiliation(s)
- Osman Serdar
- Fisheries Faculty, Munzur University, 62000, Tunceli, Turkey
| | - Nuran Cikcikoglu Yildirim
- Department of Environmental Engineering, Faculty of Engineering, Munzur University, 62000, Tunceli, Turkey
| | - Sule Tatar
- Department of Environmental Engineering, Faculty of Engineering, Munzur University, 62000, Tunceli, Turkey
| | - Numan Yildirim
- Department of Environmental Engineering, Faculty of Engineering, Munzur University, 62000, Tunceli, Turkey.
| | - Aysenur Ogedey
- Department of Environmental Engineering, Faculty of Engineering, Munzur University, 62000, Tunceli, Turkey
| |
Collapse
|
10
|
Hemalatha D, Amala A, Rangasamy B, Nataraj B, Ramesh M. Sublethal toxicity of quinalphos on oxidative stress and antioxidant responses in a freshwater fish Cyprinus carpio. ENVIRONMENTAL TOXICOLOGY 2016; 31:1399-1406. [PMID: 25899319 DOI: 10.1002/tox.22145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 03/26/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
Extensive use of quinalphos, an organophosphorus pesticide, is likely to reach the aquatic environment and thereby posing a health concern for aquatic organisms. Oxidative stress and antioxidant responses may be good indicators of pesticide contamination in aquatic organisms. The data on quinalphos induced oxidative stress and antioxidant responses in carps are scanty. This study is aimed to assess the two sublethal concentrations of quinalphos (1.09 and 2.18 μL L-1 ) on oxidative stress and antioxidant responses of Cyprinus carpio for a period of 20 days. In liver, the malondialdehyde level was found to be significantly increased in both the concentrations. The results of the antioxidant parameters obtained show a significant increase in superoxide dismutase, catalase, and glutathione-S-transferase activity in liver of fish. These results demonstrate that environmentally relevant levels of the insecticide quinalphos can cause oxidative damage and increase the antioxidant scavenging capacity in C. carpio. This may reflect the potential role of these parameters as useful biomarkers for the assessment of pesticide contamination. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1399-1406, 2016.
Collapse
Affiliation(s)
- Devan Hemalatha
- Department of Zoology, Unit of Toxicology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Antony Amala
- Department of Zoology, Unit of Toxicology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Basuvannan Rangasamy
- Department of Zoology, Unit of Toxicology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Bojan Nataraj
- Department of Zoology, Unit of Toxicology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mathan Ramesh
- Department of Zoology, Unit of Toxicology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
11
|
Saucedo-Vence K, Dublán-García O, López-Martínez LX, Morachis-Valdes G, Galar-Martínez M, Islas-Flores H, Gómez-Oliván LM. Short and long-term exposure to diclofenac alter oxidative stress status in common carp Cyprinus carpio. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:527-539. [PMID: 25512029 DOI: 10.1007/s10646-014-1401-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 06/04/2023]
Abstract
Diclofenac (DCF) has been detected in significant amounts in municipal treated wastewater effluent. Diverse studies report that trace concentrations of DCF may induce toxic effects on different aquatic organisms as well as developmental, reproductive and renal damage. This study aimed to determine whether short and long-term exposure to DCF alter the oxidative stress (OS) status in blood, muscle, gills, brain and liver of common carp Cyprinus carpio. The median lethal concentration of DCF at 96 h (96-h LC50) and subsequently the lowest observed adverse effect level were determined. Carp were exposed (short and long-term) to the latter value for different exposure times (4 and 24 days) and the following biomarkers were evaluated in gill, brain, liver and blood: hydroperoxides content (HPC), lipid peroxidation (LPX), protein carbonyl content (PCC) and the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Also, the DCF was determined by LC-MS/MS. Significant increases in HPC, LPX and PCC were observed respect to control (P < 0.05) particularly in blood, muscle, gill, brain and liver. SOD, CAT and GPx activity also increased in these organs, with respect to controls (P < 0.05). DCF concentrations decreased and increased in water system and carp, respectively. Cyprinus carpio exposed to DCF was affected in OS status during the initial days of the study (at 4 days), exhibiting an increased response at 24 days in blood and liver. In contrast, a decrease was observed in muscle, gills and brain at 24 days with respect to 4 days. In conclusion, DCF induces OS on blood, muscle, gills, brain and liver in the carp C. carpio in short and long-term exposure. The biomarkers employed in this study are useful in the assessment of the environmental impact of this agent on aquatic species.
Collapse
Affiliation(s)
- Karinne Saucedo-Vence
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | | | | | | | | | | | | |
Collapse
|
12
|
Diniz MS, Salgado R, Pereira VJ, Carvalho G, Oehmen A, Reis MAM, Noronha JP. Ecotoxicity of ketoprofen, diclofenac, atenolol and their photolysis byproducts in zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:282-289. [PMID: 25461029 DOI: 10.1016/j.scitotenv.2014.09.103] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 06/04/2023]
Abstract
The occurrence of pharmaceutical compounds in wastewater treatment plants and surface waters has been detected worldwide, constituting a potential risk for aquatic ecosystems. Adult zebrafish, of both sexes, were exposed to three common pharmaceutical compounds (atenolol, ketoprofen and diclofenac) and their UV photolysis by-products over seven days. The results show that diclofenac was removed to concentrations<LOD after 5 min of UV irradiation. The oxidative stress response of zebrafish to pharmaceuticals and their photolysis by-products was evaluated through oxidative stress enzymes (glutathione-S-transferase, catalase, superoxide dismutase) and lipid peroxidation. Results suggest that the photolysis by-products of diclofenac were more toxic than those from the other compounds tested, showing an increase in GST and CAT levels, which are also supported by higher MDA levels. Overall, the toxicity of waters containing atenolol and ketoprofen was reduced after the parent compounds were transformed by photolysis, whereas the toxicity increased significantly from the by-products generated through diclofenac photolysis. Therefore, diclofenac photolysis would possibly necessitate higher irradiation time to ensure that the associated by-products are completely degraded to harmless form(s).
Collapse
Affiliation(s)
- M S Diniz
- REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - R Salgado
- REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; ESTS-IPS, Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal, Rua Vale de Chaves, Campus do IPS, Estefanilha, 2910-761 Setúbal, Portugal.
| | - V J Pereira
- Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica (ITQB)-Universidade Nova de Lisboa (UNL), Estação Agronómica Nacional, Av. da República, 2780-157 Oeiras, Portugal.
| | - G Carvalho
- REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Instituto de Biologia Experimental e Tecnológica (IBET), Av. da República (EAN), 2784-505 Oeiras, Portugal.
| | - A Oehmen
- REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - M A M Reis
- REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - J P Noronha
- REQUIMTE/CQFB, Chemistry Department, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
13
|
Ibrahim ATA. Negative impacts of ultraviolet-A radiation on antioxidant and oxidative stress biomarkers of African catfish Clarias gariepinus. Photochem Photobiol Sci 2015; 14:1337-45. [DOI: 10.1039/c5pp00112a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study was carried out to evaluate the ultraviolet-A (UVA) effects on biochemical, oxidative stress and antioxidant changes using aquatic species.
Collapse
|
14
|
González-González ED, Gómez-Oliván LM, Galar-Martínez M, Vieyra-Reyes P, Islas-Flores H, García-Medina S, Jiménez-Vargas JM, Razo-Estrada C, Pérez-Pastén R. Metals and nonsteroidal anti-inflammatory pharmaceuticals drugs present in water from Madín Reservoir (Mexico) induce oxidative stress in gill, blood, and muscle of common carp (Cyprinus carpio). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:281-295. [PMID: 24916851 DOI: 10.1007/s00244-014-0048-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 05/09/2014] [Indexed: 06/03/2023]
Abstract
Many toxic xenobiotics that enter the aquatic environment exert their effects through redox cycling. Oxidative stress, which incorporates both oxidative damage and antioxidant defenses, is a common effect induced in organisms exposed to xenobiotics in their environment. The results of the present study aimed to determine the oxidative stress induced in the common carp Cyprinus carpio by contaminants [metals and nonsteroidal anti-inflammatory drugs (NSAIDs)] present in Madín Reservoir. Five sampling stations (SSs), considered to have the most problems due to discharges, were selected. Carp were exposed to water from each SS for 96 h, and the following biomarkers were evaluated in gill, blood, and muscle: hydroperoxide content, lipid peroxidation, protein carbonyl content, and the activity of antioxidant enzymes superoxide dismutase and catalase. Results show that contaminants (metals and NSAIDs) present in water from the different SSs induce oxidative stress. Thus, water in this reservoir is contaminated with xenobiotics that are hazardous to C. carpio, a species consumed by the local human population.
Collapse
Affiliation(s)
- Edgar David González-González
- Laboratorio de Toxicología Ambiental, Departamento de Farmacia, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n. Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Changes in Enzymes Activities of Clarias Gariepinus Brood Fish Exposed to Anaesthetics Metomidate. ACTA ACUST UNITED AC 2013. [DOI: 10.12691/aees-1-3-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Tayeb W, Nakbi A, Cheraief I, Miled A, Hammami M. Alteration of lipid status and lipid metabolism, induction of oxidative stress and lipid peroxidation by 2,4-dichlorophenoxyacetic herbicide in rat liver. Toxicol Mech Methods 2013; 23:449-58. [PMID: 23464821 DOI: 10.3109/15376516.2013.780275] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This study aims to investigate the effects of the 2,4-dichlorophenoxyacetic herbicide (2,4-D) on plasma lipids, lipoproteins concentrations, hepatic lipid peroxidation, fatty acid composition and antioxidant enzyme activities in rats. Animals were randomly divided into four groups of 10 each: control group and three 2,4-D-treated groups G1, G2 and G3 were administered 15, 75 and 150 mg/kg/BW/d 2,4-D by gavage for 28 d, respectively. Results showed that 2,4-D caused significant negative changes in the biochemical parameters investigated. The malondialdehyde level was significantly increased in 2,4-D-treated groups. Fatty acid composition of the liver was also significantly changed with 2,4-D exposure. Furthermore, the hepatic antioxidant enzyme activities were significantly affected. Finally, 2,4-D at the studied doses modifies lipidic status, disrupt lipid metabolism and induce hepatic oxidative stress. In conclusion, at higher doses, 2,4-D may play an important role in the development of vascular disease via metabolic disorder of lipoproteins, lipid peroxidation and oxidative stress.
Collapse
Affiliation(s)
- Wafa Tayeb
- Laboratory of Biochemistry, UR03/ES-08 'Human Nutrition and Metabolic Disorders', Faculty of Medicine, Monastir, Tunisia.
| | | | | | | | | |
Collapse
|
17
|
Hernández-Moreno D, Pérez-López M, Soler F, Gravato C, Guilhermino L. Effects of carbofuran on the sea bass (Dicentrarchus labrax L.): study of biomarkers and behaviour alterations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:1905-1912. [PMID: 21864905 DOI: 10.1016/j.ecoenv.2011.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/26/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
The objective of this study was to investigate the acute effects of the pesticide carbofuran on the sea bass (Dicentrarchus labrax) using parameters at different levels of biological organisation (swimming behaviour and several biomarkers) and possible relationships between alterations found in different effect criteria. In a bioassay, sea bass juveniles were individually exposed to different doses of carbofuran (31, 63, 125 and 250 μg/L) for 96 h. At the end of the bioassay, the swimming performance and 11 biomarkers were determined. Biomarkers were: hepatosomatic index (HSI), lipid peroxidation (LPO), reduced glutathione and the activities of the enzymes ethoxyresorufin O-deethylase (EROD), glutathione S-transferases, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, brain acetylcholinesterase (AChE) and muscle cholinesterases (ChE). After 96 h of exposure, carbofuran induced a decrease of the swimming velocity and inhibition of EROD activity at all concentrations tested, and inhibition of muscle ChE and brain AChE activities at 250 μg/L. No relevant alterations in any of the other tested parameters were found. These results show that carbofuran induced adverse effects on fish by interfering with neurofunction, capability of detoxication and swimming velocity. In addition, positive and significant correlations between the swimming velocity and (i) brain AChE activity, (ii) muscle ChE activity and (iii) EROD activity suggest that the inhibition of these enzymes may somehow be related to the behavioural changes observed. Since these functions are determinant for the survival and performance of the fish in the wild, the findings of the present study suggest that adverse effects may occur in populations exposed to carbofuran if a sufficient number of animals is affected.
Collapse
Affiliation(s)
- David Hernández-Moreno
- Toxicology Area, Veterinary College, University of Extremadura. Av. Universidad s/n, 10071 Cáceres, Spain.
| | | | | | | | | |
Collapse
|
18
|
Troudi A, Mahjoubi Samet A, Zeghal N. Hepatotoxicity induced by gibberellic acid in adult rats and their progeny. ACTA ACUST UNITED AC 2010; 62:637-42. [DOI: 10.1016/j.etp.2009.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 07/23/2009] [Accepted: 08/21/2009] [Indexed: 12/01/2022]
|
19
|
Li ZH, Zlabek V, Grabic R, Velisek J, Machova J, Randak T. Enzymatic alterations and RNA/DNA ratio in intestine of rainbow trout, Oncorhynchus mykiss, induced by chronic exposure to carbamazepine. ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:872-878. [PMID: 20174868 DOI: 10.1007/s10646-010-0468-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/10/2010] [Indexed: 05/28/2023]
Abstract
We investigated the effect of long-term exposure to carbamazepine (CBZ) on the enzymatic alterations and RNA/DNA ratio in intestine tissue of rainbow trout. Fish were exposed to sublethal concentrations of CBZ (1.0 microg/l, 0.2 or 2.0 mg/l) for 42 days. Digestive enzymes (proteolytic enzymes and amylase) and energy metabolic enzyme (Na(+)-K(+)-ATPase) and antioxidant enzymes (superoxide dismutase [SOD], catalase [CAT], glutathione peroxidase [GPx], and glutathione reductase [GR]) in fish intestine were measured. In addition, intestinal RNA/DNA ratio was determined after 42 days exposure. Carbamazepine exposure at 2.0 mg/l led to significantly inhibited (P < 0.05) activity of Na(+)-K(+)-ATPase. Activities of the antioxidant enzymes SOD, CAT, and GPx in CBZ-treated groups gradually increased at lower concentration of CBZ (1.0 microg/l and 0.2 mg/l), then significantly inhibited (P < 0.05) at 2.0 mg/l. After 42 days, the RNA/DNA ratio in fish intestine was significantly lower (P < 0.05) in groups exposed to CBZ at 2.0 mg/l than in other groups. However, there was no statistical significance (P > 0.05) in the activities of digestive enzymes (proteolytic enzyme and amylase) and GR in all groups. In short, prolonged exposure to CBZ resulted in different responses of various enzymes and significantly lower RNA/DNA ratio in fish intestine. Furthermore, molecular and genetic mechanisms of these physiological responses in fish are not clear, which need to be further studied.
Collapse
Affiliation(s)
- Zhi-Hua Li
- Faculty of Fisheries and Protection of Waters Research, Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25 Vodnany, Ceske Budejovice, Czech Republic.
| | | | | | | | | | | |
Collapse
|
20
|
Celik I, Suzek H. Subacute effects of methyl parathion on antioxidant defense systems and lipid peroxidation in rats. Food Chem Toxicol 2008; 46:2796-801. [DOI: 10.1016/j.fct.2008.05.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/01/2008] [Accepted: 05/13/2008] [Indexed: 10/22/2022]
|
21
|
Kristoff G, Verrengia Guerrero NR, Cochón AC. Effects of azinphos-methyl exposure on enzymatic and non-enzymatic antioxidant defenses in Biomphalaria glabrata and Lumbriculus variegatus. CHEMOSPHERE 2008; 72:1333-1339. [PMID: 18533225 DOI: 10.1016/j.chemosphere.2008.04.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 03/14/2008] [Accepted: 04/10/2008] [Indexed: 05/26/2023]
Abstract
Azinphos-methyl is an organophosphate insecticide used for pest control on a number of food crops in many parts of the world. The oligochaete Lumbriculus variegatus and pigmented and non-pigmented specimens of the gastropod Biomphalaria glabrata are freshwater invertebrates that have been recommended for contamination studies. Recently, it has been shown that L. variegatus worms exhibit a higher cholinesterase (ChE) activity and a greater sensitivity to in vivo ChE inhibition by azinphos-methyl than pigmented B. glabrata snails. The aims of the present study were (1) to investigate if, in addition to its anticholinesterase action, azinphos-methyl has also pro-oxidant activity in L. variegatus and B. glabrata, and (2) to examine if species that are highly susceptible to the neurotoxic effects of organophosphates also suffer a greater degree of oxidative stress. Therefore, total glutathione (t-GSH) levels and activities of cholinesterase (ChE), superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), and glucose 6-phosphate dehydrogenase (G6PDH) were measured in the whole body soft tissue of organisms exposed for 48 and 96 h to a level of azinphos-methyl that produces 50% of inhibition on ChE. Results showed different patterns of antioxidant responses between the gastropods and the oligochaetes, and even between the two phenotypes of gastropods: (1) in exposed L. variegatus t-GSH levels increased and CAT and SOD activities decreased with respect to control organisms, (2) in pigmented gastropods, SOD decreased while CAT transiently diminished, and (3) in non-pigmented gastropods, SOD activity showed a biphasic response. GST and G6PDH were not altered by azinphos-methyl exposure. Of note, t-GSH levels were 4-fold times higher in L. variegatus than in both phenotypes of B. glabrata. This may suggest that GSH could play a more important role in antioxidant defense in L. variegatus than in B. glabrata.
Collapse
Affiliation(s)
- Gisela Kristoff
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Nuñez, Pabellon II, 4to piso, Buenos Aires, Argentina
| | | | | |
Collapse
|
22
|
Celik I, Tuluce Y, Isik I. Influence of subacute treatment of some plant growth regulators on serum marker enzymes and erythrocyte and tissue antioxidant defense and lipid peroxidation in rats. J Biochem Mol Toxicol 2007; 20:174-82. [PMID: 16906522 DOI: 10.1002/jbt.20134] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study aims to investigate the effects of the plant growth regulators (PGRs) (2,3,5-triiodobenzoic acid (TIBA), Naphthaleneacetic acid (NAA), and 2,4-dichlorofenoxyacetic acid (2,4-D)) on serum marker enzymes (aspartate aminotransferase (AST), alanin aminotransferase (ALT), creatine phosphokinase (CPK), and lactate dehydrogenase (LDH)), antioxidant defense systems (reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST), and catalase (CAT)), and lipid peroxidation content (malondialdehyde = MDA) in various tissues of rats. 50 and 100 ppm of PGRs as drinking water were administered orally to rats (Sprague-Dawley albino) ad libitum for 25 days continuously. The PGRs treatment caused different effects on the serum marker enzymes, antioxidant defense systems, and the MDA content in experimented rats compared to controls. Results showed that TIBA caused a significant decrease in serum AST activity with both the dosage whereas serum CPK was significantly increased with 100 ppm dosage of TIBA. Meanwhile, serum AST, CPK, and LDH activities were significantly increased with both dosage of NAA and 2,4-D. The lipid peroxidation end-product MDA significantly increased in the all tissues treated with both dosages of PGRs without any change in the brain and erythrocyte of rats treated with both the dosages of 2,4-D. The GSH depletion in the kidney and brain tissues of rats treated with both dosages of PGRs was found to be significant. Furthermore, the GSH depletion in the erythrocyte of rats treated with both dosages of PGRs except 50 ppm dosage of 2,4-D was significant too. Also, the GSH level in the liver was significantly depleted with 50 ppm of 2,4-D and NAA, whereas the GSH depletion in the same tissue did not significantly change with the treatment. The activity of antioxidant enzymes was also seriously affected by PGRs; SOD significantly decreased in the liver, heart, kidney, and brain of rats treated with both dosages of NAA, whereas the SOD activity in the erythrocytes, liver, and heart was either significantly decreased or not changed with two doses of 2,4-D and TIBA. Although the CAT activity significantly increased in the erythrocyte and brain of rats treated with both doses of PGRs, it was not changed in the liver, heart, and kidney. Meanwhile, the ancillary enzyme GR activity significantly increased in the brain, heart, and liver but decreased in the erythrocyte and kidney of rats treated with both doses of PGRs. The drug-metabolizing enzyme GST activity significantly increased in the heart and kidney but decreased in the brain and erythrocytes of rats treated with both dosages of PGRs. As a conclusion, the results indicate that PGRs might affect antioxidant potential enzymes, the activity of hepatic damage enzymes, and lipid peroxidation dose independently. Also, the rats resisted to oxidative stress via antioxidant mechanism but the antioxidant mechanism could not prevent the increases in lipid peroxidation in rat's tissues. These data, along with the determined changes, suggest that PGRs produced substantial systemic organ toxicity in the erythrocyte, liver, brain, heart, and kidney during the period of a 25-day subacute exposure.
Collapse
Affiliation(s)
- Ismail Celik
- Department of Biology, Faculty of Arts and Sciences, Yuzuncu Yil University, 65080 Van, Turkey.
| | | | | |
Collapse
|
23
|
Huang DJ, Zhang YM, Song G, Long J, Liu JH, Ji WH. Contaminants-induced oxidative damage on the carp Cyprinus carpio collected from the upper Yellow River, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2007; 128:483-8. [PMID: 17180433 DOI: 10.1007/s10661-006-9341-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Accepted: 06/14/2006] [Indexed: 05/13/2023]
Abstract
The Yellow River, the second largest river in China, is the most important resource of water supply in North China. In the last 40 years, even in the upper Yellow River, with the development of industry and agriculture, more and more contaminants have been discharged into this river and greatly polluted the water. Although a routine chemical component analysis has been performed, little is known about the real toxic effects of the polluted water on organisms at environmental level. To explore whether the pollutants induced oxidative stress and damage to aquatic organisms, malondialdehyde (MDA) level and activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) in hepatopancreas, kidney and intestine of the field-collected carp Cyprinus carpio from a mixed polluted (Lanzhou Region, LZR) and a relatively unpolluted (Liujiaxia Region, LJXR) sites of the upper Yellow River were measured. The results showed that when the values of LZR compared with those of LJXR, SOD and GST activities increased and GPx activity decreased significantly in all the three organs (P < 0.05-0.01); CAT activity decreased but MDA level increased significantly (P < 0.05-0.01) only in kidney and intestine. In conclusion, the results of this study suggest that the pollutants can induce obvious oxidative damage in the carp, and the SOD, GST and GPx might be better indicators for the oxidative damage in aquatic organisms.
Collapse
Affiliation(s)
- D J Huang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Wacksman MN, Maul JD, Lydy MJ. Impact of atrazine on chlorpyrifos toxicity in four aquatic vertebrates. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 51:681-9. [PMID: 16944040 DOI: 10.1007/s00244-005-0264-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/19/2006] [Indexed: 05/11/2023]
Abstract
Atrazine has been shown previously to potentiate chlorpyrifos toxicity in selected invertebrates. This study examined interactions of atrazine and chlorpyrifos in four aquatic vertebrates. Organisms were exposed to binary mixtures of atrazine and chlorpyrifos during toxicity bioassays. Inhibition of cholinesterase (ChE) enzyme activity and chlorpyrifos uptake kinetics were also examined with and without atrazine exposure. Atrazine alone did not affect organisms at concentrations up to 5000 microg/L; however, the presence of atrazine at 1000 microg/L did result in a significant increase in the acute toxicity of chlorpyrifos in Xenopus laevis. Mixed results were encountered with Pimephales promelas; some bioassays showed greater than additive toxicity, while others showed an additive response. No effect of atrazine on chlorpyrifos toxicity was observed for Lepomis macrochirus and Rana clamitans. Atrazine did not affect ChE activity or chlorpyrifos uptake rates, indicating that these toxicodynamic and toxicokinetic parameters may not be related to the mechanism of atrazine potentiation of chlorpyrifos toxicity. Based on the results of this study, it does not appear that a mixture toxicity of atrazine and chlorpyrifos at environmentally relevant concentrations presents a risk to the vertebrate organisms examined in this study.
Collapse
Affiliation(s)
- M N Wacksman
- Fisheries and Illinois Aquaculture Center and Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901, USA
| | | | | |
Collapse
|
25
|
Yilmaz HR, Yuksel E. Effect of 2,4-dichlorophenoxyacetic acid on the activities of some metabolic enzymes for generating pyridine nucleotide pool of cells from mouse liver. Toxicol Ind Health 2006; 21:231-7. [PMID: 16342474 DOI: 10.1191/0748233705th231oa] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D), which is a plant auxin analogue, is lethal to broad leaved weeds within days at high dosages and is considered as having low toxicity to mammals. Some studies have reported that exposure to this compound may cause damage to organs such as liver. The aim of this study was to investigate the effects of 2,4-D in mouse liver on chromosomes as well as hexokinase (HK), glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), lactate dehydrogenase (LDH) and malate dehydrogenase (MDH) which are required for the generation of the pyridine nucleotide pool. The experiments were carried out with a 2,4-D group, an ethanol control for 2,4-D, and saline group for ethanol control group on three generations of mice. Only female parents were given 2,4-D during the gestation period, lactation period and for 33 days following the lactation period. In females of the first cross, 2,4-D caused a significant increase in the activity of LDH, and ethanol alone caused a significant increase in the activities of HK and LDH. In the male offspring of the first cross maternal, 2,4-D caused a significant increase in the activity of LDH, and ethanol alone caused a significant decrease in the activity of 6PGD. In the female offspring of the first cross maternal, ethanol caused a significant increase in the activities of G6PD and MDH. In the female offsprings of the third cross maternal, 2,4-D caused a significant increase in the activity of MDH. No gross morphological changes were observed in internal organs, such as liver, kidney and spleen of the affected animals. Also, a chromosomal study from bone marrow cells indicated no anomalies in chromosomal sets and structures. As a result, 2,4-D had an effect on the first cross maternal and their offsprings. The compound did not affect the parameters studied except MDH enzyme activity in the second and third generation of mice.
Collapse
Affiliation(s)
- H Ramazan Yilmaz
- Suleyman Demirel University, Faculty of Medicine, Department of Medical Biology and Genetics, Isparta, Turkey.
| | | |
Collapse
|
26
|
Sarikaya R, Selvi M. Investigation of acute toxicity of (2,4-dichlorophenoxy)acetic acid (2,4-D) herbicide on larvae and adult Nile tilapia (Oreochromis niloticus L.). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 20:264-268. [PMID: 21783599 DOI: 10.1016/j.etap.2005.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2004] [Accepted: 01/20/2005] [Indexed: 05/28/2023]
Abstract
A 48h LC(50) values of (2,4-dichlorophenoxy)acetic acid (2,4-D), a widely used agricultural herbicide, were determined on the larvae and adult Nile tilapia (Oreochromis niloticus L.). Each test was repeated three times. The data obtained were statistically evaluated by the use of the E.P.A computer program based on Finney's probit analysis method and a 48h LC(50) value for Nile tilapia (O. niloticus L.) larvae and adults were found to be 28.23mg/L and 86.90mg/L, respectively in a static bioassay test system. 95% lower and upper confidence limits for the LC(50) were 22.55-32.98 and 80.67-92.80mg/L, respectively. Water temperature was 24±1°C. Behavioral changes of both tilapia life forms were examined for various herbicide concentrations.
Collapse
Affiliation(s)
- Rabia Sarikaya
- Department of Biology Education, Gazi University, Teknikokullar, 06500 Ankara, Turkey
| | | |
Collapse
|
27
|
Ali M, Parvez S, Pandey S, Atif F, Kaur M, Rehman H, Raisuddin S. Fly ash leachate induces oxidative stress in freshwater fish Channa punctata (Bloch). ENVIRONMENT INTERNATIONAL 2004; 30:933-938. [PMID: 15196841 DOI: 10.1016/j.envint.2004.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2003] [Accepted: 03/22/2004] [Indexed: 05/24/2023]
Abstract
Oxidative stress inducing potential of fly ash leachate (FAL) was studied in a freshwater fish, Channa punctata (Bloch). Fish were exposed to fly ash leachate for 24 h and lipid peroxidation (LPO) was studied as a marker of oxidative stress. Catalase (CAT), glutathione S-transferase (GST) activities and levels of reduced glutathione (GSH) were also estimated in the exposed fish. FAL (1 ml/l) induced LPO in all the organs and most prominent response was in the gill. It also caused induction of enzymes and glutathione. Liver showed highest level of induction of enzyme activities. The results of this study demonstrate that fly ash constituents have potential to induce oxidative stress in fish and gills are the most vulnerable organs. It is also suggested that in case of exposure to FAL, along with LPO antioxidant defense is also activated to counteract the reactive oxygen species (ROS) at least partly in the initial stages of exposure.
Collapse
Affiliation(s)
- M Ali
- Department of Medical Elementology and Toxicology, Ecotoxicology Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | | | | | | | | | | | | |
Collapse
|