1
|
Aladaileh SH, Al-Swailmi FK, Abukhalil MH, Ahmeda AF, Mahmoud AM. Punicalagin prevents cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammatory response, and apoptosis in rats. Life Sci 2021; 286:120071. [PMID: 34688692 DOI: 10.1016/j.lfs.2021.120071] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
Nephrotoxicity is a major complication that limits the therapeutic application of cisplatin (CIS). Oxidative stress and inflammation are implicated in CIS-induced acute kidney injury (AKI) and apoptotic cell death. Punicalagin (PUN), a polyphenol in pomegranate, possesses promising anti-inflammatory and antioxidant activities, and its beneficial effect against CIS-induced AKI has not been fully elucidated. This investigation evaluated the protective effect of PUN against CIS-induced renal oxidative stress, inflammation and cell death. Rats received PUN (25 and 50 mg/kg) for 10 days and a single injection of CIS at day 7. The results showed increased serum urea and creatinine and several histopathological alterations in the kidney of CIS-intoxicated rats. Renal malondialdehyde (MDA) and nitric oxide (NO) were increased, and reduced glutathione, superoxide dismutase and catalase were declined in rats treated with CIS. PUN effectively ameliorated kidney function and attenuated tissue injury induced by CIS, decreased MDA and NO, and enhanced antioxidant defenses. Additionally, PUN downregulated NF-κB p65, iNOS, TNF-α, IL-6 and IL-1β in the kidney of rats that received CIS. Bax and caspase-3 were increased, and Bcl-2 was decreased in the kidney of CIS-intoxicated rats, an effect that was reversed by PUN. PUN upregulated Nrf2 expression in the kidney of CIS-intoxicated rats. In conclusion, PUN prevents CIS-induced AKI in rats by attenuating oxidative stress, inflammatory response and apoptosis, and upregulating Nrf2 and antioxidants.
Collapse
Affiliation(s)
- Saleem H Aladaileh
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Saudi Arabia; Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Jordan
| | - Farhan K Al-Swailmi
- Department of Pharmacy Practice, College of Pharmacy, University of Hafr Al-Batin, Saudi Arabia
| | - Mohammad H Abukhalil
- Department of Medical Analysis, Princess Aisha Bint Al-Hussein College of Nursing and Health Sciences, Al-Hussein Bin Talal University, Jordan; Department of Biology, College of Science, Al-Hussein Bin Talal University, Jordan
| | - Ahmad F Ahmeda
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt.
| |
Collapse
|
2
|
Abstract
Cisplatin has been a mainstay of cancer chemotherapy since the 1970s. Despite its broad anticancer potential, its clinical use has regularly been constrained by kidney toxicities. This review details those biochemical pathways and metabolic conversions that underlie the kidney toxicities. A wide range of redox events contribute to the eventual physiological consequences of drug activities.
Collapse
|
3
|
Imig JD, Hye Khan MA, Burkhan A, Chen G, Adebesin AM, Falck JR. Kidney-Targeted Epoxyeicosatrienoic Acid Analog, EET-F01, Reduces Inflammation, Oxidative Stress, and Cisplatin-Induced Nephrotoxicity. Int J Mol Sci 2021; 22:2793. [PMID: 33801911 PMCID: PMC7998941 DOI: 10.3390/ijms22062793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 02/08/2023] Open
Abstract
Although epoxyeicosatrienoic acid (EET) analogs have performed well in several acute and chronic kidney disease models, targeted delivery of EET analogs to the kidney can be reasonably expected to reduce the level of drug needed to achieve a therapeutic effect and obviate possible side effects. For EET analog kidney-targeted delivery, we conjugated a stable EET analog to folic acid via a PEG-diamine linker. Next, we compared the kidney targeted EET analog, EET-F01, to a well-studied EET analog, EET-A. EET-A or EET-F01 was infused i.v. and plasma and kidney tissue collected. EET-A was detected in the plasma but was undetectable in the kidney. On the other hand, EET-F01 was detected in the plasma and kidney. Experiments were conducted to compare the efficacy of EET-F01 and EET-A for decreasing cisplatin nephrotoxicity. Cisplatin was administered to WKY rats treated with vehicle, EET-A (10 mg/kg i.p.) or EET-F01 (20 mg/kg or 2 mg/kg i.p.). Cisplatin increased kidney injury markers, viz., blood urea nitrogen (BUN), N-acetyl-β-(D)-glucosaminidase (NAG), kidney injury molecule-1 (KIM-1), and thiobarbituric acid reactive substances (TBARS). EET-F01 was as effective as EET-A in decreasing BUN, NAG, KIM-1, TBARS, and renal histological injury caused by cisplatin. Despite its almost 2×-greater molecular weight compared with EET-A, EET-F01 was comparably effective in decreasing renal injury at a 10-fold w/w lower dose. EET-F01 decreased cisplatin nephrotoxicity by reducing oxidative stress and inflammation. These data demonstrate that EET-F01 targets the kidney, allows for a lower effective dose, and combats cisplatin nephrotoxicity. In conclusion, we have developed a kidney targeted EET analog, EET-F01, that demonstrates excellent potential as a therapeutic for kidney diseases.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/chemistry
- 8,11,14-Eicosatrienoic Acid/pharmacokinetics
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Breast Neoplasms/drug therapy
- Breast Neoplasms/pathology
- Cell Line, Tumor
- Cisplatin
- Female
- Humans
- Inflammation/metabolism
- Inflammation/prevention & control
- Kidney/metabolism
- Kidney/pathology
- Kidney Diseases/chemically induced
- Kidney Diseases/metabolism
- Kidney Diseases/prevention & control
- Male
- Mice, Nude
- Oxidative Stress/drug effects
- Rats, Inbred WKY
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays/methods
- Mice
- Rats
Collapse
Affiliation(s)
- John D. Imig
- Drug Discovery Center and Cardiovascular Center, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Md Abdul Hye Khan
- Drug Discovery Center and Cardiovascular Center, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Anna Burkhan
- Drug Discovery Center and Cardiovascular Center, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA;
| | - Guan Chen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Adeniyi Michael Adebesin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.M.A.); (J.R.F.)
| | - John R. Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (A.M.A.); (J.R.F.)
| |
Collapse
|
4
|
Kim JY, Jo J, Leem J, Park KK. Kahweol Ameliorates Cisplatin-Induced Acute Kidney Injury through Pleiotropic Effects in Mice. Biomedicines 2020; 8:572. [PMID: 33291262 PMCID: PMC7762132 DOI: 10.3390/biomedicines8120572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
Cisplatin is an effective chemotherapeutic agent, but its clinical use is frequently limited by its nephrotoxicity. The pathogenesis of cisplatin-induced acute kidney injury (AKI) remains incompletely understood, but oxidative stress, tubular cell death, and inflammation are considered important contributors to cisplatin-induced renal injury. Kahweol is a natural diterpene extracted from coffee beans and has been shown to possess anti-oxidative and anti-inflammatory properties. However, its role in cisplatin-induced nephrotoxicity remains undetermined. Therefore, we investigated whether kahweol exerts a protective effect against cisplatin-induced renal injury. Additionally, its mechanisms were also examined. Administration of kahweol attenuated renal dysfunction and histopathological damage together with inhibition of oxidative stress in cisplatin-injected mice. Increased expression of nicotinamide adenine dinucleotide phosphate oxidase 4 and decreased expression of manganese superoxide dismutase and catalase after cisplatin treatment were significantly reversed by kahweol. Moreover, kahweol inhibited cisplatin-induced apoptosis and necroptosis in the kidneys. Finally, kahweol reduced inflammatory cytokine production and immune cell accumulation together with suppression of nuclear factor kappa-B pathway and downregulation of vascular adhesion molecules. Together, these results suggest that kahweol ameliorates cisplatin-induced renal injury via its pleiotropic effects and might be a potential preventive option against cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Jungmin Jo
- Division of Hematology-Oncology, Department of Internal Medicine, Ewha Womans University Mokdong Hospital, Seoul 07985, Korea;
| | - Jaechan Leem
- Department of Immunology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| | - Kwan-Kyu Park
- Department of Pathology, School of Medicine, Catholic University of Daegu, Daegu 42472, Korea;
| |
Collapse
|
5
|
Zhao Y, Zeng H, Liu B, He X, Chen JX. Endothelial prolyl hydroxylase 2 is necessary for angiotensin II-mediated renal fibrosis and injury. Am J Physiol Renal Physiol 2020; 319:F345-F357. [PMID: 32715763 DOI: 10.1152/ajprenal.00032.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (ANG II) is the key contributor to renal fibrosis and injury. The present study investigated the role of endothelium prolyl hydroxylase 2 (PHD2) in ANG II-mediated renal fibrosis and injury. In vitro, endothelial cells (ECs) were isolated from PHD2f/f control [wild-type (WT)] mice or PHD2 EC knockout (PHD2ECKO) mice. In vivo, WT and PHD2ECKO mice were infused with ANG II (1,000 ng·kg-1·min-1) for 28 days. Renal fibrosis, reactive oxygen species (ROS), and iron contents were measured. Knockout of PHD2 resulted in a significant increase in the expression of hypoxia-inducible factor (HIF)-1α and HIF-2α in ECs. Intriguingly, knockout of PHD2 significantly reduced expression of the ANG II type 1 receptor (AT1R) in ECs. WT mice infused with ANG II caused increases in renal fibrosis, ROS formation, and iron contents. ANG II treatment led to a downregulation of PHD1 expression and upregulation of HIF-1α and HIF-2α in the renal cortex and medulla. Knockout of PHD2 in EC blunted ANG II-induced downregulation of PHD1 expression. Furthermore, knockout of PHD2 in ECs attenuated ANG II-induced expression of HIF-1α, HIF-2α, transforming growth factor-β1, p47phox, gp91phox, heme oxygenase-1, and ferroportin. This was accompanied by a significant suppression of renal fibrosis, ROS formation, and iron accumulation. In summary, knockout of endothelial PHD2 suppressed the expression of AT1R in ECs and blunted ANG II-induced downregulation of PHD1 and upregulation of HIF-α in the kidney. Our study, for the first time, demonstrates a necessary role of endothelial PHD2 in ANG II-mediated renal fibrosis and injury.
Collapse
Affiliation(s)
- Yongzhen Zhao
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Heng Zeng
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bo Liu
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xiaochen He
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
6
|
Gonzalez-Vicente A, Hong N, Garvin JL. Effects of reactive oxygen species on renal tubular transport. Am J Physiol Renal Physiol 2019; 317:F444-F455. [PMID: 31215804 DOI: 10.1152/ajprenal.00604.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) play a critical role in regulating nephron transport both via transcellular and paracellular pathways under physiological and pathological circumstances. Here, we review the progress made in the past ~10 yr in understanding how ROS regulate solute and water transport in individual nephron segments. Our knowledge in this field is still rudimentary, with basic information lacking. This is most obvious when looking at the reported disparate effects of superoxide ([Formula: see text]) and H2O2 on proximal nephron transport, where there are no easy explanations as to how to reconcile the data. Similarly, we know almost nothing about the regulation of transport in thin descending and ascending limbs, information that is likely critical to understanding the urine concentrating mechanism. In the thick ascending limb, there is general agreement that ROS enhance transcellular reabsorption of NaCl, but we know very little about their effects on the paracellular pathway and therefore Ca2+ and Mg2+ transport. In the distal convoluted tubule, precious little is known. In the collecting duct, there is general agreement that ROS stimulate the epithelial Na+ channel.
Collapse
Affiliation(s)
- Agustin Gonzalez-Vicente
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, Ohio
| | - Nancy Hong
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, Ohio
| | - Jeffrey L Garvin
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University Cleveland, Ohio
| |
Collapse
|
7
|
Protective Smell of Hydrogen Sulfide and Polysulfide in Cisplatin-Induced Nephrotoxicity. Int J Mol Sci 2019; 20:ijms20020313. [PMID: 30646560 PMCID: PMC6359127 DOI: 10.3390/ijms20020313] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/29/2022] Open
Abstract
Though historically known as a toxic gas, hydrogen sulfide (H2S) has displayed a new face as the third endogenous gaseous signaling molecule after nitric oxide (NO) and carbon monoxide (CO). Here in this review, we survey the role and therapeutic potential of H2S in cisplatin-induced nephrotoxicity. Specifically, reduction of H2S by cystathionine γ-lyase (CSE) downregulation upon cisplatin treatment may contribute to cisplatin-induced renal cell injury, possibly by augmentation of endogenous reactive oxygen species (ROS) production, while H2S donation may prevent subsequent renal dysfunction by inhibiting NADPH oxidase activation. Intriguingly, H2S slow-releasing compound GYY4137 seems to increase the anticancer activity of cisplatin, at least in several cancer cell lines, and this is probably due to its own anticancer effect. However, the efficacy of H2S donors in tumor-bearing animals remains to be tested in terms of renal protection and cancer inhibition after receiving cisplatin. Furthermore, accumulative evidence regarding usage of polysulfide, a novel H2S derived molecule, in the therapy of cisplatin-induced nephrotoxicity, was also summarized.
Collapse
|
8
|
Gómez-Sierra T, Eugenio-Pérez D, Sánchez-Chinchillas A, Pedraza-Chaverri J. Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food Chem Toxicol 2018; 120:230-242. [DOI: 10.1016/j.fct.2018.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
|
9
|
Mapuskar KA, Wen H, Holanda DG, Rastogi P, Steinbach E, Han R, Coleman MC, Attanasio M, Riley DP, Spitz DR, Allen BG, Zepeda-Orozco D. Persistent increase in mitochondrial superoxide mediates cisplatin-induced chronic kidney disease. Redox Biol 2018; 20:98-106. [PMID: 30296702 PMCID: PMC6174865 DOI: 10.1016/j.redox.2018.09.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023] Open
Abstract
Severe and recurrent cisplatin-induced acute kidney injury (AKI) as part of standard cancer therapy is a known risk factor for development of chronic kidney disease (CKD). The specific role of superoxide (O2•-)-mediated disruption of mitochondrial oxidative metabolism in CKD after cisplatin treatment is unexplored. Cisplatin is typically administered in weekly or tri-weekly cycles as part of standard cancer therapy. To investigate the role of O2•- in predisposing patients to future renal injury and in CKD, mice were treated with cisplatin and a mitochondrial-specific, superoxide dismutase (SOD) mimetic, GC4419. Renal function, biomarkers of oxidative stress, mitochondrial oxidative metabolism, and kidney injury markers, as well as renal histology, were assessed to evaluate the cellular changes that occur one week and one month (CKD phase) after the cisplatin insult. Cisplatin treatment resulted in persistent upregulation of kidney injury markers, increased steady-state levels of O2•-, increased O2•--mediated renal tubules damage, and upregulation of mitochondrial electron transport chain (ETC) complex I activity both one week and one month following cisplatin treatment. Treatment with a novel, clinically relevant, small-molecule superoxide dismutase (SOD) mimetic, GC4419, restored mitochondrial ETC complex I activity to control levels without affecting complexes II–IV activity, as well as ameliorated cisplatin-induced kidney injury. These data support the hypothesis that increased mitochondrial O2•- following cisplatin administration, as a result of disruptions of mitochondrial metabolism, may be an important contributor to both AKI and CKD progression. Cisplatin-induced AKI and CKD have a negative impact in long-term renal function. Cisplatin-induced CKD disrupts mitochondrial metabolism and increases O2•- levels. SOD mimetic, GC4419 mitigates renal damage and mitochondrial metabolism disruptions.
Collapse
Affiliation(s)
- Kranti A Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, United States
| | - Hsiang Wen
- Division of Pediatric Nephrology, Dialysis and Transplantation, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242, United States
| | - Danniele G Holanda
- Department of Pathology, The University of Iowa, Iowa City, IA, 52242, United States
| | - Prerna Rastogi
- Department of Pathology, The University of Iowa, Iowa City, IA, 52242, United States
| | - Emily Steinbach
- Division of Pediatric Nephrology, Dialysis and Transplantation, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242, United States
| | - Rachel Han
- Division of Pediatric Nephrology, Dialysis and Transplantation, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242, United States
| | - Mitchell C Coleman
- Department of Orthopedics and Rehabilitation, The University of Iowa, Iowa City, IA, 52242, United States
| | - Massimo Attanasio
- Department of Internal Medicine, The University of Iowa, Iowa City, IA, 52242, United States
| | | | - Douglas R Spitz
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, United States
| | - Bryan G Allen
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA, 52242, United States
| | - Diana Zepeda-Orozco
- Division of Pediatric Nephrology, Dialysis and Transplantation, Stead Family Department of Pediatrics, The University of Iowa, Iowa City, IA, 52242, United States.
| |
Collapse
|
10
|
Cao X, Nie X, Xiong S, Cao L, Wu Z, Moore PK, Bian JS. Renal protective effect of polysulfide in cisplatin-induced nephrotoxicity. Redox Biol 2018; 15:513-521. [PMID: 29413963 PMCID: PMC5881418 DOI: 10.1016/j.redox.2018.01.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/03/2023] Open
Abstract
Cisplatin is a major chemotherapeutic drug for solid tumors whereas it may lead to severe nephrotoxicity. Despite decades of efforts, effective therapies remain largely lacking for this disease. In the current research, we investigated the therapeutic effect of hydrogen polysulfide, a novel hydrogen sulfide (H2S) derived signaling molecule, in cisplatin nephrotoxicity and the mechanisms involved. Our results showed that polysulfide donor Na2S4 ameliorated cisplatin-caused renal toxicity in vitro and in vivo through suppressing intracellular reactive oxygen species (ROS) generation and downstream mitogen-activated protein kinases (MAPKs) activation. Additionally, polysulfide may inhibit ROS production by simultaneously lessening the activation of NADPH oxidase and inducing nucleus translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in RPT cells. Interestingly, polysulfide possesses anti-cancer activity and is able to add on more anti-cancer effect to cisplatin in non-small cell lung cancer (NSCLC) cell lines. Moreover, we observed that the number of sulfur atoms in polysulfide well reflected the efficacy of these molecules not only in cell protection but also cancer inhibition which may serve as a guide for further development of polysulfide donors for pharmaceutical usage. Taken together, our study suggests that polysulfide may be a novel and promising therapeutic agent to prevent cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Xu Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Xiaowei Nie
- Center of Clinical Research, Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, PR China
| | - Siping Xiong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Lei Cao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Zhiyuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Life Science Institute, National University of Singapore, Singapore
| | - Philip K Moore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Life Science Institute, National University of Singapore, Singapore
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
11
|
Molina-Jijón E, Rodríguez-Muñoz R, González-Ramírez R, Namorado-Tónix C, Pedraza-Chaverri J, Reyes JL. Aldosterone signaling regulates the over-expression of claudin-4 and -8 at the distal nephron from type 1 diabetic rats. PLoS One 2017; 12:e0177362. [PMID: 28493961 PMCID: PMC5426686 DOI: 10.1371/journal.pone.0177362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/17/2017] [Indexed: 12/19/2022] Open
Abstract
Hyperglycemia in diabetes alters tight junction (TJ) proteins in the kidney. We evaluated the participation of aldosterone (ALD), and the effect of spironolactone (SPL), a mineralocorticoid receptor antagonist, on the expressions of claudin-2, -4, -5 and -8, and occludin in glomeruli, proximal and distal tubules isolated from diabetic rats. Type 1 diabetes was induced in female Wistar rats by a single tail vein injection of streptozotocin (STZ), and SPL was administrated daily by gavage, from days 3–21. Twenty-one days after STZ injection the rats were sacrificed. In diabetic rats, the serum ALD levels were increased, and SPL-treatment did not have effect on these levels or in hyperglycemia, however, proteinuria decreased in SPL-treated diabetic rats. Glomerular damage, evaluated by nephrin and Wilm’s tumor 1 (WT1) protein expressions, and proximal tubular damage, evaluated by kidney injury molecule 1 (Kim-1) and heat shock protein 72 kDa (Hsp72) expressions, were ameliorated by SPL. Also, SPL prevented decrement in claudin-5 in glomeruli, and claudin-2 and occludin in proximal tubules by decreasing oxidative stress, evaluated by superoxide anion (O2●―) production, and oxidative stress markers. In distal tubules, SPL ameliorated increase in mRNA, protein expression, and phosphorylation in threonine residues of claudin-4 and -8, through a serum and glucocorticoid-induced kinase 1 (SGK1), and with-no-lysine kinase 4 (WNK4) signaling pathway. In conclusion, this is the first study that demonstrates that ALD modulates the expression of renal TJ proteins in diabetes, and that the blockade of its actions with SPL, may be a promising therapeutic strategy to prevent alterations of TJ proteins in diabetic nephropathy.
Collapse
MESH Headings
- Aldosterone/metabolism
- Animals
- Claudin-4/metabolism
- Claudins/metabolism
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Female
- Hyperglycemia/blood
- Hyperglycemia/drug therapy
- Hyperglycemia/prevention & control
- Immediate-Early Proteins/metabolism
- Kidney Glomerulus/drug effects
- Kidney Glomerulus/pathology
- Kidney Tubules/drug effects
- Kidney Tubules/pathology
- Models, Biological
- Natriuresis/drug effects
- Nephrons/metabolism
- Oxidative Stress/drug effects
- Phosphorylation/drug effects
- Potassium/blood
- Protein Serine-Threonine Kinases/metabolism
- Proteinuria/blood
- Proteinuria/complications
- Proteinuria/drug therapy
- Proteinuria/prevention & control
- Rats, Wistar
- Signal Transduction/drug effects
- Spironolactone/pharmacology
- Spironolactone/therapeutic use
- Tight Junctions/drug effects
- Tight Junctions/metabolism
- Weight Loss/drug effects
Collapse
Affiliation(s)
- Eduardo Molina-Jijón
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, México
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre el Medio Ambiente y Desarrollo del Instituto Politécnico Nacional (CIIEMAD-IPN), Mexico City, México
| | - Rafael Rodríguez-Muñoz
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, México
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, Dr. Manuel Gea González, General Hospital, Mexico City, México
| | - Carmen Namorado-Tónix
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, México
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, México
| | - Jose L. Reyes
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, México
- * E-mail:
| |
Collapse
|
12
|
Aparicio-Trejo OE, Tapia E, Molina-Jijón E, Medina-Campos ON, Macías-Ruvalcaba NA, León-Contreras JC, Hernández-Pando R, García-Arroyo FE, Cristóbal M, Sánchez-Lozada LG, Pedraza-Chaverri J. Curcumin prevents mitochondrial dynamics disturbances in early 5/6 nephrectomy: Relation to oxidative stress and mitochondrial bioenergetics. Biofactors 2017; 43:293-310. [PMID: 27801955 DOI: 10.1002/biof.1338] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/13/2016] [Accepted: 10/04/2016] [Indexed: 12/20/2022]
Abstract
Five-sixths nephrectomy (5/6NX) is a widely used model to study the mechanisms leading to renal damage in chronic kidney disease (CKD). However, early alterations on renal function, mitochondrial dynamics, and oxidative stress have not been explored yet. Curcumin is an antioxidant that has shown nephroprotection in 5/6NX-induced renal damage. The aim of this study was to explore the effect of curcumin on early mitochondrial alterations induced by 5/6NX in rats. In isolated mitochondria, 5/6NX-induced hydrogen peroxide production was associated with decreased activity of complexes I and V, decreased activity of antioxidant enzymes, alterations in oxygen consumption and increased MDA-protein adducts. In addition, it was found that 5/6NX shifted mitochondrial dynamics to fusion, which was evidenced by increased optic atrophy 1 and mitofusin 1 (Mfn1) and decreased fission 1 and dynamin-related protein 1 expressions. These data were confirmed by morphological analysis and immunoelectron microscopy of Mfn-1. All the above-described mechanisms were prevented by curcumin. Also, it was found that curcumin prevented renal dysfunction by improving renal blood flow and the total antioxidant capacity induced by 5/6NX. Moreover, in glomeruli and proximal tubules 5/6NX-induced superoxide anion production by uncoupled nitric oxide synthase (NOS) and nicotinamide adenine dinucleotide phosphate oxidase (NOX) dependent way, this latter was associated with increased phosphorylation of serine 304 of p47phox subunit of NOX. In conclusion, this study shows that curcumin pretreatment decreases early 5/6NX-induced altered mitochondrial dynamics, bioenergetics, and oxidative stress, which may be associated with the preservation of renal function. © 2016 BioFactors, 43(2):293-310, 2017.
Collapse
Affiliation(s)
- Omar Emiliano Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Edilia Tapia
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Eduardo Molina-Jijón
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del Instituto Politécnico Nacional (CIIEMAD-IPN), Ciudad de México, 07340, México
| | - Omar Noel Medina-Campos
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Norma Angélica Macías-Ruvalcaba
- Department of Physical Chemistry, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, 14000, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition "Salvador Zubirán", Mexico City, 14000, Mexico
| | - Fernando E García-Arroyo
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Magdalena Cristóbal
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Department of Nephrology and Laboratory of Renal Pathophysiology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| |
Collapse
|
13
|
Molina-Jijón E, Aparicio-Trejo OE, Rodríguez-Muñoz R, León-Contreras JC, Del Carmen Cárdenas-Aguayo M, Medina-Campos ON, Tapia E, Sánchez-Lozada LG, Hernández-Pando R, Reyes JL, Arreola-Mendoza L, Pedraza-Chaverri J. The nephroprotection exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy. Biofactors 2016; 42:686-702. [PMID: 27412471 DOI: 10.1002/biof.1313] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/26/2016] [Accepted: 06/14/2016] [Indexed: 12/18/2022]
Abstract
We have previously reported that the antioxidant curcumin exerts nephroprotection in maleate-induced renal damage, a model associated with oxidative stress. However, the mechanisms involved in curcumin protective effect were not explored, to assess this issue, curcumin was administered daily by gavage (150 mg/kg) five days before a single maleate (400 mg/kg)-injection. Curcumin prevented maleate-induced proteinuria, increased heat shock protein of 72 KDa (Hsp72) expression, and decreased plasma glutathione peroxidase activity. Maleate-induced oxidative stress by increasing the nicotinamide-adenine dinucleotide phosphate oxidase 4 (NOX4) and mitochondrial complex I-dependent superoxide anion (O2 •- ) production, formation of malondialdehyde (MDA)- and 3-nitrotyrosine (3-NT)-protein adducts and protein carbonylation and decreased GSH/GSSG ratio. Curcumin treatment ameliorated all the above-described changes. The maleate-induced epithelial damage, evaluated by claudin-2 and occludin expressions, was ameliorated by curcumin. It was found that maleate-induced oxidative stress promoted mitochondrial fission, evaluated by dynamin-related protein (Drp) 1 and fission (Fis) 1 expressions and by electron-microscopy, and autophagy, evaluated by phospho-threonine 389 from p70 ribosomal protein S6 kinase (p-Thr 389 p70S6K), beclin 1, microtubule-associated protein 1A/1B-light chain 3 phosphatidylethanolamine conjugate (LC3-II), autophagy-related gene 5 and 12 (Atg5-Atg12) complex, p62, and lysosomal-associated membrane protein (LAMP)-2 expressions in isolated proximal tubules and by electron-microscopy and LC-3 immunolabelling. Curcumin treatment ameliorated these changes. Moreover, curcumin alone induced autophagy in proximal tubules. These data suggest that the nephroprotective effect exerted by curcumin in maleate-induced renal damage is associated with decreased mitochondrial fission and autophagy. © 2016 BioFactors, 42(6):686-702, 2016.
Collapse
Affiliation(s)
- Eduardo Molina-Jijón
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Department of Biociences and Engineering, CIIEMAD-IPN, Mexico City, Mexico
| | - Omar Emiliano Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Rafael Rodríguez-Muñoz
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán" (INCMNSZ), Tlalpan, Mexico City, Mexico
| | | | - Omar Noel Medina-Campos
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Edilia Tapia
- Department of Nephrology and Laboratory of Renal Physiopathology, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Department of Nephrology and Laboratory of Renal Physiopathology, National Institute of Cardiology "Ignacio Chávez", Mexico City, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition "Salvador Zubirán" (INCMNSZ), Tlalpan, Mexico City, Mexico
| | - José L Reyes
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, Mexico
| | | | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| |
Collapse
|
14
|
Trujillo J, Molina-Jijón E, Medina-Campos ON, Rodríguez-Muñoz R, Reyes JL, Loredo ML, Barrera-Oviedo D, Pinzón E, Rodríguez-Rangel DS, Pedraza-Chaverri J. Curcumin prevents cisplatin-induced decrease in the tight and adherens junctions: relation to oxidative stress. Food Funct 2016; 7:279-93. [PMID: 26467482 DOI: 10.1039/c5fo00624d] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Curcumin is a polyphenol and cisplatin is an antineoplastic agent that induces nephrotoxicity associated with oxidative stress, apoptosis, fibrosis and decrease in renal tight junction (TJ) proteins. The potential effect of curcumin against alterations in TJ structure and function has not been evaluated in cisplatin-induced nephrotoxicity. The present study explored whether curcumin is able to prevent the cisplatin-induced fibrosis and decreased expression of the TJ and adherens junction (AJ) proteins occludin, claudin-2 and E-cadherin in cisplatin-induced nephrotoxicity. Curcumin (200 mg kg(-1)) was administered in three doses, and rats were sacrificed 72 h after cisplatin administration. Curcumin was able to scavenge, in a concentration-dependent way, superoxide anion, hydroxyl radical, peroxyl radical, singlet oxygen, peroxynitrite anion, hypochlorous acid and hydrogen peroxide. Cisplatin-induced renal damage was associated with alterations in plasma creatinine, expression of neutrophil gelatinase-associated lipocalin and of kidney injury molecule-1, histological damage, increase in apoptosis, fibrosis (evaluated by transforming growth factor β1, collagen I and IV and α-smooth muscle actin expressions), increase in oxidative/nitrosative stress (evaluated by Hsp70/72 expression, protein tyrosine nitration, superoxide anion production in isolated glomeruli and proximal tubules, and protein levels of NADPH oxidase subunits p47(phox) and gp91(phox), protein kinase C β2, and Nrf2) as well as by decreased expression of occludin, claudin-2, β-catenin and E-cadherin. Curcumin treatment prevented all the above-described alterations. The protective effect of curcumin against cisplatin-induced fibrosis and decreased proteins of the TJ and AJ was associated with the prevention of glomerular and proximal tubular superoxide anion production induced by NADPH oxidase activity.
Collapse
Affiliation(s)
- Joyce Trujillo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), 04510 University City, D.F., Mexico.
| | - Eduardo Molina-Jijón
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, 07360, Mexico
| | - Omar Noel Medina-Campos
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), 04510 University City, D.F., Mexico.
| | - Rafael Rodríguez-Muñoz
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, 07360, Mexico
| | - José Luis Reyes
- Department of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Mexico City, 07360, Mexico
| | - María L Loredo
- School of Medicine, Panamericana University, Mexico City, 03920, Mexico
| | - Diana Barrera-Oviedo
- Department of Pharmacology, Faculty of Medicine, National Autonomous University of Mexico (UNAM), University City, 04510, Mexico
| | - Enrique Pinzón
- Animal Care Unit, Faculty of Medicine, National Autonomous University of Mexico (UNAM), University City, 04510, Mexico
| | - Daniela Saraí Rodríguez-Rangel
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), 04510 University City, D.F., Mexico.
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), 04510 University City, D.F., Mexico.
| |
Collapse
|
15
|
Cigremis Y, Akgoz M, Ozen H, Karaman M, Kart A, Gecer M, Atalan G. Resveratrol ameliorates cisplatin-induced oxidative injury in New Zealand rabbits. Can J Physiol Pharmacol 2015; 93:727-35. [DOI: 10.1139/cjpp-2014-0420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This study investigated the preventive role of resveratrol in cisplatin-induced nephrotoxicity. The study used groups of New Zealand rabbits that were treated as follows: group C (cisplatin treated), group R (resveratrol treated), group R+C (resveratrol + cisplatin treatment), and group E (control group). Kidney levels of glutathione were significantly lower in group C than in groups E and R, whereas glutathione levels in group R+C were found to be similar to the control values. Malondialdehyde levels in group C were significantly higher than in groups E and R. However, malondialdehyde levels in group R+C were similar to group E. Kidney levels of nitric oxide were significantly higher in the cisplatin group than in the control, whereas nitric oxide levels were at basal values in group R+C. Cisplatin treatment significantly reduced kidney levels of glutathione peroxidase, superoxide dismutase, and catalase activity compared with those of group E, whereas resveratrol treatment significantly increased levels of glutathione peroxidase, superoxide dismutase, and catalase activity in group R+C. However, cisplatin injection did not affect mRNA levels of glutathione peroxidase, superoxide dismutase, or catalase enzymes. Histopathological and immunohistochemical analyses indicated that cisplatin caused kidney damage, which was mostly prevented by resveratrol treatment. In conclusion, resveratrol ameliorates cisplatin-induced oxidative injury in the kidney of rabbit.
Collapse
Affiliation(s)
- Yilmaz Cigremis
- Inonu University, Medical Faculty, Department of Medical Biology and Genetics, Malatya, Turkey
| | - Muslum Akgoz
- TUBITAK Ulusal Metroloji Enstitüsü (UME), Bioanalysis Laboratory, 41470 Gebze, Kocaeli, Turkey
| | - Hasan Ozen
- Kafkas University, Department of Pathology, Faculty of Veterinary Medicine, Kars, Turkey
| | - Musa Karaman
- Kafkas University, Department of Pathology, Faculty of Veterinary Medicine, Kars, Turkey
| | - Asım Kart
- Mehmet Akif Ersoy University, Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Burdur, Turkey
| | - Murat Gecer
- TUBITAK Ulusal Metroloji Enstitüsü (UME), Bioanalysis Laboratory, 41470 Gebze, Kocaeli, Turkey
| | - Gultekin Atalan
- Erciyes University, Department of Surgery, Faculty of Veterinary Medicine, Kayseri, Turkey
| |
Collapse
|