1
|
Chen X, Chen X, Xie J, Guo D. Promoter Methylation of WIF1 is Involved in IL-17-Induced Chondrocyte Inflammatory Injury and Matrix Degradation via Promoting Wnt5a/MAPK-JNK Signaling. Mol Biotechnol 2025:10.1007/s12033-025-01378-9. [PMID: 40072748 DOI: 10.1007/s12033-025-01378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/06/2025] [Indexed: 03/14/2025]
Abstract
The activity of Wnt inhibitory factor 1 (WIF1) is reduced upon promoter methylation and is involved in cartilage degradation in osteoarthritis. This study aims to investigate the mechanism by which WIF1 methylation is involved in chondrocyte damage in ankylosing spondylitis (AS). A model of chondrocyte inflammatory injury in AS was constructed by stimulation with interleukin (IL)-17. WIF1 level in injured chondrocytes was detected by western blot and RT-qPCR. ELISA kits were used to assess the levels of inflammatory cytokines. The expressions of MMP9, MMP13, collagen II, and ADAMTS-4 were tested by western blot and RT-qPCR. Wnt5a/mMAPK signaling and associated phosphorylated protein expressions were observed using western blot. After overexpression of Wnt5a, the same assays were used to evaluate the above indexes. The methylation level of the WIF1 promoter was measured by MSP-PCR assay. WIF1 expression declined in IL-17-induced chondrocytes. Overexpression of WIF1 decreased the levels of inflammatory factors TNFα, IL-1β, and IL-6, as well as downregulated the expressions of MMP9, MMP13, collagen II, and ADAMTS-4. Likewise, elevated WIF1 inhibited the Wnt5a/MAPK signaling and phosphorylation of JNK. However, upregulation of Wnt5a in IL-17-treated chondrocytes attenuated these responses. Besides, in damaged chondrocytes, WIF1 expression was reduced due to promoter methylation, while it was upregulated after demethylation. In summary, WIF1 exhibits high methylation levels in AS and is involved in inflammatory injury and matrix degradation in chondrocytes by regulating the Wnt5a/MAPK-JNK pathway.
Collapse
Affiliation(s)
- Xi Chen
- The Third Clinical Medicine College, Ningxia Medical University (People's Hospital of Ningxia Hui Autonomous Region), Yinchuan, 750002, China
- Key Laboratory of Autoimmune Diseases and Precision Medicie, Ningxia Hui Autonomous Region, Yinchuan, 750002, China
- Department of Rheumatology and Immunology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Xu Chen
- The Third Clinical Medicine College, Ningxia Medical University (People's Hospital of Ningxia Hui Autonomous Region), Yinchuan, 750002, China
- Key Laboratory of Autoimmune Diseases and Precision Medicie, Ningxia Hui Autonomous Region, Yinchuan, 750002, China
- Department of Rheumatology and Immunology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Jing Xie
- The Third Clinical Medicine College, Ningxia Medical University (People's Hospital of Ningxia Hui Autonomous Region), Yinchuan, 750002, China
- Key Laboratory of Autoimmune Diseases and Precision Medicie, Ningxia Hui Autonomous Region, Yinchuan, 750002, China
- Department of Rheumatology and Immunology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China
| | - Donggeng Guo
- The Third Clinical Medicine College, Ningxia Medical University (People's Hospital of Ningxia Hui Autonomous Region), Yinchuan, 750002, China.
- Key Laboratory of Autoimmune Diseases and Precision Medicie, Ningxia Hui Autonomous Region, Yinchuan, 750002, China.
- Department of Rheumatology and Immunology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750002, China.
| |
Collapse
|
2
|
Mao S, Yao J, Zhang T, Zhang X, Tan W, Li C. Bilobalide attenuates lipopolysaccharide‑induced HepG2 cell injury by inhibiting TLR4‑NF‑κB signaling via the PI3K/Akt pathway. Exp Ther Med 2024; 27:24. [PMID: 38125341 PMCID: PMC10728898 DOI: 10.3892/etm.2023.12312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2023] Open
Abstract
Inflammation is involved in the pathological process underlying a number of liver diseases. Bilobalide (BB) is a natural compound from Ginkgo biloba leaves that was recently demonstrated to exert hepatoprotective effects by inhibiting oxidative stress in the liver cancer cell line HepG2. The anti-inflammatory activity of BB has been reported in recent studies. The major objective of the present study was to investigate whether BB could attenuate inflammation-associated cell damage. HepG2 cells were cultured with lipopolysaccharide (LPS) and BB, and cell damage was evaluated by measuring cell viability using MTT assay. The activity of the NF-κB signaling pathway was assessed by measuring the levels of IκBα, NF-κB p65, phosphorylated (p)-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines IL-1β, IL-6 and TNF-α. A toll-like receptor (TLR)4 inhibitor (CLI-095) was used to detect the involvement of TLR4 in cell injury caused by LPS. In addition, the PI3K/Akt inhibitor LY294002 was applied to explore the involvement of the PI3K/Akt axis in mediating the effects of BB. The results demonstrated that LPS induced HepG2 cell injury. LPS also elevated the levels of p-IκBα, p-p65, p65 DNA-binding activity and inflammatory cytokines. However, CLI-095 significantly attenuated the LPS-induced cell damage and inhibited the activation of NF-κB signaling. BB also dose-dependently attenuated the LPS-induced cell damage, activation of NF-κB signaling and TLR4 overexpression. Furthermore, it was observed that LY294002 diminished the cytoprotective effects of BB on cell injury, TLR4 expression and NF-κB activation. These findings indicated that BB could attenuate LPS-induced inflammatory injury to HepG2 cells by regulating TLR4-NF-κB signaling.
Collapse
Affiliation(s)
- Shumei Mao
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Jinpeng Yao
- Department of Cardiology, Yantai Kaifaqu Hospital, Yantai, Shandong 264006, P.R. China
| | - Teng Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Xiang Zhang
- Department of Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Wei Tan
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Chengde Li
- Department of Clinical Pharmacy, Key Laboratory of Applied Pharmacology in Universities of Shandong, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
3
|
Gouda NA, Alshammari SO, Abourehab MAS, Alshammari QA, Elkamhawy A. Therapeutic potential of natural products in inflammation: underlying molecular mechanisms, clinical outcomes, technological advances, and future perspectives. Inflammopharmacology 2023; 31:2857-2883. [PMID: 37950803 DOI: 10.1007/s10787-023-01366-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/06/2023] [Indexed: 11/13/2023]
Abstract
Chronic inflammation is a common underlying factor in many major diseases, including heart disease, diabetes, cancer, and autoimmune disorders, and is responsible for up to 60% of all deaths worldwide. Metformin, statins, and corticosteroids, and NSAIDs (non-steroidal anti-inflammatory drugs) are often given as anti-inflammatory pharmaceuticals, however, often have even more debilitating side effects than the illness itself. The natural product-based therapy of inflammation-related diseases has no adverse effects and good beneficial results compared to substitute conventional anti-inflammatory medications. In this review article, we provide a concise overview of present pharmacological treatments, the pathophysiology of inflammation, and the signaling pathways that underlie it. In addition, we focus on the most promising natural products identified as potential anti-inflammatory therapeutic agents. Moreover, preclinical studies and clinical trials evaluating the efficacy of natural products as anti-inflammatory therapeutic agents and their pragmatic applications with promising outcomes are reviewed. In addition, the safety, side effects and technical barriers of natural products are discussed. Furthermore, we also summarized the latest technological advances in the discovery and scientific development of natural products-based medicine.
Collapse
Affiliation(s)
- Noha A Gouda
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea
| | - Saud O Alshammari
- Department of Pharmacognosy and Alternative Medicine, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Qamar A Alshammari
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Northern Border University, Rafha, 76321, Saudi Arabia
| | - Ahmed Elkamhawy
- College of Pharmacy, Dongguk University-Seoul, Goyang, Gyeonggi, 10326, Republic of Korea.
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
4
|
Prevention of Bleomycin-Induced Pulmonary Inflammation and Fibrosis in Mice by Bilobalide. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:1973163. [PMID: 36733844 PMCID: PMC9889159 DOI: 10.1155/2023/1973163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/12/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Bilobalide (BB) is a sesquiterpene isolated from Ginkgo biloba, and its role in IPF is poorly understood. Mice were intratracheally instilled with 2.5 mg/kg bleomycin (BLM) to induce IPF and then treated with 2.5, 5, and 10 mg/kg BB daily for 21 days. Treatment with BB ameliorated pathological injury and fibrosis of lung tissues in BLM-induced mice. BB suppressed BLM-induced inflammatory response in mice as demonstrated by reduced inflammatory cells counts (leukocytes, neutrophils, macrophages, and lymphocytes) and pro-inflammatory factors (CCL2 and TNF-α), as well as increased CXCL10 levels in BALF. The expression of BLM-induced hydroxyproline, LDH, and pro-fibrotic mediators including fibronectin, collagen I, α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β1, matrix metalloproteinase (MMP)-2, and MMP-9 in lung tissue was inhibited by BB treatment, and the tissue inhibitor of metalloproteinase-1 (TIMP-1) expression was increased. BB blocked the phosphorylation of JNK and NF-κB, and the nuclear translocation of NF-κB in the lung tissue of mice induced by BLM. Additionally, it abated the activation of NLRP3 inflammasome in lung tissue induced by BLM, which led to the downregulation of IL-18 and IL-1β in BALF. Our present study suggested that BB might ameliorate BLM-induced pulmonary fibrosis by inhibiting the early inflammatory response, which is probably via the inhibition of the JNK/NF-κB/NLRP3 signal pathway. Thus, BB might serve as a therapeutic potential agent for pulmonary inflammation and fibrosis.
Collapse
|
5
|
Ma T, Jia L, Zhao J, Lv L, Yu Y, Ruan H, Song X, Chen H, Li X, Zhang J, Gao L. Ginkgolide C slows the progression of osteoarthritis by activating Nrf2/HO-1 and blocking the NF-κB pathway. Front Pharmacol 2022; 13:1027553. [PMID: 36386227 PMCID: PMC9651149 DOI: 10.3389/fphar.2022.1027553] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/17/2022] [Indexed: 10/19/2023] Open
Abstract
Osteoarthritis (OA) is driven by chronic low-grade inflammation and subsequent cartilage degradation. OA is the most prevalent degenerative joint disease worldwide, and its treatment remains a challenge. The aim of this study was to explore the potential effects and mechanism underlying the anti-OA properties of ginkgolide C (GC). Protective effects of GC on hydrogen peroxide (H2O2)-treated rat chondrocytes were evaluated using ELISA, qPCR, western blot analysis, flow cytometry, ROS detection and immunofluorescence in vitro. Ameliorating effects of GC on cartilage degeneration in rats were evaluated through behavioral assays, microcomputed tomography, histopathological analysis, western blot analysis and ELISA in vivo. In vitro, GC treatment inhibited the release of pro-apoptotic factors induced by H2O2 and promoted the release of the anti-apoptotic proteins. In addition, GC decreased the expression of matrix metalloproteinase (MMP3 and MMP13), thrombospondin motifs 4 (ADAMTS4), and inflammatory mediators inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and SOX9 thereby inhibiting extracellular matrix (ECM) degradation. Mechanistically, GC exerts its anti-apoptotic and anti-inflammatory effects by upregulating the oxidative stress signaling Nrf2/HO-1 pathway and preventing p65 from binding to DNA. Similarly, In a rat model with post-traumatic OA (PTOA) induced by anterior cruciate ligament transection (ACLT), GC inhibited joint pain, cartilage destruction, and abnormal bone remodeling of subchondral bone. GC inhibited H2O2-induced chondrocyte apoptosis through Nrf2/HO-1 and NF-κB axis, exerted anti-inflammatory effects, and inhibited cartilage degeneration in rat OA. Our findings advanced the concept that GC may contribute to cartilage metabolism through anti-inflammatory and anti-apoptotic effects, and the identified GC is a potential therapeutic agent for the treatment of OA.
Collapse
Affiliation(s)
- Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lina Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jinghua Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Liangyu Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongri Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaopeng Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hong Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xin Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| |
Collapse
|
6
|
Ma T, Chen H, Ruan H, Lv L, Yu Y, Jia L, Zhao J, Li X, Zang Y, Xu X, Zhang J, Gao L. Natural product, bilobalide, improves joint health in rabbits with osteoarthritis by anti-matrix degradation and antioxidant activities. Front Vet Sci 2022; 9:1034623. [PMID: 36337189 PMCID: PMC9631767 DOI: 10.3389/fvets.2022.1034623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/07/2022] [Indexed: 05/01/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic musculoskeletal disease reported in veterinary clinics that severely reduces the quality of life of animals. The natural product, bilobalide, has positive effects on chondroprotection but its exact mechanism of action is unclear. This study aimed to investigate the antioxidant and anti-matrix degradation activities of bilobalide in a rabbit model of OA and its protective effects on joints. We also investigated the possible mechanisms underlying these effects. The rabbit OA model was established by intra-articular injection of 4% papain. Thirty healthy male New Zealand rabbits were randomly divided into control, untreated OA, Cel (100 mg/kg celecoxib intervention as a positive control), BB-L and BB-H (40 mg /kg and 80 mg /kg bilobalide gavage treatment, respectively) groups. Two weeks after surgical induction, bilobalide or celecoxib was administered by gavage daily for 8 weeks. After 8 weeks of bilobalide intervention, cartilage macroscopic observation and histopathological images showed alleviation of cartilage damage after bilobalide treatment, and the Osteoarthritis Research Society International (OARSI) score was significantly lower than that in the OA group. Bilobalide reduced the expression of metalloproteinase 3 (MMP-3) and MMP-13 in cartilage tissue of OA rabbits and reversed the levels of serum C-telopeptides of type II collagen (CTX-II), cartilage oligomeric matrix protein (COMP), interleukin 1(IL-1), and tumor necrosis factor (TNF-α). Bilobalide (80 mg/kg) could improve the biomechanical properties and microstructural changes in subchondral bone in the early stage of OA in rabbits, thereby delaying subchondral bone damage. Mechanistically, bilobalide exerted antioxidant and anti-matrix degradation effects by upregulating the oxidative stress signaling Nrf2/HO-1 pathway and inhibiting cartilage degeneration in rabbit OA. We thus speculate that bilobalide supplements recovery from OA damage.
Collapse
Affiliation(s)
- Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hong Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Hongri Ruan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Liangyu Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yue Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Lina Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jinghua Zhao
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xin Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuxin Zang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinyu Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| |
Collapse
|
7
|
Ma T, Lv L, Yu Y, Jia L, Song X, Xu X, Li T, Sheng X, Wang H, Zhang J, Gao L. Bilobalide Exerts Anti-Inflammatory Effects on Chondrocytes Through the AMPK/SIRT1/mTOR Pathway to Attenuate ACLT-Induced Post-Traumatic Osteoarthritis in Rats. Front Pharmacol 2022; 13:783506. [PMID: 35281931 PMCID: PMC8905364 DOI: 10.3389/fphar.2022.783506] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/21/2022] [Indexed: 12/28/2022] Open
Abstract
Although osteoarthritis (OA) significantly affects the quality of life of the elderly, there is still no effective treatment strategy. The standardized Ginkgo biloba L. extract preparation has been shown to have a wide range of therapeutic effects. Bilobalide, a unique ingredient of Ginkgo biloba, has anti-inflammatory and antioxidant pharmacological properties, but its mechanism of action on OA remains unknown. In this study, we investigated the effects of bilobalide on the development of OA through in vivo and in vitro experiments, as well as its potential anti-inflammatory mechanisms. The in vitro experiments demonstrated that bilobalide significantly inhibited the production of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and matrix metalloproteinase 13 (MMP13) in ATDC5 chondrocytes induced by Interleukin-1β (IL-1β). At the molecular level, bilobalide induced chondrocyte autophagy by activating the AMPK/SIRT1/mTOR signaling pathway, which increased the expression of autophagy-related Atg genes, up-regulated the expression of LC3 protein, and reduced the expression of the p62 protein. In vivo, bilobalide exerted significant anti-inflammatory and anti-extracellular matrix (ECM) degradation effects in a rat model of post-traumatic OA (PTOA) induced by anterior cruciate ligament transection (ACLT). Bilobalide could relieve joint pain in PTOA rats, inhibit the expression of iNOS and COX-2 protein in cartilage via the AMPK/SIRT1/mTOR pathway, and reduce the level of ECM degradation biomarkers in serum. In conclusion, bilobalide exhibits vigorous anti-inflammatory activity, presenting it as an interesting potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Tianwen Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Liangyu Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Yue Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Lina Jia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Xiaopeng Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - XinYu Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Ting Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Xuanbo Sheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Haoran Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Jiantao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| | - Li Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China.,Heilongjiang Key Laboratory of Animals Disease Pathogenesis and Comparative Medicine, Harbin, China
| |
Collapse
|
8
|
Li J, Chen Z, Liao H, Zhong Y, Hua J, Su M, Li J, Xu J, Cui L, Cui Y. Anti-Osteogenic Effect of Danshensu in Ankylosing Spondylitis: An in Vitro Study Based on Integrated Network Pharmacology. Front Pharmacol 2021; 12:772190. [PMID: 34899327 PMCID: PMC8656304 DOI: 10.3389/fphar.2021.772190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease characterized by abnormal bone metabolism, with few effective treatments available. Danshensu [3-(3,4-dihydroxy-phenyl) lactic acid) is a bioactive compound from traditional Chinese medicine with a variety of pharmacologic effects. In the present study, we investigated the pharmacologic effect and molecular mechanism of Danshensu in AS. Potential targets of Danshensu were identified in four drugs-genes databases; and potential pharmacologic target genes in AS were identified in three diseases-genes databases. Differentially expressed genes related to AS were obtained from the Gene Expression Omnibus database. Overlapping targets of Danshensu and AS were determined and a disease–active ingredient–target interaction network was constructed with Cytoscape software. Enrichment analyses of the common targets were performed using Bioconductor. To test the validity of the constructed network, an in vitro model was established by treating osteoblasts from newborn rats with low concentrations of tumor necrosis factor (TNF)-α. Then, the in vitro model and AS fibroblasts were treated with Danshensu (1–10 μM). Osteogenesis was evaluated by alkaline phosphatase staining and activity assay, alizarin red staining, quantitative PCR, and western blotting. We identified 2944 AS-related genes and 406 Danshensu targets, including 47 that were common to both datasets. The main signaling pathways associated with the targets were the c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways. A low concentration of TNF-α (0.01 ng/ml) promoted the differentiation of osteoblasts; this was inhibited by Danshensu, which had the same effect on AS fibroblasts but had the opposite effect on normal osteoblasts. Danshensu also decreased the phosphorylation of JNK and ERK in AS fibroblasts. There results provide evidence that Danshensu exerts an anti-osteogenic effect via suppression of JNK and ERK signaling, highlighting its therapeutic potential for the treatment of AS.
Collapse
Affiliation(s)
- Jiaxiao Li
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zexin Chen
- Department of Rheumatology and Immunology, South China Hospital of Shenzhen University, Shenzhen, China
| | - Hongbo Liao
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yanting Zhong
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Junying Hua
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Miaoling Su
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiahao Li
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinrong Xu
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liao Cui
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Yang Cui
- School of Medicine, South China University of Technology, Guangzhou, China.,Department of Rheumatology and Immunology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
9
|
Lu J, Xie L, Liu K, Zhang X, Wang X, Dai X, Liang Y, Cao Y, Li X. Bilobalide: A review of its pharmacology, pharmacokinetics, toxicity, and safety. Phytother Res 2021; 35:6114-6130. [PMID: 34342079 DOI: 10.1002/ptr.7220] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 12/18/2022]
Abstract
Bilobalide is a natural sesquiterpene trilactone from Ginkgo biloba leaves. It has good water solubility and is widely used in food and pharmaceutical fields. In the last decade, a plethora of studies on the pharmacological activities of bilobalide has been conducted and demonstrated that bilobalide possessed an extensive range of pharmacological activities such as neuroprotective, antioxidative, antiinflammatory, anti-ischemic, and cardiovascular protective activities. Pharmacokinetic studies indicated that bilobalide may have the characteristics of rapid absorption, good bioavailability, wide distribution, and slow elimination. This review aims to summarize the advances in pharmacological, pharmacokinetics, toxicity, and safety studies of bilobalide in the last decade with an emphasis on its neuroprotective and antiinflammatory activities, to provide researchers with the latest information and point out the limitations of relevant research at the current stage and the aspects that should be strengthened in future research.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Long Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuming Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
10
|
Zhang H, Wang Y, Su Y, Fang X, Guo W. The alleviating effect and mechanism of Bilobalide on ulcerative colitis. Food Funct 2021; 12:6226-6239. [PMID: 34096560 DOI: 10.1039/d1fo01266e] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysfunction of the intestinal epithelial barrier and intestinal microbiota dysbiosis can drive the onset or aggravation of ulcerative colitis (UC). Bilobalide (BI) is an extract of Ginkgo biloba that has been shown to exhibit a range of anti-inflammatory properties. Herein, we explored functional and mechanistic effects of BI treatment in a rodent model of DSS-induced UC. These analyses revealed that BI treatment was sufficient to reduce disease severity, increase colon length, and normalize colon histological characteristics relative to those observed in DSS-treated model mice. BI also enhanced the expression of tight junction proteins associated with intestinal barrier integrity including ZO-1, Occludin, and Claudin-3. Through 16S rDNA sequencing analyses, BI was also found to influence the overall richness of the intestinal microbiome, promoting the proliferation of probiotic species including Lactobacillus. Consistent with these in vivo findings, BI treatment protected RAW264.7 cells against lipopolysaccharide (LPS)-induced inflammatory damage, suppressing the activation of the AKT/NF-κB p65 and MAPK signaling pathways in this experimental context. In summary, these findings revealed that BI can suppress MAPK and AKT/NF-κB p65 signaling, thereby suppressing the production of inflammatory cytokines including IL-1β, IL-6, and TNF-α, while additionally alleviating UC severity by facilitating repair of the intestinal epithelial barrier and the remodeling of intestinal microbial communities.
Collapse
Affiliation(s)
- Haolong Zhang
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | | | | | | | | |
Collapse
|
11
|
Li J, Chen J, Yang Y, Ding R, Wang M, Gu Z. Ginkgolide A attenuates sepsis-associated kidney damage via upregulating microRNA-25 with NADPH oxidase 4 as the target. Int Immunopharmacol 2021; 95:107514. [PMID: 33677255 DOI: 10.1016/j.intimp.2021.107514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to explore the effects of Ginkgolide A (GA) on renal function of mice with sepsis and whether GA could attenuate sepsis-associated inflammation and apoptosis in kidney via upregulating microRNA (miR)-25 with NADPH oxidase 4 (Nox4) as the target. Experiments were carried out on lipopolysaccharide (LPS)-treated mice and kidney tubular (NRK-52E) cells. GA significantly inhibited the increases of creatinine (Cr), blood urea nitrogen (BUN) and cystatin C (CysC) in the serum of LPS-treated mice. The increases of inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in the kidneys of LPS-treated mice or NRK-52E cells were inhibited by GA administration. The changes of cleaved-caspase 3, cleaved-caspase 8, Bax, Bcl2 in mouse kidney and NRK-52E cells treated by LPS were reversed by GA administration. The sepsis-induced decrease of miR-25 was enhanced by GA treatment. The LPS-induced increases of inflammatory factors and apoptosis in mouse kidney or NRK-52E cells were attenuated after miR-25 agomiR administration. The bioinformatics analysis and luciferase reporter assays showed that Nox4 was a direct target gene of miR-25. Treatment with miR-25 inhibited Nox4 expression, while Nox4 over-expression reversed the inhibiting effects of miR-25 agomiR on LPS-induced increases of inflammatory factors and apoptosis in NRK-52E cells. These results indicated that GA could improve sepsis-induced renal damage by attenuating renal inflammation and apoptosis via upregulating miR-25 with Nox4 as the target.
Collapse
Affiliation(s)
- Jianzhong Li
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Jian Chen
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Yucheng Yang
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Rui Ding
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Meili Wang
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Zhenhua Gu
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China.
| |
Collapse
|
12
|
Su F, Jin L, Liu W. MicroRNA-125a Correlates with Decreased Psoriasis Severity and Inflammation and Represses Keratinocyte Proliferation. Dermatology 2021; 237:568-578. [PMID: 33735868 DOI: 10.1159/000510681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/04/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Psoriasis has a complex etiology related to inflammation and dysregulated immune system. MicroRNA (miR)-125a is a miRNA intimately related to inflammation and immunity; therefore, we presumed that it might play a role in the pathogenesis of psoriasis. This study aimed to investigate the correlation of miR-125a with disease severity and inflammation in psoriasis patients, and the effect of miR-125a on proliferation, apoptosis as well as its target signaling pathway in keratinocytes. METHODS Sixty psoriasis patients were consecutively recruited, then lesional and non-lesional skin tissue samples were collected. miR-125a in lesional and non-lesional skin tissues, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and IL-17 mRNA expressions in lesional skin tissues were detected. Then, miR-125a overexpression, control overexpression, miR-125a knockdown and control knockdown plasmids were transfected into HaCaT cells. Subsequently, cell proliferation, apoptosis, IL-23R, JAK2, and STAT3 expressions were assessed. RESULTS miR-125a was reduced in lesional skin tissue compared with non-lesional skin tissue (p < 0.001), and it distinguished lesional skin tissue from non-lesional skin tissue with a high area under curve of 0.917 (95% CI 0.866-0.968). Negative association of miR-125a in lesional skin tissue with lesional body surface area (p = 0.037) and psoriasis area and severity index score (p < 0.001) was found. Additionally, miR-125a was negatively correlated with TNF-α (p = 0.001), IL-1β (p = 0.014), and IL-17 (p = 0.003) in lesional skin tissue. In cellular experiments, miR-125a overexpression inhibited proliferation and promoted apoptosis, while miR-125a knockdown enhanced proliferation and repressed apoptosis in HaCaT cells. Additionally, miR-125a negatively regulated the IL-23R/JAK2/STAT3 pathway in HaCaT cells. CONCLUSION miR-125a could facilitate the disease monitoring and probably has the potential to be a therapeutic target in psoriasis.
Collapse
Affiliation(s)
- Fang Su
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China.,Department of Dermatology, The Seventh People's Hospital of Shenyang, Shenyang, China
| | - Liang Jin
- Department of Dermatology, Air Force Medical Center of the Chinese PLA, Beijing, China
| | - Wei Liu
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, China,
| |
Collapse
|
13
|
Zhou B, Li L, Qiu X, Wu J, Xu L, Shao W. Long non-coding RNA ANRIL knockdown suppresses apoptosis and pro-inflammatory cytokines while enhancing neurite outgrowth via binding microRNA-125a in a cellular model of Alzheimer's disease. Mol Med Rep 2020; 22:1489-1497. [PMID: 32626959 PMCID: PMC7339647 DOI: 10.3892/mmr.2020.11203] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the effect of the long non-coding RNA antisense non-coding RNA in the INK4 locus (lnc-ANRIL) knockdown on apoptosis, neurite outgrowth and inflammation based on a PC12 cellular Alzheimer's disease (AD) model. A cellular AD model was constructed by treating nerve growth factor stimulated PC12 cells with amyloid β (Aβ) 1–42 and then control knockdown plasmid and lnc-ANRIL knockdown plasmid were transfected in the PC12 cellular AD model as the KD- negative control (NC) group or the AD-ANRIL group respectively. Apoptosis, neurite outgrowth, pro-inflammatory cytokines and microRNA (miR)-125a were assessed. Rescue experiments were conducted by transfecting lnc-ANRIL knockdown plasmid and lnc-ANRIL knockdown plasmid and miR-125a inhibitor in the PC12 cellular AD model as the KD-ANRIL group or KD-ANRIL + KD-miR-125a group respectively. Following transfection, cell apoptosis deccreased while neurite outgrowth increased in the KD-ANRIL group compared with the KD-NC group (all P<0.01). Concerning inflammation, tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β, IL-6 and IL-17 were decreased in the KD-ANRIL group compared with the KD-NC group (all P<0.01). miR-125a was negatively regulated by lnc-ANRIL and therefore rescue experiments were subsequently conducted. In the rescue experiments, cell apoptosis was increased while total neurite outgrowth was inhibited in the KD-ANRIL + KD-miR-125a group compared with the KD-ANRIL group (all P<0.01), and TNF-α, IL-1β, IL-6 and IL-17 were increased in the KD-ANRIL + KD-miR-125a group compared with the KD-ANRIL group (all P<0.01). A luciferase reporter assay demonstrated that lnc-ANRIL directly bound miR-125a. lnc-ANRIL knockdown suppressed cell apoptosis and inflammation while promoting neurite outgrowth via binding of miR-125a in AD.
Collapse
Affiliation(s)
- Bingling Zhou
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, Hubei 430022, P.R. China
| | - Lijuan Li
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, Hubei 430022, P.R. China
| | - Xin Qiu
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, Hubei 430022, P.R. China
| | - Jiashun Wu
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, Hubei 430022, P.R. China
| | - Lei Xu
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, Hubei 430022, P.R. China
| | - Wei Shao
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|