1
|
Verma A, Jakhar R, Kumar D, Kumar V, Dhillon T, Dangi M, Chhillar AK. A computational approach to discover antioxidant and anti-inflammatory attributes of silymarin derived from Silybum marianum by comparison with hydroxytyrosol. J Biomol Struct Dyn 2023; 41:11101-11121. [PMID: 36546728 DOI: 10.1080/07391102.2022.2159879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Medicinal plants possess therapeutic potential for reducing reactive oxygen species (ROS)-mediated cellular damage. Hydroxytyrosol is one of the most potent antioxidants that served as control in the current study, including other synthetic antioxidants to computationally identify the antioxidant properties of Silymarin. The sequences of the receptors IκB kinase (IKK), Kelch-like ECH-associated protein 1 (Keap-1) and mitochondrial transcription factor A (Tfam) were retrieved from UniProtKB and homology modeling was performed using Swiss-Model server. Thereof the molecular docking and dynamic simulation studies were performed using Schrödinger's software version 11.5. From the current study, it was reported that on comparison of the binding energy of silymarin, hydroxytyrosol, α-tocopherol, ascorbic acid, butylated hydroxy anisole (BHA) and butylated hydroxytoluene (BHT), Silymarin exhibited better affinities with IKK receptor followed by Hydroxytyrosol suggesting it as the best or comparable of all other known antioxidants that could potentially suppress inflammation and other diseases. Also, Silymarin exhibited poorest binding affinity with Tfam promoting mitochondrial biogenesis, thereby scavenging ROS. However, with Keap-1, Silymarin is ranked 4th in the list, whereas hydroxytyrosol exhibited highest binding affinity to release oxidative stress. The stability of docked complexes made us conclude that Silymarin has comparable antioxidant properties to hydroxytyrosol, better anti-inflammatory potential and mitochondrial biogenesis enhancing properties to ultimately reduce oxidative stress. Now it can be tested further for in vitro or in vivo studies as potential drug against oxidative insult.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Annu Verma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Ritu Jakhar
- Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, India
| | - Dev Kumar
- Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, India
| | - Vijay Kumar
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Twinkle Dhillon
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Mehak Dangi
- Centre for Bioinformatics, Maharshi Dayanand University, Rohtak, India
| | | |
Collapse
|
2
|
Sesame Meal, Vitamin E and Selenium Influence Goats' Antioxidant Status. Antioxidants (Basel) 2021; 10:antiox10030392. [PMID: 33807783 PMCID: PMC7999699 DOI: 10.3390/antiox10030392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/28/2022] Open
Abstract
This study aimed to determine the impact of sesame meal, selenium (Se), and vitamin E (VitE) on goats’ oxidative status. Thirty mid-lactation crossbred goats were divided into five homogeneous groups, and were fed 1 kg of alfalfa hay and 1.2 kg of concentrates daily. The control group (C) received a basal diet. In the concentrates of the treated groups, 10% of the soybean meal was replaced by sesame meal and no extra VitE or Se (SM), or an extra 60 mg of VitE (SME), or 0.1 mg organic Se (SMSe), or their combination (60 mg VitE and 0,1 mg organic Se/kg of concentrate (SMESe). In the plasma of the goats, the dietary treatments did not affect glutathione reductase, glutathione peroxidase, glutathione transferase, catalase, superoxide dismutase activities, malondialdehyde (MDA) content, or the total antioxidant capacity. A reduction and a trend for lower protein carbonyls content was found in goats fed SM (p = 0.03) and SME (p = 0.06) compared to SMESe. In the milk, the lactoperoxidase activity decreased with SMSe and SMESe. A numerical decrease in the total antioxidant capacity and an increase in the MDA content in the milk of the SMESe group compared with the other treated groups was found. In mid-lactation goats, SM improves the oxidative status of both the organism and the milk.
Collapse
|
3
|
Probing 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones as multi-target directed ligands against cholinesterases, carbonic anhydrases and α-glycosidase enzymes. Bioorg Chem 2020; 107:104554. [PMID: 33383322 DOI: 10.1016/j.bioorg.2020.104554] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 11/09/2020] [Accepted: 12/11/2020] [Indexed: 01/14/2023]
Abstract
With the fading of 'one drug-one target' approach, Multi-Target-Directed Ligands (MTDL) has become a central idea in modern Medicinal Chemistry. The present study aimed to design, develop and characterize a novel series of 4-(Diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) and evaluates their biological activity against cholinesterase, carbonic anhydrases and α-glycosidase enzymes. The hCA I isoform was inhibited by these novel 4-(diethylamino)-salicylaldehyde-based thiosemicarbazones (3a-p) in low nanomolar levels, the Ki of which differed between 407.73 ± 43.71 and 1104.11 ± 80.66 nM. Against the physiologically dominant isoform hCA II, the novel compounds demonstrated Kis varying from 323.04 ± 56.88 to 991.62 ± 77.26 nM. Also, these novel 4-(diethylamino)-salicylaldehyde based thiosemicarbazones (3a-p) effectively inhibited AChE, with Ki values in the range of 121.74 ± 23.52 to 548.63 ± 73.74 nM. For BChE, Ki values were obtained with in the range of 132.85 ± 12.53 to 618.53 ± 74.23 nM. For α-glycosidase, the most effective Ki values of 3b, 3k, and 3g were with Ki values of 77.85 ± 10.64, 96.15 ± 9.64, and 124.95 ± 11.44 nM, respectively. We have identified inhibition mechanism of 3b, 3g, 3k, and 3n on α-glycosidase AChE, hCA I, hCA II, and BChE enzyme activities. Hydrazine-1-carbothioamide and hydroxybenzylidene moieties of compounds play an important role in the inhibition of AChE, hCA I, and hCA II enzymes. Hydroxybenzylidene moieties are critical for inhibition of both BChE and α-glycosidase enzymes. The findings of in vitro and in silico evaluations indicate 4-(diethylamino)-salicylaldehyde-based thiosemicarbazone scaffold to be a promising hit for drug development for multifactorial diseases like Alzheimer's disease.
Collapse
|
4
|
Çelik H, Kucukler S, Çomaklı S, Caglayan C, Özdemir S, Yardım A, Karaman M, Kandemir FM. Neuroprotective effect of chrysin on isoniazid-induced neurotoxicity via suppression of oxidative stress, inflammation and apoptosis in rats. Neurotoxicology 2020; 81:197-208. [PMID: 33121995 DOI: 10.1016/j.neuro.2020.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 02/08/2023]
Abstract
Isoniazid (INH) is among the most important anti-tuberculosis agents widely prescribed. However, its clinical use is restricted due to its severe side effects associated with neurotoxicity. The aim of the present study was to investigate the neuroprotective effects of chrysin (CR), a natural antioxidant, against INH-induced neurotoxicity in rats. The rats were treated orally with INH (400 mg/kg body weight) alone or with CR (25 and 50 mg/kg body weight) for 7 consecutive days. INH administration significantly increased brain lipid peroxidation and resulted in a significant decrease in antioxidant biomarkers including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH). INH treatment also increased levels of nuclear factor kappa B (NF-κB), tumor necrosis factor-α (TNF-α), glial fibrillary acidic protein (GFAP) and activities of p38α mitogen-activated protein kinase (p38α MAPK) while decreasing levels of neural cell adhesion molecule (NCAM). Double immunofluorescence expressions of c-Jun N-terminal kinase (JNK) and Bcl-2 associated X protein (Bax) in brain tissues were increased after INH administration. Furthermore, INH increased mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf-2), heme oxygenase-1 (HO-1), NAD(P)H: quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase modifier subunit (Gclm), glutamate cysteine ligase catalytic subunit (Gclc), NF-κB, TNF-α, interleukin-1β (IL-1β), interleukin-6 (IL-6) and GFAP in rat brain tissues. Co-treatment with CR increased anti-oxidant capacity as well as regulated inflammation and apoptosis in brain. Additionally, molecular docking results showed that CR had the potential to interact with the active sites of TNF-α and NFκ-B. In conclusion, CR improved INH-induced brain oxidative damage, inflammation and apoptosis, possibly through their antioxidant properties.
Collapse
Affiliation(s)
- Hamit Çelik
- Department of Neurology, Private Buhara Hospital, Erzurum, Turkey
| | - Sefa Kucukler
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Selim Çomaklı
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, 12000, Bingol, Turkey.
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| | - Ahmet Yardım
- Department of Neurosurgery, Private Buhara Hospital, Erzurum, Turkey
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, 79000, Kilis, Turkey
| | - Fatih Mehmet Kandemir
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey.
| |
Collapse
|
5
|
Kalin R, Köksal Z, Bayrak S, Gerni S, Ozyürek IN, Usanmaz H, Karaman M, Atasever A, Özdemir H, Gülçin İ. Molecular docking and inhibition profiles of some antibiotics on lactoperoxidase enzyme purified from bovine milk. J Biomol Struct Dyn 2020; 40:401-410. [PMID: 32856529 DOI: 10.1080/07391102.2020.1814416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Antibiotics are generally used for human and veterinary applications to preserve and to control microbial diseases. Milk has a biologically significant enzyme known as lactoperoxidase (LPO) that is a member of peroxidase family. In metabolism, LPO has ability to catalyze the transformation of thiocyanate (SCN-) to hypothiocyanite (OSCN-) that is an antibacterial agent and the reaction occurs with hydrogen peroxide. In this work, LPO inhibition effects of some antibiotics including cefazolin, oxytetracycline, flunixin meglumine, cefuroxime, tylosin, vancomycin, chloramphenicol and lincomycin were tested. Among the antibiotics cefazolin was indicated the strongest inhibitory efficacy. The half maximal inhibitory concentration (IC50) and the inhibition constant (Ki) values of cefazolin were found as 8.19 and 34.66 µM, respectively. It was shown competitive inhibition. 5-Methyl-1,3,4-thiadiazol-2-yl moiety activity plays a key role in the inhibition mechanism of cefazolin.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ramazan Kalin
- Department of Basic Science, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Zeynep Köksal
- Department of Chemistry, Faculty of Engineering and Natural Sciences, İstanbul Medeniyet University, İstanbul, Turkey
| | - Songül Bayrak
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Serpil Gerni
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Işıl Nihan Ozyürek
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Hande Usanmaz
- Department of Bioengineering, Faculty of Engineering and Architecture, Sinop University, Sinop, Turkey
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, Kilis, Turkey
| | - Ali Atasever
- Ispir Hamza Polat Vocational Training School, Ataturk University, Erzurum, Turkey
| | - Hasan Özdemir
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
6
|
Kizilbay G, Karaman M. Possible inhibition mechanism of dobutamine hydrochloride as potent inhibitor for human glucose-6-phosphate dehydrogenase enzyme. J Biomol Struct Dyn 2020; 40:204-212. [PMID: 32835622 DOI: 10.1080/07391102.2020.1811155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the first rate-limiting enzyme in the pentose phosphate pathway. One of the enzyme's most important functions is the production of a reducing agent that is essential for preserving the level of reduced glutathione (GSH). However, some chemicals, such as industrial waste and the active ingredients of several drugs, can cause reduction or blockage in this enzyme's activity. This case causes the occurrence of anemia by damaging erythrocytes. In this study, the G6PD enzyme was purified 21,981 fold with affinity chromatography and the effects of the active ingredients of some antiarrhythmic drugs on enzyme activity were investigated with in vitro and in silico methods. We found that dobutamine hydrochloride significantly decreased enzyme activity and its inhibitory constant (Ki) value was calculated as 19.02 ± 4.83 mM. The in vitro study results also show that dobutamine hydrochloride is a potent inhibitor of enzyme activity. We also found that dobutamine hydrochloride inhibits the hG6PD enzyme's activity by causing structural alterations in substrate and coenzyme binding sites.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gokce Kizilbay
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, Kilis, Turkey.,Advanced Technology Application and Research Center (ATACR), Kilis 7 Aralik University, Kilis, Turkey
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Kilis 7 Aralik University, Kilis, Turkey.,Advanced Technology Application and Research Center (ATACR), Kilis 7 Aralik University, Kilis, Turkey
| |
Collapse
|
7
|
Alım Z, Köksal Z, Karaman M. Evaluation of some thiophene-based sulfonamides as potent inhibitors of carbonic anhydrase I and II isoenzymes isolated from human erythrocytes by kinetic and molecular modelling studies. Pharmacol Rep 2020; 72:1738-1748. [PMID: 32748253 DOI: 10.1007/s43440-020-00149-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Thiophene(s) are an important group in therapeutic applications, and sulfonamides are the most important class of carbonic anhydrase (CA) inhibitors. In this study, inhibition effects of some thiophene-based sulfonamides on human erythrocytes carbonic anhydrase I and II isoenzymes (hCA-I and hCA-II) were investigated. Thiophene-based sulfonamides used in this study showed potent inhibition effect on both isoenzymes at very small concentrations. MATERIALS AND METHODS We report on the purification of the carbonic anhydrase I and II isoenzymes (hCA-I and hCA-II) using affinity chromatography method. The inhibition effect of the thiophene-based sulfonamides was determined by IC50 and Ki parameters. A molecular docking study was performed for each molecule. RESULTS Thiophene-based sulfonamides showed IC50 values of in the range of 69 nM to 70 µM against hCA-I, 23.4 nM to 1.405 µM against hCA-II. Ki values were in the range of 66.49 ± 17.15 nM to 234.99 ± 15.44 µM against hCA-I, 74.88 ± 20.65 nM to 38.04 ± 12.97 µM against hCA-II. Thiophene-based sulfonamides studied in this research showed noncompetitive inhibitory properties on both isoenzymes. To elucidate the mechanism of inhibition, a molecular docking study was performed for molecules 1 and 4 exhibiting a strong inhibitory effect on hCA-I and hCA-II. The compounds inhibit the enzymes by interacting out of catalytic active site. The sulfonamide and thiophene moiety played a significant role in the inhibition of the enzymes. CONCLUSION We hope that this study will contribute to the design of novel thiophene-based sulfonamide derived therapeutic agents that may be carbonic anhydrase inhibitors in inhibitor design studies.
Collapse
Affiliation(s)
- Zuhal Alım
- Department of Chemistry, Faculty of Science and Arts, Kırşehir Ahi Evran University, 40100, Kırşehir, Turkey
| | - Zeynep Köksal
- Department of Chemistry, Faculty of Engineering and Natural Sciences, Istanbul Medeniyet University, 34730, Istanbul, Turkey.
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Kilis 7 Aralık University, 79090, Kilis, Turkey
| |
Collapse
|
8
|
Taslimi P, Sujayev A, Karaman M, Maharramova G, Sadeghian N, Osmanova S, Sardarova S, Majdi N, Ozel HU, Gulcin İ. N
‐Substituted pyrimidinethione and acetophenone derivatives as a new therapeutic approach in diabetes. Arch Pharm (Weinheim) 2020; 353:e2000075. [DOI: 10.1002/ardp.202000075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Parham Taslimi
- Department of Biotechnology, Faculty of ScienceBartin University Bartin Turkey
| | - Afsun Sujayev
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of AdditivesAzerbaijan National Academy of Sciences Baku Azerbaijan
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and ScienceKilis 7 Aralik University Kilis Turkey
| | - Gunel Maharramova
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of AdditivesAzerbaijan National Academy of Sciences Baku Azerbaijan
| | - Nastaran Sadeghian
- Department of Chemistry, Faculty of SciencesAtaturk University Erzurum Turkey
| | - Sabiya Osmanova
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of AdditivesAzerbaijan National Academy of Sciences Baku Azerbaijan
| | - Sabira Sardarova
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of AdditivesAzerbaijan National Academy of Sciences Baku Azerbaijan
| | - Nargiz Majdi
- Laboratory of Theoretical Bases of Synthesis and Action Mechanism of Additives, Institute of Chemistry of AdditivesAzerbaijan National Academy of Sciences Baku Azerbaijan
| | - Handan U. Ozel
- Department of Environmental Engineering, Faculty of EngineeringBartin University Bartin Turkey
| | - İlhami Gulcin
- Department of Chemistry, Faculty of SciencesAtaturk University Erzurum Turkey
| |
Collapse
|
9
|
Turhan K, Pektaş B, Türkan F, Tuğcu FT, Turgut Z, Taslimi P, Karaman HS, Gulcin I. Novel benzo[b]xanthene derivatives: Bismuth(III) triflate‐catalyzed one‐pot synthesis, characterization, and acetylcholinesterase, glutathione S‐transferase, and butyrylcholinesterase inhibitory properties. Arch Pharm (Weinheim) 2020; 353:e2000030. [DOI: 10.1002/ardp.202000030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Kadir Turhan
- Department of Chemistry, Faculty of Art and Sciences, Davutpasa CampusYildiz Technical University Istanbul Turkey
| | - Begüm Pektaş
- Department of Chemistry, Faculty of Art and Sciences, Davutpasa CampusYildiz Technical University Istanbul Turkey
| | - Fikret Türkan
- Department of Medical Services and Techniques, Vocational School of Health ServicesIgdir University Iğdır Turkey
| | - Fatma T. Tuğcu
- Department of Chemistry, Faculty of Art and Sciences, Davutpasa CampusYildiz Technical University Istanbul Turkey
| | - Zuhal Turgut
- Department of Chemistry, Faculty of Art and Sciences, Davutpasa CampusYildiz Technical University Istanbul Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of ScienceBartin University Bartin Turkey
| | - Halide S. Karaman
- Department of Chemistry, Faculty of ScienceAtaturk University Erzurum Turkey
| | - Ilhami Gulcin
- Department of Chemistry, Faculty of ScienceAtaturk University Erzurum Turkey
| |
Collapse
|