1
|
Shi M, Li H, Liang R, Lin H, Tang Q. The transcription factor STAT3 and aging: an intermediate medium. Biogerontology 2025; 26:55. [PMID: 39920354 DOI: 10.1007/s10522-025-10193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Aging is a physiological/pathological process accompanied by progressive impairment of cellular function, leading to a variety of aging-related diseases. STAT3 is one of the core regulatory factors of aging. It is involved in body metabolism, development and senescence, cell apoptosis and so on. During the aging process, the changes of growth factors and cytokines will cause the activation of STAT3 to varying degrees, regulate the inflammatory pathways related to aging, regulate body inflammation, mitochondrial function, cell aging and autophagy to regulate and influence the aging process. Drugs targeting STAT3 can treat senescence related diseases. This review summarizes the role of STAT3 signaling factors in the pathogenesis of aging, including mitochondrial function, cellular senescence, autophagy, and chronic inflammation mediated by inflammatory pathways. Finally, the key regulatory role of STAT3 in senescence related diseases is emphasized. In summary, we reveal that drug development and clinical application targeting STAT3 is one of the key points in delaying aging and treating aging-related diseases in the future.
Collapse
Affiliation(s)
- Min Shi
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Honyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Haiyan Lin
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
2
|
Wang S, Zhou D, Chen W, Guo Q, Hou L, Wu R, Wang W, Khan MA, Ahmad M, Huang F, Zheng M, Wang G, Zhao H, Geng X, Yu X. High serum CA19-9 predicts severe cholecystitis in calculous cholecystitis patients. BMC Gastroenterol 2025; 25:33. [PMID: 39849359 PMCID: PMC11756138 DOI: 10.1186/s12876-025-03616-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 01/15/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND CA19-9 is a classical tumor marker and plays an important role in the diagnosis of biliary and pancreatic cancer. However, a few cases reported that the tumor maker CA19-9 is abnormally elevated in patients with calculous cholecystitis, but the relation between severity of calculous cholecystitis and serum CA19-9 level are still unknown. METHODS Total 105 calculous cholecystitis patients from first hospital were collected and divided into high serum CA19-9 group(high group, n = 35) and normal serum CA19-9 group(normal group, n = 70). Perioperative data including blood cell count, inflammatory markers, liver function, imaging and operation-related parameters from these patients were collected for analysis and verified with second group of 105 calculous cholecystitis patients from second hospital. Besides, the gallbladder specimens were collected for immunohistochemical staining and mRNA sequencing. RESULTS Abdominal pain occur in more than 90% patients in high group, which is similar with that of normal group. But WBC, neutrophils count, NLR, CRP level and IL-6 level is higher in high group than that of normal group. In addition, the gallbladder wall thickness, the operation duration and the operation conversion rate is also higher in high group, which is verified from second hospital. Higher expression of CA19-9 was found by immunohistochemical staining in gallbladder specimen and more autophagy pathway related genes enriched in high group. CONCLUSIONS This study demonstrated that higher level of serum CA19-9 correlates with more severe cholecystitis in calculous cholecystitis patients for the first time, which will provide helpful information for clinical practice and basic research in related field.
Collapse
Affiliation(s)
- Shouwen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Dachen Zhou
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Wanjin Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Qi Guo
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Liujin Hou
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ruolin Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Wei Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Muhammad Annus Khan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Muhammad Ahmad
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Fan Huang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Guobin Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Hongchuan Zhao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Xiaoping Geng
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Xiaojun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- Department of Hepatobiliary-Pancreatic Surgery and Organ Transplantation Center, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
3
|
Zhang C, Shen S, Xu L, Li M, Tian B, Yao L, Zhu X. LONP1 alleviates ageing-related renal fibrosis by maintaining mitochondrial homeostasis. J Cell Mol Med 2024; 28:e70090. [PMID: 39261902 PMCID: PMC11390342 DOI: 10.1111/jcmm.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/08/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
Mitochondrial dysfunction is a pivotal event contributing to the development of ageing-related kidney disorders. Lon protease 1 (LONP1) has been reported to be responsible for ageing-related renal fibrosis; however, the underlying mechanism(s) of LONP1-driven kidney ageing with respect to mitochondrial disturbances remains to be further explored. The level of LONP1 was tested in the kidneys of aged humans and mice. Renal fibrosis and mitochondrial quality control were confirmed in the kidneys of aged mice. Effects of LONP1 silencing or overexpression on renal fibrosis and mitochondrial quality control were explored. In addition, N6-methyladenosine (m6A) modification and methyltransferase like 3 (METTL3) levels, the relationship between LONP1 and METTL3, and the impacts of METTL3 overexpression on mitochondrial functions were confirmed. Furthermore, the expression of insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) and the regulatory effects of IGF2BP2 on LONP1 were confirmed in vitro. LONP1 expression was reduced in the kidneys of aged humans and mice, accompanied by renal fibrosis and mitochondrial dysregulation. Overexpression of LONP1 alleviated renal fibrosis and maintained mitochondrial homeostasis, while silencing of LONP1 had the opposite effect. Impaired METTL3-m6A signalling contributed at least in part to ageing-induced LONP1 modification, reducing subsequent degradation in an IGF2BP2-dependent manner. Moreover, METTL3 overexpression alleviated proximal tubule cell injury, preserved mitochondrial stability, inhibited LONP1 degradation, and protected mitochondrial functions. LONP1 mediates mitochondrial function in kidney ageing and that targeting LONP1 may be a potential therapeutic strategy for improving ageing-related renal fibrosis.
Collapse
Affiliation(s)
- Congxiao Zhang
- Blood Purification CenterThe Fourth People's Hospital of Shenyang, China Medical UniversityShenyangLiaoningP. R. China
| | - Siman Shen
- Department of AnesthesiologyThe Second Affiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongP. R. China
| | - Li Xu
- Department of Laboratory MedicineThe Second Affiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongP. R. China
| | - Man Li
- Blood Purification CenterThe Fourth People's Hospital of Shenyang, China Medical UniversityShenyangLiaoningP. R. China
| | - Binyao Tian
- Department of NephrologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Li Yao
- Department of NephrologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xinwang Zhu
- Department of NephrologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
4
|
Deng C, Hu J, He L, Ge L, Wu N, Xie M, Yang X, Wu C, Liu Q. Daucosterol combined with umbilical cord mesenchymal stem cell-derived exosomes can alleviate liver damage in liver failure mice by regulating the IL-6/STAT3 signaling pathway. Cancer Biol Ther 2023; 24:2184150. [PMID: 36919480 PMCID: PMC10026879 DOI: 10.1080/15384047.2023.2184150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Daucosterol is a phytosterol glycoside with hepatoprotective properties. The objective of the present study was to confirm the role of daucosterol in liver failure. Exosomes were isolated from primary mouse umbilical cord mesenchymal stem cells (UCMSCs). A liver failure mouse model was generated by injecting lipopolysaccharide/D-galactosamine. Mice were treated with exosomes alone or in combination with daucosterol (5, 10, or 20 mg/kg). Liver tissue damage was examined by hematoxylin-eosin, Masson's trichrome, and TUNEL staining. The levels of genes, proteins, and inflammatory factors were determined using real-time qPCR, western blotting, and enzyme-linked immunosorbent assay, respectively. Compared with normal mice, we noted severe damage, fibrosis, and apoptosis in the liver tissues of liver failure-induced mice. UCMSC-derived exosomes effectively alleviated hepatic damage in the mouse model. Compared with exosome treatment alone, exosomes combined with daucosterol significantly and dose-dependently reduced pathological changes in model mice. Exosome treatment alone or combined with daucosterol also markedly decreased the liver index and reduced levels of alanine aminotransferase, aspartate aminotransferase, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in model mice. Exosome treatment alone or combined with daucosterol suppressed mRNA expression levels of IL-6 and signal transducer and activator of transcription (STAT3) and STAT3 protein expression in model mice. Our findings revealed that treatment with daucosterol combined with UCMSC-derived exosomes was superior to exosomes alone for alleviating hepatic damage in mice with liver failure by regulating the IL-6/STAT3 signaling pathway. Accordingly, daucosterol combined with UCMSC-derived exosomes may be a prospective treatment strategy for liver failure.
Collapse
Affiliation(s)
- Changqing Deng
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, P.R. China
| | - Jia Hu
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, P.R. China
| | - Ling He
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, P.R. China
| | - Laian Ge
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, P.R. China
| | - Na Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, P.R. China
| | - Mingjun Xie
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, P.R. China
| | - Xiaojuan Yang
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, P.R. China
| | - Chuncheng Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, P.R. China
| | - Qin Liu
- Department of Anesthesiology, Second Affiliated Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
5
|
Tang H, Xiong Q, Yin M, Feng H, Yao F, Xiao X, Hu F, Liao Y. LncRNA PVT1 delays skin photoaging by sequestering miR-551b-3p to release AQP3 expression via ceRNA mechanism. Apoptosis 2023; 28:912-924. [PMID: 37000315 DOI: 10.1007/s10495-023-01834-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 04/01/2023]
Abstract
Understanding human skin photoaging requires in-depth knowledge of the molecular and functional mechanisms. Human dermal fibroblasts (HDFs) gradually lose their ability to produce collagen and renew intercellular matrix with aging. Therefore, our study aims to reveal the mechanistic actions of a novel ceRNA network in the skin photoaging by regulating HDF activities. Photoaging-related genes were obtained in silico, followed by GO and KEGG enrichment analyses. Differentially expressed lncRNAs and miRNAs were screened from the GEO database to construct the ceRNA co-expression network. In skin photoaging samples, PVT1 and AQP3 were poorly expressed, while miR-551b-3p was highly expressed. The relationships among the lncRNA, miRNA and mRNA were explored through the ENCORI database and dual luciferase reporter assay. Mechanistically, PVT1 could sequester miR-551b-3p to upregulate the expression of AQP3, which further inactivated the ERK/p38 MAPK signaling pathway. HDFs were selected to construct an in vitro cell skin photoaging model, where the senescence, cell cycle distribution and viability of young and senescent HDFs were detected by SA-β-gal staining, flow cytometry and CCK-8 assay. In vitro cell experiments confirmed that overexpression of PVT1 or AQP3 enhanced viability of young and senescent HDFs and inhibited HDF senescence, while miR-551b-3p upregulation counteracted the effect of PVT1. In conclusion, PVT1-driven suppression of miR-551b-3p induces AQP3 expression to inactivate the ERK/p38 MAPK signaling pathway, thereby inhibiting HDF senescence and ultimately delaying the skin photoaging.
Collapse
Affiliation(s)
- Hua Tang
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Qi Xiong
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Ming Yin
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Hao Feng
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Fang Yao
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Xiao Xiao
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Feng Hu
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China
| | - Yangying Liao
- Department of Dermatology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No. 61, Jiefang West Road, Furong District, Changsha, 410000, Hunan Province, P. R. China.
| |
Collapse
|
6
|
Wang X, Zhang Y, Jin T, Botchway BOA, Fan R, Wang L, Liu X. Adipose-Derived Mesenchymal Stem Cells Combined With Extracellular Vesicles May Improve Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:830346. [PMID: 35663577 PMCID: PMC9158432 DOI: 10.3389/fnagi.2022.830346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
The complexity of central nervous system diseases together with their intricate pathogenesis complicate the establishment of effective treatment strategies. Presently, the superiority of adipose-derived mesenchymal stem cells (ADSCs) on neuronal injuries has attracted significant attention. Similarly, extracellular vesicles (EVs) are potential interventional agents that could identify and treat nerve injuries. Herein, we reviewed the potential effects of ADSCs and EVs on amyotrophic lateral sclerosis (ALS) injured nerves, and expound on their practical application in the clinic setting. This article predominantly focused on the therapeutic role of ADSCs concerning the pathogenesis of ALS, the protective and reparative effects of EVs on nerve injury, as well as the impact following the combined usage of ADSCs and EVs in ALS.
Collapse
Affiliation(s)
- Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
| | - Tian Jin
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
| | | | - Ruihua Fan
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Lvxia Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Shaoxing, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|