1
|
Wang Z, Wang J, Fu Q, Zhao H, Wang Z, Gao Y. Efficient evaluation of osteotoxicity and mechanisms of endocrine disrupting chemicals using network toxicology and molecular docking approaches: triclosan as a model compound. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118030. [PMID: 40080935 DOI: 10.1016/j.ecoenv.2025.118030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 02/11/2025] [Accepted: 03/08/2025] [Indexed: 03/15/2025]
Abstract
This study aimed to demonstrate the utility of a network toxicology strategy in elucidating osteotoxicity and the molecular mechanisms of endocrine-disrupting chemicals (EDCs) using triclosan exposure in postmenopausal osteoporosis (PMOP) as a case study. The potential targets of triclosan were identified using the Comparative Toxicogenomics Database, SwissTargetPrediction, and TargetNet. PMOP-related targets were obtained from GeneCards, DisGeNET, and DrugBank. A total of 478 overlapping genes between disease targets and triclosan effectors were identified. Subsequent analysis using STRING and Cytoscape, applying the Matthews correlation coefficient algorithm, identified five core genes: STAT3, TP53, EGFR, MYC, and JUN. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses performed using R revealed that triclosan-induced PMOP is primarily associated with disrupted endocrine signaling and activation of the Phosphoinositide 3-kinase (PI3K)-Protein kinase B (Akt) signaling pathway. Molecular docking using CB-Dock2 confirmed strong binding affinities between triclosan and the core targets. Collectively, these results indicate that triclosan adversely affects bone health by disrupting endocrine regulation and energy metabolism through the PI3K-Akt pathway. This study establishes a theoretical framework for understanding how long-term triclosan exposure induces or exacerbates PMOP by investigating the underlying molecular mechanisms. These findings present a novel paradigm for evaluating the health risks posed by environmental pollutants.
Collapse
Affiliation(s)
- Zhongyuan Wang
- Department of orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Jian Wang
- Department of orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Qiang Fu
- Department of orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Hui Zhao
- Department of orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Zaijun Wang
- Department of orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China
| | - Yuzhong Gao
- Department of orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, China.
| |
Collapse
|
2
|
Rager JE, Koval LE, Hickman E, Ring C, Teitelbaum T, Cohen T, Fragola G, Zylka MJ, Engel LS, Lu K, Engel SM. The environmental neuroactive chemicals list of prioritized substances for human biomonitoring and neurotoxicity testing: A database and high-throughput toxicokinetics approach. ENVIRONMENTAL RESEARCH 2025; 266:120537. [PMID: 39638029 PMCID: PMC11753932 DOI: 10.1016/j.envres.2024.120537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
There is a diversity of chemicals to which humans are potentially exposed. Few of these chemicals have linked human biomonitoring data, and most have very limited neurotoxicity testing. Of particular concern are environmental exposures impacting children, who constitute a population of heightened susceptibility due to rapid neural growth and plasticity, yet lack biomonitoring data compared to other age/population subgroups. This study set out to develop a prioritized list of neuroactive substances, titled the Environmental NeuRoactIve CHemicals (ENRICH) list, to be used as a defined screening library in the evaluation of human biological samples, with emphasis on early childhood-relevant environmental exposures. In silico database mining approaches were used to prioritize chemicals based upon likelihood of neuroactivity, human exposure, and feasible detection in biological samples. Evidence of neuroactivity was compiled across in vitro high-throughput screening, animal testing, and/or human epidemiological findings. Chemicals were considered for their likelihood of human exposure and detection presence in biological samples (including metabolites), with additional evidence indicating presence within child-relevant products. The resulting list of 1827 chemicals were ranked using a Chemical Prioritization Index. Manual inclusion/exclusion criteria were employed for the top-ranking chemical candidates to ensure that chemicals were within the study's scope (i.e., environmentally relevant) and, for the purposes of biomonitoring, had properties amenable to mass spectrometry methods. These elements were combined to produce the ENRICH list of 250 top-ranking chemicals, spanning pesticides and those used in home maintenance, personal care, cleaning products, vehicles, arts and crafts, and consumer electronics, among other sources. Chemicals were additionally evaluated for high-throughput toxicokinetics to predict how much of a chemical and/or its metabolite(s) may reach urine, as an example biological matrix for practical use in biomonitoring efforts. This novel study couples databases and in silico-based predictions to prioritize chemicals in the environment with potential neurological impacts for future study.
Collapse
Affiliation(s)
- Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Center for Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina at Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine the University of North Carolina at Chapel Hill, Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA.
| | - Lauren E Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA
| | - Elise Hickman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Center for Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina at Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine the University of North Carolina at Chapel Hill, Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA
| | - Caroline Ring
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, 109 T.W. Alexander Drive, Mail Drop D143-02, PO Box 12055, Research Triangle Park, NC, 27711, USA
| | - Taylor Teitelbaum
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA
| | - Todd Cohen
- Department of Neurology, School of Medicine, The University of North Carolina at Chapel Hill, 115 Mason Farm Road, CB #7250, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, 111 Mason Farm Road, CB #7545, Chapel Hill, NC, USA; UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, 116 Manning Drive, CB #7250, Chapel Hill, NC, USA
| | - Giulia Fragola
- Department of Neurology, School of Medicine, The University of North Carolina at Chapel Hill, 115 Mason Farm Road, CB #7250, Chapel Hill, NC, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, 111 Mason Farm Road, CB #7545, Chapel Hill, NC, USA; UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, 116 Manning Drive, CB #7250, Chapel Hill, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, 135 Dauer Drive, CB #7435, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine the University of North Carolina at Chapel Hill, Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, 135 Dauer Drive, CB #7435, Chapel Hill, NC, 27599, USA
| |
Collapse
|
3
|
Bao Y, Wang Y, Liu H, Lan J, Li Z, Zong W, Zhao Z. Co-Existing Nanoplastics Further Exacerbates the Effects of Triclosan on the Physiological Functions of Human Serum Albumin. Life (Basel) 2025; 15:112. [PMID: 39860052 PMCID: PMC11766571 DOI: 10.3390/life15010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The potential health risks posed by the coexistence of nanoplastics (NPs) and triclosan (TCS) have garnered significant attention. However, the effects and underlying mechanisms of NPs and TCS on key functional proteins at the molecular level remain poorly understood. This study reports the effect of polystyrene nanoplastics (PSNPs) on the binding of TCS to human serum albumin (HSA) using multispectral methods and molecular simulation systems. The experimental results show that TCS significantly inhibits HSA esterase activity, with exacerbating inhibition in the presence of PSNPs, which is attributed to the alteration of HSA conformation and microenvironment of the amino acid residues induced by PSNPs. Molecular docking and site marker competitive studies indicate that TCS predominantly binds to site I of subdomain Sudlow II and the presence of PSNPs does not affect the binding sites. Spectra analyses indicate that the quenching mechanism between TCS and HSA belongs to the static quenching type and the presence of PSNPs does not change the fluorescence quenching type. The HSA fluorescence quenching and the conformational alterations induced by TCS are further enhanced in the presence of PSNPs, indicating that PSNPs enhance the binding of TCS to HSA by making TCS more accessible to the binding sites. This study provides valuable information about the toxicity of PSNPs and TCS in case of co-exposure.
Collapse
Affiliation(s)
- Yan Bao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Yaoyao Wang
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Hongbin Liu
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Jing Lan
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| | - Zhicai Li
- Anqiu Branch of Weifang Municipal Bureau of Ecology and Environment, Weifang 262199, China
| | - Wansong Zong
- College of Geography and Environment, Shandong Normal University, Jinan 250014, China
| | - Zongshan Zhao
- School of Environment and Geography, Qingdao University, Qingdao 266071, China
| |
Collapse
|
4
|
Zhong Y, Guo J, Zheng Y, Lin H, Su Y. Metabolomics analysis of the lactobacillus plantarum ATCC 14917 response to antibiotic stress. BMC Microbiol 2024; 24:229. [PMID: 38943061 PMCID: PMC11212188 DOI: 10.1186/s12866-024-03385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/18/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND Lactobacillus plantarum has been found to play a significant role in maintaining the balance of intestinal flora in the human gut. However, it is sensitive to commonly used antibiotics and is often incidentally killed during treatment. We attempted to identify a means to protect L. plantarum ATCC14917 from the metabolic changes caused by two commonly used antibiotics, ampicillin, and doxycycline. We examined the metabolic changes under ampicillin and doxycycline treatment and assessed the protective effects of adding key exogenous metabolites. RESULTS Using metabolomics, we found that under the stress of ampicillin or doxycycline, L. plantarum ATCC14917 exhibited reduced metabolic activity, with purine metabolism a key metabolic pathway involved in this change. We then screened the key biomarkers in this metabolic pathway, guanine and adenosine diphosphate (ADP). The exogenous addition of each of these two metabolites significantly reduced the lethality of ampicillin and doxycycline on L. plantarum ATCC14917. Because purine metabolism is closely related to the production of reactive oxygen species (ROS), the results showed that the addition of guanine or ADP reduced intracellular ROS levels in L. plantarum ATCC14917. Moreover, the killing effects of ampicillin and doxycycline on L. plantarum ATCC14917 were restored by the addition of a ROS accelerator in the presence of guanine or ADP. CONCLUSIONS The metabolic changes of L. plantarum ATCC14917 under antibiotic treatments were determined. Moreover, the metabolome information that was elucidated can be used to help L. plantarum cope with adverse stress, which will help probiotics become less vulnerable to antibiotics during clinical treatment.
Collapse
Affiliation(s)
- Yilin Zhong
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Juan Guo
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yu Zheng
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Huale Lin
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Adedara IA, Mohammed KA, Canzian J, Ajayi BO, Farombi EO, Emanuelli T, Rosemberg DB, Aschner M. Utility of zebrafish-based models in understanding molecular mechanisms of neurotoxicity mediated by the gut-brain axis. ADVANCES IN NEUROTOXICOLOGY 2024; 11:177-208. [PMID: 38741945 PMCID: PMC11090488 DOI: 10.1016/bs.ant.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The gut microbes perform several beneficial functions which impact the periphery and central nervous systems of the host. Gut microbiota dysbiosis is acknowledged as a major contributor to the development of several neuropsychiatric and neurological disorders including bipolar disorder, depression, anxiety, Parkinson's disease, Alzheimer's disease, attention deficit hyperactivity disorder, and autism spectrum disorder. Thus, elucidation of how the gut microbiota-brain axis plays a role in health and disease conditions is a potential novel approach to prevent and treat brain disorders. The zebrafish (Danio rerio) is an invaluable vertebrate model that possesses conserved brain and intestinal features with those of humans, thus making zebrafish a valued model to investigate the interplay between the gut microbiota and host health. This chapter describes current findings on the utility of zebrafish in understanding molecular mechanisms of neurotoxicity mediated via the gut microbiota-brain axis. Specifically, it highlights the utility of zebrafish as a model organism for understanding how anthropogenic chemicals, pharmaceuticals and bacteria exposure affect animals and human health via the gut-brain axis.
Collapse
Affiliation(s)
- Isaac A. Adedara
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Khadija A. Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Babajide O. Ajayi
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Tatiana Emanuelli
- Department of Food Science and Technology, Center of Rural Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Denis B. Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
6
|
Zhuang J, Chen Q, Xu L, Chen X. Effects of chronic triclosan exposure on nephrotoxicity and gut microbiota dysbiosis in adult mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115866. [PMID: 38199221 DOI: 10.1016/j.ecoenv.2023.115866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/03/2023] [Accepted: 12/17/2023] [Indexed: 01/12/2024]
Abstract
Triclosan (TCS), a broad-spectrum, lipophilic, and antibacterial agent, has been commonly used in cosmetics, medical devices, and household products. The toxicity of TCS has recently become a research hotspot. Emerging evidence has shown that TCS can easily migrate to humans and animals and cause adverse effects on various target organs. However, the effects of TCS exposure on nephrotoxicity and underlying mechanisms remain unknown. The aim of the present study was to explore TCS-induced nephrotoxicity. Therefore, we establish a mouse model based on adult male mice to explore the effects of 10-week TCS exposure (50 mg/kg) on kidney. After mice were sacrificed, their blood, feces, and renal tissues were harvested for further analysis. We found that TCS treatment dramatically caused kidney structural damage, and increased blood urea nitrogen (BUN) and creatinine (Cr) expression levels, which indicated renal dysfunction. In addition, TCS exposure increased the malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and total cholesterol (TCHO) expression levels, which indicated oxidative stress and lipid metabolism changes. The RNA sequencing (RNA-seq) of kidney tissue identified 221 differentially expressed genes (DEGs) enriched in 50 pathways, including drug metabolism-other enzymes, oxidative phosphorylation, glutathione metabolism, and inflammatory mediator regulation of TRP channels signaling pathways. The full-length 16S rRNA gene sequencing results showed that TCS exposure altered the community of gut microbiota, which was closely related to renal function damage. The above findings provide new insights into the mechanism of TCS-induced nephrotoxicity.
Collapse
Affiliation(s)
- Jingshen Zhuang
- Division of Spine Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Qianling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Luyao Xu
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xuebing Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
7
|
Alimi OS, Claveau-Mallet D, Lapointe M, Biu T, Liu L, Hernandez LM, Bayen S, Tufenkji N. Effects of weathering on the properties and fate of secondary microplastics from a polystyrene single-use cup. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:131855. [PMID: 37478596 DOI: 10.1016/j.jhazmat.2023.131855] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/31/2023] [Accepted: 06/13/2023] [Indexed: 07/23/2023]
Abstract
In this work, we probed the changes to some physicochemical properties of polystyrene microplastics generated from a disposable cup as a result of UV-weathering, using a range of spectroscopy, microscopy, and profilometry techniques. Thereafter, we aimed to understand how these physicochemical changes affect the microplastic transport potential and contaminant sorption ability in model freshwaters. Exposure to UV led to measured changes in microplastic hydrophobicity (20-23 % decrease), density (3% increase), carbonyl index (up to 746 % increase), and microscale roughness (24-86 % increase). The settling velocity of the microplastics increased by 53 % after weathering which suggests that UV aging can increase microplastic deposition to sediments. This impact of aging was greater than the effect of the water temperature. Weathered microplastics exhibited reduced sorption capacity (up to 52 % decrease) to a model hydrophobic contaminant (triclosan) compared to unaged ones. The adsorption of triclosan to both microplastics was slightly reversible with notable desorption hysteresis. These combined effects of weathering could potentially increase the transport potential while decreasing the contaminant transport abilities of microplastics. This work provides new insights on the sorption capacity and mobility of a secondary microplastic, advances our knowledge about their risks in aquatic environments, and the need to use environmentally relevant microplastics.
Collapse
Affiliation(s)
- Olubukola S Alimi
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, T6G 1H9 Canada.
| | - Dominique Claveau-Mallet
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada; Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, 2900 Edouard-Montpetit, Montreal, Canada
| | - Mathieu Lapointe
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada; Department of Construction Engineering, École de technologie supérieure - University of Québec, Montreal, Quebec, H3C 1K3, Canada
| | - Thinh Biu
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada
| | - Lan Liu
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Montreal, Canada
| | - Laura M Hernandez
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Montreal, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec, H3A 0C5 Canada
| |
Collapse
|