1
|
Yang J, Chen L, Wang S, Zhao B, Wang R. Molecular docking and molecular dynamics simulations revealed interaction mechanism of acetylcholinesterase with organophosphorus pesticides and their alternatives. Arch Toxicol 2025:10.1007/s00204-025-04020-4. [PMID: 40089950 DOI: 10.1007/s00204-025-04020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Organophosphate pesticides (OPs) are widely used in agricultural fields and can inhibit the activity of human acetylcholinesterase (hAChE) by covalently binding to serine at the enzyme's active site. However, the molecular recognition mechanisms beyond their covalent binding remain unclear. This study employed molecular docking along with molecular dynamics simulations (MD) to investigate four representative OPs, Phosphamidon, Monocrotophos, Dichlorvos, and Trichlorfon, as well as two potential alternatives Magnolol (MAG) and Honokiol (HON), to understand the conformational change of hAChE and its molecular recognition mechanism. The results indicate that, in addition to these OPs, the selected substitutes also induce various changes in the internal structure of hAChE, especially interactions with key residues around Trp86, Tyr124, Tyr337, and His447. Energy calculations utilizing MM-GBSA and SIE methods further reveal the critical role of van der Waals interactions in hAChE's interaction with these OPs and their substitutes. It is worth noting that two potential pesticide alternatives MAG and HON differ in structure from OPs at the benzene ring and hydroxyl positions, resulting in their weaker binding energy with hAChE. Furthermore, the accuracy of simulation models was validated through in silico site-directed mutagenesis based on the key residues. By identifying dynamic structural changes and energy signatures, this study provides valuable information for finding safer alternatives to OPs.
Collapse
Affiliation(s)
- Jiawen Yang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
| | - Lin Chen
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China.
| | - Shuo Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
- Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary, Qiqihar University, Qiqihar, 161006, People's Republic of China
| | - Ruige Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
| |
Collapse
|
2
|
Sánchez-González D, Blanco-Peña K, Solano-Campos F, Solano K, Mena F. Exposure to an environmentally relevant concentration of chlorpyrifos induces transcriptional changes and neurotoxicity in Poecilia gillii without clear behavioral effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117900. [PMID: 39978101 DOI: 10.1016/j.ecoenv.2025.117900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
Overusing chlorpyrifos (CPF) in tropical countries such as Costa Rica poses a potential risk to freshwater ecosystems. This study investigated the effects of transient exposure to an environmentally relevant CPF concentration on the native fish species Poecilia gillii, employing a comprehensive approach that evaluated multiple levels of biological organization. Using RT-qPCR, we quantified transcript changes in genes involved in various biological processes, including inflammation and apoptosis; annexin A1 (anxa1b), cytokine regulation; cytokine-inducible SH2-containing protein (cish), redox reactions; NADH oxidoreductase subunit A2 (ndufa2), protein translocation; Sec61 gamma subunit (sec61g), and biotransformation; glutathione S-transferase rho (gstr). Additionally, we measured biochemical biomarkers such as phase I; 7-ethoxyresorufin-O-deethylase (EROD) and phase II; glutathione S-transferase (GST) biotransformation enzymes, oxidative stress markers; catalase (CAT) and lipid peroxidation (LPO), and conducted behavioral tests to assess swimming fitness and antipredator reactions. Neurotoxicity was assessed by measuring brain and muscle tissue cholinesterase (ChE) activity. Following 48 h of exposure to 5.5 µg/L CPF, we observed significant downregulation of the sec61g and gstr genes, decreased CAT activity, and neurotoxic effects, as indicated by reduced ChE activity in muscle. Although no significant behavioral changes were detected, our results suggest that short-term exposure to environmentally relevant CPF concentrations can disrupt gene expression, compromising biotransformation and protein synthesis in P. gillii juveniles. Moreover, the observed neurotoxicity, which is consistent with the mechanism of action of CPF, may lead to subtle behavioral changes. This study provides evidence of the sublethal effects of CPF on nontarget organisms, highlighting the importance of considering gene expression changes when assessing CPF toxicity.
Collapse
Affiliation(s)
- Daniel Sánchez-González
- Universidad Nacional, Costa Rica. Escuela de Ciencias Biológicas (ECB), Heredia 86-3000, Costa Rica.
| | - Kinndle Blanco-Peña
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), Heredia 86-3000, Costa Rica.
| | - Frank Solano-Campos
- Universidad Nacional, Costa Rica. Escuela de Ciencias Biológicas (ECB), Heredia 86-3000, Costa Rica.
| | - Karla Solano
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), Heredia 86-3000, Costa Rica.
| | - Freylan Mena
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas/Central American Institute for Studies on Toxic Substances (IRET), Heredia 86-3000, Costa Rica.
| |
Collapse
|
3
|
Zoofaghari S, Maghami-Mehr A, Abdolrazaghnejad A. Organophosphate Poisoning: Review of Prognosis and Management. Adv Biomed Res 2024; 13:82. [PMID: 39512408 PMCID: PMC11542695 DOI: 10.4103/abr.abr_393_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/27/2024] [Accepted: 03/11/2024] [Indexed: 11/15/2024] Open
Abstract
The high annual mortality rate of organophosphorus (OP) poisoning indicates that the treatment is mostly ineffective in this regard. It has been suggested to add calcium channel blocking (CCB) drugs or magnesium sulfate (MgSO4) to normal care to decrease the release of acetylcholine (ACh) at the cholinergic synapse. Moreover, the diagnosis of OP poisoning is chiefly based on clinical evidence. Oximes and atropine are the recognized antidotes of OP. However, low-priced medications such as MgSO4 and sodium bicarbonate (NaHCO3), as well as novel adjunct therapies, have been introduced recently. Furthermore, antioxidants are recommended for managing OP poisoning. In addition, hemoperfusion, fresh frozen plasma (FFP), and K-oximes are a number of innovative management modalities that deserve further evaluation. However, prevention seems to be the most effective management modality in this respect. Therefore, this study aimed to briefly discuss the controversies in OP poisoning management and present recent advances in its management and prognosis. The results of this study revealed that multiple factors including type of exposure, acetylcholinesterase (AChE) plasma level, time of hospitalization, and severity confirming OP poisoning should be considered to provide the best treatment strategy.
Collapse
Affiliation(s)
- Shafeajafar Zoofaghari
- Department of Clinical Toxicology, Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Abdolrazaghnejad
- Department of Emergency Medicine, Khatam-Al-Anbia Hospital, Zahedan University of Medical Sciences, Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
4
|
Ahmad MF, Ahmad FA, Alsayegh AA, Zeyaullah M, AlShahrani AM, Muzammil K, Saati AA, Wahab S, Elbendary EY, Kambal N, Abdelrahman MH, Hussain S. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024; 10:e29128. [PMID: 38623208 PMCID: PMC11016626 DOI: 10.1016/j.heliyon.2024.e29128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/17/2024] Open
Abstract
Pesticides are chemical constituents used to prevent or control pests, including insects, rodents, fungi, weeds, and other unwanted organisms. Despite their advantages in crop production and disease management, the use of pesticides poses significant hazards to the environment and public health. Pesticide elements have now perpetually entered our atmosphere and subsequently contaminated water, food, and soil, leading to health threats ranging from acute to chronic toxicities. Pesticides can cause acute toxicity if a high dose is inhaled, ingested, or comes into contact with the skin or eyes, while prolonged or recurrent exposure to pesticides leads to chronic toxicity. Pesticides produce different types of toxicity, for instance, neurotoxicity, mutagenicity, carcinogenicity, teratogenicity, and endocrine disruption. The toxicity of a pesticide formulation may depend on the specific active ingredient and the presence of synergistic or inert compounds that can enhance or modify its toxicity. Safety concerns are the need of the hour to control contemporary pesticide-induced health hazards. The effectiveness and implementation of the current legislature in providing ample protection for human health and the environment are key concerns. This review explored a comprehensive summary of pesticides regarding their updated impacts on human health and advanced safety concerns with legislation. Implementing regulations, proper training, and education can help mitigate the negative impacts of pesticide use and promote safer and more sustainable agricultural practices.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gururgram, Haryana, 122103, India
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah M. AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushayt Campus, King Khalid University (KKU), Abha, Saudi Arabia
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Sohail Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
5
|
Bagherian MS, Zargham P, Zarharan H, Bakhtiari M, Mortezaee Ghariyeh Ali N, Yousefi E, Es-Haghi A, Taghavizadeh Yazdi ME. Antimicrobial and antibiofilm properties of selenium-chitosan-loaded salicylic acid nanoparticles for the removal of emerging contaminants from bacterial pathogens. World J Microbiol Biotechnol 2024; 40:86. [PMID: 38319399 DOI: 10.1007/s11274-024-03917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/01/2024] [Indexed: 02/07/2024]
Abstract
In this study salicylic acid loaded containing selenium nanoparticles was synthesized and called SA@CS-Se NPs. the chitosan was used as a natural stabilizer during the synthesis process. Fourier transforms infrared spectroscopy (FTIR), Powder X-ray diffraction (XRD), field emission electron microscopy (FESEM), and transmission electron microscopy (TEM) were used to describe the physicochemical characteristics of the SA@CS-Se NPs. The PXRD examination revealed that the grain size was around 31.9 nm. TEM and FESEM techniques showed the spherical shape of SA@CS-Se NPs. Additionally, the analysis of experiments showed that SA@CS-Se NPs have antibacterial properties against 4 ATCC bacteria; So that with concentrations of 75, 125, 150, and 100 µg/ml, it inhibited the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and Staphylococcus aureus respectively. Also, at the concentration of 300 µg/ml, it removed 22.76, 23.2, 10.62, and 18.08% biofilm caused by E. coli, P. aeruginosa, B. subtilis, and S. aureus respectively. The synthesized SA@CS-Se NPs may find an application to reduce the unsafe influence of pathogenic microbes and, hence, eliminate microbial contamination.
Collapse
Affiliation(s)
| | - Parisa Zargham
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hoda Zarharan
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Maleknaz Bakhtiari
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Ehsan Yousefi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mohammad Ehsan Taghavizadeh Yazdi
- Department of Pharmacology, Medicinal Plants Pharmacological Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|