1
|
Liu W, Du Q, Mei T, Wang J, Huang D, Qin T. Comprehensive analysis the prognostic and immune characteristics of mitochondrial transport-related gene SFXN1 in lung adenocarcinoma. BMC Cancer 2024; 24:94. [PMID: 38233752 PMCID: PMC10795352 DOI: 10.1186/s12885-023-11646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/15/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Mitochondria, which serve as the fundamental organelle for cellular energy and metabolism, are closely linked to the growth and survival of cancer cells. This study aims to identify and assess Sideroflexin1 (SFXN1), an unprecedented mitochondrial gene, as a potential prognostic biomarker for lung adenocarcinoma (LUAD). METHODS The mRNA and protein levels of SFXN1 were investigated based on the Cancer Genome Atlas (TCGA) LUAD dataset, and then validated by real-time quantitative PCR, Western Blotting and immunohistochemistry from our clinical samples. The clinical correlation and prognostic value were evaluated by the TCGA cohort and verified via our clinical dataset (n = 90). The somatic mutation, drug sensitivity data, immune cell infiltration and single-cell RNA sequencing data of SFXN1 were analyzed through public databases. RESULTS SFXN1 was markedly upregulated at both mRNA and protein levels in LUAD, and high expression of SFXN1 were correlated with larger tumor size, positive lymph node metastasis, and advanced clinical stage. Furthermore, SFXN1 upregulation was significantly associated with poor clinical prognosis. SFXN1 co-expressed genes were also analyzed, which were mainly involved in the cell cycle, central carbon metabolism, DNA repair, and the HIF-1α signaling pathway. Additionally, SFXN1 expression correlated with the expression of multiple immunomodulators, which act to regulate the tumor immune microenvironment. Results also demonstrated an association between SFXN1 expression and increased immune cell infiltration, such as activated CD8 + T cells, natural killer cells (NKs), activated dendritic cells (DCs), and macrophages. LUAD patients with high SFXN1 expression exhibited heightened sensitivity to multiple chemotherapies and targeted drugs and predicted a poor response to immunotherapy. SFXN1 represented an independent prognostic marker for LUAD patients with an improved prognostic value for overall survival when combined with clinical stage information. CONCLUSIONS SFXN1 is frequently upregulated in LUAD and has a significant impact on the tumor immune environment. Our study uncovers the potential of SFXN1 as a prognostic biomarker and as a novel target for intervention in LUAD.
Collapse
Affiliation(s)
- Wenting Liu
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Qingwu Du
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ting Mei
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jingya Wang
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dingzhi Huang
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| | - Tingting Qin
- Department of Thoracic Oncology, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
2
|
Yuan D, Liu J, Sang W, Li Q. Comprehensive analysis of the role of SFXN family in breast cancer. Open Med (Wars) 2023; 18:20230685. [PMID: 37020524 PMCID: PMC10068752 DOI: 10.1515/med-2023-0685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 04/04/2023] Open
Abstract
Abstract
The sideroflexin (SFXN) family is a group of mitochondrial membrane proteins. Although the function of the SFXN family in mitochondria has been widely recognized, the expression levels, role, and prognostic value of this family in breast cancer (BC) have not been clearly articulated and systematically analysed. In our research, SFXN1 and SFXN2 were significantly upregulated in BC versus normal samples based on Gene Expression Profiling Interactive Analysis 2 and the Human Protein Atlas databases. We found that high SFXN1 expression was significantly related to poor prognosis in BC patients and that high SFXN2 expression was significantly associated with good prognosis in BC patients. Gene Ontology analysis of the SFXN family was performed based on the STRING database to explore the potential functions of this family, including biological processes, cellular components, and molecular functions. Based on the MethSurv database, we found that two SFXN1 CpG sites (5′-UTR-S_Shelf-cg06573254 and TSS200-Island-cg17647431), two SFXN2 CpG sites (3′-UTR-Open_Sea-cg04774043 and Body-Open_Sea-cg18994254), one SFXN3 CpG site (Body-S_Shelf-cg17858697), and nine SFXN5 CpG sites (1stExon;5′-UTR-Island-cg03856450, Body-Open_Sea-cg04016113, Body-Open_Sea-cg04197631, Body-Open_Sea-cg07558704, Body-Open_Sea-cg08383863, Body-Open_Sea-cg10040131, Body-Open_Sea-cg10588340, Body-Open_Sea-cg17046766, and Body-Open_Sea-cg22830638) were significantly related to the prognosis of BC patients. According to the ENCORI database, four negative regulatory miRNAs for SFXN1 (hsa-miR-22-3p, hsa-miR-140-5p, hsa-miR-532-5p, and hsa-miR-582-3p) and four negative regulatory miRNAs for SFXN2 (hsa-miR-9-5p, hsa-miR-34a-5p, hsa-miR-532-5p, and hsa-miR-885-5p) were related to poor prognosis for BC patients. This study suggests that SFXN1 and SFXN2 are valuable biomarkers and treatment targets for patients with BC.
Collapse
Affiliation(s)
- Ding Yuan
- Department of General Surgery, Shouguang City People’s Hospital , Shouguang , 262700 , China
| | - Jialiang Liu
- Department of General Surgery, Shouguang City People’s Hospital , Shouguang , 262700 , China
| | - Wenbo Sang
- Department of General Surgery, Shouguang City People’s Hospital , Shouguang , 262700 , China
| | - Qing Li
- Department of General Surgery, Shouguang City People’s Hospital , Shouguang , 262700 , China
| |
Collapse
|
3
|
Prospective role and immunotherapeutic targets of sideroflexin protein family in lung adenocarcinoma: evidence from bioinformatics validation. Funct Integr Genomics 2022; 22:1057-1072. [DOI: 10.1007/s10142-022-00883-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022]
|
4
|
Ledahawsky LM, Terzenidou ME, Edwards R, Kline RA, Graham LC, Eaton SL, van der Hoorn D, Chaytow H, Huang YT, Groen EJN, Motyl AAL, Lamont DJ, Tokatlidis K, Wishart TM, Gillingwater TH. The mitochondrial protein Sideroflexin 3 (SFXN3) influences neurodegeneration pathways in vivo. FEBS J 2022; 289:3894-3914. [PMID: 35092170 PMCID: PMC9542548 DOI: 10.1111/febs.16377] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/14/2021] [Accepted: 01/26/2022] [Indexed: 12/18/2022]
Abstract
Synapses are a primary pathological target in neurodegenerative diseases. Identifying therapeutic targets at the synapse could delay progression of numerous conditions. The mitochondrial protein SFXN3 is a neuronally enriched protein expressed in synaptic terminals and regulated by key synaptic proteins, including α-synuclein. We first show that SFXN3 uses the carrier import pathway to insert into the inner mitochondrial membrane. Using high-resolution proteomics on Sfxn3-KO mice synapses, we then demonstrate that SFXN3 influences proteins and pathways associated with neurodegeneration and cell death (including CSPα and Caspase-3), as well as neurological conditions (including Parkinson's disease and Alzheimer's disease). Overexpression of SFXN3 orthologues in Drosophila models of Parkinson's disease significantly reduced dopaminergic neuron loss. In contrast, the loss of SFXN3 was insufficient to trigger neurodegeneration in mice, indicating an anti- rather than pro-neurodegeneration role for SFXN3. Taken together, these results suggest a potential role for SFXN3 in the regulation of neurodegeneration pathways.
Collapse
Affiliation(s)
- Leire M Ledahawsky
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Maria Eirini Terzenidou
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Rachel A Kline
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Laura C Graham
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Samantha L Eaton
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Dinja van der Hoorn
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Helena Chaytow
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Yu-Ting Huang
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | - Ewout J N Groen
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, The Netherlands
| | - Anna A L Motyl
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| | | | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Thomas M Wishart
- Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK.,The Roslin Institute and R(D)SVS, University of Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, UK.,Euan MacDonald Centre for Motor Neuron Disease Research, University of Edinburgh, UK
| |
Collapse
|
5
|
Attwood MM, Schiöth HB. Characterization of Five Transmembrane Proteins: With Focus on the Tweety, Sideroflexin, and YIP1 Domain Families. Front Cell Dev Biol 2021; 9:708754. [PMID: 34350187 PMCID: PMC8327215 DOI: 10.3389/fcell.2021.708754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Transmembrane proteins are involved in many essential cell processes such as signal transduction, transport, and protein trafficking, and hence many are implicated in different disease pathways. Further, as the structure and function of proteins are correlated, investigating a group of proteins with the same tertiary structure, i.e., the same number of transmembrane regions, may give understanding about their functional roles and potential as therapeutic targets. This analysis investigates the previously unstudied group of proteins with five transmembrane-spanning regions (5TM). More than half of the 58 proteins identified with the 5TM architecture belong to 12 families with two or more members. Interestingly, more than half the proteins in the dataset function in localization activities through movement or tethering of cell components and more than one-third are involved in transport activities, particularly in the mitochondria. Surprisingly, no receptor activity was identified within this dataset in large contrast with other TM groups. The three major 5TM families, which comprise nearly 30% of the dataset, include the tweety family, the sideroflexin family and the Yip1 domain (YIPF) family. We also analyzed the evolutionary origin of these three families. The YIPF family appears to be the most ancient with presence in bacteria and archaea, while the tweety and sideroflexin families are first found in eukaryotes. We found no evidence of common decent for these three families. About 30% of the 5TM proteins have prominent expression in the brain, liver, or testis. Importantly, 60% of these proteins are identified as cancer prognostic markers, where they are associated with clinical outcomes of various tumor types. Nearly 10% of the 5TMs are still not fully characterized and further investigation of their functional activities and expression is warranted. This study provides the first comprehensive analysis of proteins with the 5TM architecture, providing details of their unique characteristics.
Collapse
Affiliation(s)
- Misty M Attwood
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden.,Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
6
|
Bosi E, Marselli L, De Luca C, Suleiman M, Tesi M, Ibberson M, Eizirik DL, Cnop M, Marchetti P. Integration of single-cell datasets reveals novel transcriptomic signatures of β-cells in human type 2 diabetes. NAR Genom Bioinform 2020; 2:lqaa097. [PMID: 33575641 PMCID: PMC7679065 DOI: 10.1093/nargab/lqaa097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic islet β-cell failure is key to the onset and progression of type 2 diabetes (T2D). The advent of single-cell RNA sequencing (scRNA-seq) has opened the possibility to determine transcriptional signatures specifically relevant for T2D at the β-cell level. Yet, applications of this technique have been underwhelming, as three independent studies failed to show shared differentially expressed genes in T2D β-cells. We performed an integrative analysis of the available datasets from these studies to overcome confounding sources of variability and better highlight common T2D β-cell transcriptomic signatures. After removing low-quality transcriptomes, we retained 3046 single cells expressing 27 931 genes. Cells were integrated to attenuate dataset-specific biases, and clustered into cell type groups. In T2D β-cells (n = 801), we found 210 upregulated and 16 downregulated genes, identifying key pathways for T2D pathogenesis, including defective insulin secretion, SREBP signaling and oxidative stress. We also compared these results with previous data of human T2D β-cells from laser capture microdissection and diabetic rat islets, revealing shared β-cell genes. Overall, the present study encourages the pursuit of single β-cell RNA-seq analysis, preventing presently identified sources of variability, to identify transcriptomic changes associated with human T2D and underscores specific traits of dysfunctional β-cells across different models and techniques.
Collapse
Affiliation(s)
- Emanuele Bosi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Lorella Marselli
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Carmela De Luca
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Mara Suleiman
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Marta Tesi
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, University of Lausanne, Quartier Sorge, CH-1015 Lausanne, Switzerland
| | - Decio L Eizirik
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Miriam Cnop
- ULB Center for Diabetes Research, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Piero Marchetti
- Department of Experimental and Clinical Medicine, Pancreatic Islets Laboratory, University of Pisa, Pisa, I-56124, Italy
| |
Collapse
|
7
|
Forward genetic analysis using OCT screening identifies Sfxn3 mutations leading to progressive outer retinal degeneration in mice. Proc Natl Acad Sci U S A 2020; 117:12931-12942. [PMID: 32457148 DOI: 10.1073/pnas.1921224117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Retinal disease and loss of vision can result from any disruption of the complex pathways controlling retinal development and homeostasis. Forward genetics provides an excellent tool to find, in an unbiased manner, genes that are essential to these processes. Using N-ethyl-N-nitrosourea mutagenesis in mice in combination with a screening protocol using optical coherence tomography (OCT) and automated meiotic mapping, we identified 11 mutations presumably causative of retinal phenotypes in genes previously known to be essential for retinal integrity. In addition, we found multiple statistically significant gene-phenotype associations that have not been reported previously and decided to target one of these genes, Sfxn3 (encoding sideroflexin-3), using CRISPR/Cas9 technology. We demonstrate, using OCT, light microscopy, and electroretinography, that two Sfxn3 -/- mouse lines developed progressive and severe outer retinal degeneration. Electron microscopy showed thinning of the retinal pigment epithelium and disruption of the external limiting membrane. Using single-cell RNA sequencing of retinal cells isolated from C57BL/6J mice, we demonstrate that Sfxn3 is expressed in several bipolar cell subtypes, retinal ganglion cells, and some amacrine cell subtypes but not significantly in Müller cells or photoreceptors. In situ hybridization confirmed these findings. Furthermore, pathway analysis suggests that Sfxn3 may be associated with synaptic homeostasis. Importantly, electron microscopy analysis showed disruption of synapses and synaptic ribbons in the outer plexiform layer of Sfxn3 -/- mice. Our work describes a previously unknown requirement for Sfxn3 in retinal function.
Collapse
|
8
|
Jiang B, Lv Q, Wan W, Le L, Xu L, Hu K, Xiao P. Transcriptome analysis reveals the mechanism of the effect of flower tea Coreopsis tinctoria on hepatic insulin resistance. Food Funct 2019; 9:5607-5620. [PMID: 30370909 DOI: 10.1039/c8fo00965a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Non-Camellia tea and herbal medicine help prevent the development of diabetes and other metabolic diseases. Previous studies revealed that Coreopsis tinctoria (CT) flower tea increases insulin sensitivity and, in some high-fat diet (HFD)-fed rats, even prevents hepatic metabolic disorders. However, the molecular mechanisms by which CT improves insulin resistance are not known. In this study, six-week-old rats were fed a normal diet (ND), an HFD or an HFD supplemented with CT for 8 weeks. Serum samples were collected, and the livers were extracted for RNA-seq gene expression analysis. Real-time PCR and western blotting further verified the RNA-seq results. In our results, dietary CT ameliorated HFD-induced hepatosteatosis, glucose intolerance, and insulin resistance. In the HFD group, 1667 differentially expressed genes (DEGs) were identified compared with the ND group. In the CT group, 327 DEGs were identified compared with the HFD group. Some of these DEGs were related to insulin signalling, hepatic lipogenesis and glucose homeostasis. This study suggested that insulin resistance with hyperinsulinaemia, and not insulin insufficiency, is an early problem in HFD-fed rats, and CT downregulates insulin secretion genes (e.g., Rasd1, Stxbp1 and Sfxn1). Hepatic gene and protein expression analyses indicated that the regulatory effects of CT on glucose and lipid homeostasis are likely mediated via the Akt/FoxO1 signalling pathway and are regulated by the transcription factors hairy and enhancer of split 1 (HES1) and small heterodimer partner (SHP). Our study provides transcriptomic evidence of the complex pathogenic mechanism involved in hepatic insulin resistance and proves that supplementation with CT improves insulin resistance at a global scale.
Collapse
Affiliation(s)
- Baoping Jiang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Mon EE, Wei FY, Ahmad RNR, Yamamoto T, Moroishi T, Tomizawa K. Regulation of mitochondrial iron homeostasis by sideroflexin 2. J Physiol Sci 2019; 69:359-373. [PMID: 30570704 PMCID: PMC6373408 DOI: 10.1007/s12576-018-0652-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/10/2018] [Indexed: 02/08/2023]
Abstract
Mitochondrial iron is indispensable for heme biosynthesis and iron-sulfur cluster assembly. Several mitochondrial transmembrane proteins have been implicated to function in the biosynthesis of heme and iron-sulfur clusters by transporting reaction intermediates. However, several mitochondrial proteins related to iron metabolism remain uncharacterized. Here, we show that human sideroflexin 2 (SFXN2), a member of the SFXN protein family, is involved in mitochondrial iron metabolism. SFXN2 is an evolutionarily conserved protein that localized to mitochondria via its transmembrane domain. SFXN2-knockout (KO) cells had an increased mitochondrial iron content, which was associated with decreases in the heme content and heme-dependent enzyme activities. By contrast, the activities of iron-sulfur cluster-dependent enzymes were unchanged in SFXN2-KO cells. Moreover, abnormal iron metabolism impaired mitochondrial respiration in SFXN2-KO cells and accelerated iron-mediated death of these cells. Our findings demonstrate that SFXN2 functions in mitochondrial iron metabolism by regulating heme biosynthesis.
Collapse
Affiliation(s)
- Ei Ei Mon
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto, 860-8556, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Japan.
| | - Raja Norazireen Raja Ahmad
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Takahiro Yamamoto
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular Enzymology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi, 332-0012, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Honjo 1-1-1, Chuo-Ku, Kumamoto, 860-8556, Japan.
- Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, Kumamoto, 860-8556, Japan.
- Neutron Therapy Research Center, Okayama University, Okayama, 700-8558, Japan.
| |
Collapse
|
10
|
Li F, Tan W, Chen H, Zhou J, Xu M, Yuan G. Up- and downregulation of mature miR-1587 function by modulating its G-quadruplex structure and using small molecules. Int J Biol Macromol 2018; 121:127-134. [PMID: 30290263 DOI: 10.1016/j.ijbiomac.2018.10.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Using bioinformatics analysis, we found some mature human miRNAs containing G-rich sequences with four G-tracts that had a high probability of forming G-quadruplex structures. Here, we chose G-rich miR-1587 as a model to characterize the function and regulation of miRNAs. Using electrospray ionization mass spectrometry, magnetic resonance imaging, circular dichroism spectrometry, we had confirmed that miR-1587 folded into a stable parallel G-quadruplex structure. By microarray, Q-RT-PCR and 3'UTR luciferase assay, TAGLN, an early marker of smooth muscle differentiation and tumor suppressor, was identified as a target gene of miR-1587, thus providing a direct target to study miR-1587 functions. We identified three aspects of miR-1587 regulation: 1) KCl induced miR-1587 G-quadruplex formation, reducing the interaction between miR-1587 and the target gene, and inhibiting miR-1587 function; 2) pseudopalmatine ligand further inhibited miR-1587 binding to TAGLN mRNA, which disrupted its function and increased the TAGLN expression; 3) the addition of TMPyP4 ligand interfered G-quadruplex formation, and significantly enhanced miR-1587 regulation of TAGLN expression. This study has revealed the possibility of using the G-quadruplex structure as a strategy to regulate miR-1587 function, showing potential for the development of up- and downregulation of mature G-rich microRNA function by modulating its G-quadruplex and using small molecules.
Collapse
Affiliation(s)
- Fangyuan Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiang Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Ming Xu
- Institute of Vascular Medicine, Department of Cardiology, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health Beijing, 100191, China
| | - Gu Yuan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
11
|
Lüling R, John H, Gudermann T, Thiermann H, Mückter H, Popp T, Steinritz D. Transient Receptor Potential Channel A1 (TRPA1) Regulates Sulfur Mustard-Induced Expression of Heat Shock 70 kDa Protein 6 ( HSPA6) In Vitro. Cells 2018; 7:cells7090126. [PMID: 30200301 PMCID: PMC6162519 DOI: 10.3390/cells7090126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/15/2022] Open
Abstract
The chemosensory transient receptor potential ankyrin 1 (TRPA1) ion channel perceives different sensory stimuli. It also interacts with reactive exogenous compounds including the chemical warfare agent sulfur mustard (SM). Activation of TRPA1 by SM results in elevation of intracellular calcium levels but the cellular consequences are not understood so far. In the present study we analyzed SM-induced and TRPA1-mediated effects in human TRPA1-overexpressing HEK cells (HEKA1) and human lung epithelial cells (A549) that endogenously exhibit TRPA1. The specific TRPA1 inhibitor AP18 was used to distinguish between SM-induced and TRPA1-mediated or TRPA1-independent effects. Cells were exposed to 600 µM SM and proteome changes were investigated 24 h afterwards by 2D gel electrophoresis. Protein spots with differential staining levels were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nano liquid chromatography electrospray ionization tandem mass spectrometry. Results were verified by RT-qPCR experiments in both HEKA1 or A549 cells. Heat shock 70 kDa protein 6 (HSPA6) was identified as an SM-induced and TRPA1-mediated protein. AP18 pre-treatment diminished the up-regulation. RT-qPCR measurements verified these results and further revealed a time-dependent regulation. Our results demonstrate that SM-mediated activation of TRPA1 influences the protein expression and confirm the important role of TRPA1 ion channels in the molecular toxicology of SM.
Collapse
Affiliation(s)
- Robin Lüling
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
| | - Harald Mückter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| |
Collapse
|
12
|
Minjarez B, Calderón-González KG, Rustarazo MLV, Herrera-Aguirre ME, Labra-Barrios ML, Rincon-Limas DE, Del Pino MMS, Mena R, Luna-Arias JP. Identification of proteins that are differentially expressed in brains with Alzheimer's disease using iTRAQ labeling and tandem mass spectrometry. J Proteomics 2016; 139:103-21. [PMID: 27012543 DOI: 10.1016/j.jprot.2016.03.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/26/2016] [Accepted: 03/11/2016] [Indexed: 10/22/2022]
Abstract
UNLABELLED Alzheimer's disease is one of the leading causes of dementia in the elderly. It is considered the result of complex events involving both genetic and environmental factors. To gain further insights into this complexity, we quantitatively analyzed the proteome of cortex region of brains from patients diagnosed with Alzheimer's disease, using a bottom-up proteomics approach. We identified 721 isobaric-tagged polypeptides. From this universe, 61 were found overexpressed and 69 subexpressed in three brains with Alzheimer's disease in comparison to a normal brain. We determined that the most affected processes involving the overexpressed polypeptides corresponded to ROS and stress responses. For the subexpressed polypeptides, the main processes affected were oxidative phosphorylation, organellar acidification and cytoskeleton. We used Drosophila to validate some of the hits, particularly those non-previously described as connected with the disease, such as Sideroflexin and Phosphoglucomutase-1. We manipulated their homolog genes in Drosophila models of Aβ- and Tau-induced pathology. We found proteins that can either modify Aβ toxicity, Tau toxicity or both, suggesting specific interactions with different pathways. This approach illustrates the potential of Drosophila to validate hits after MS studies and suggest that model organisms should be included in the pipeline to identify relevant targets for Alzheimer's disease. BIOLOGICAL SIGNIFICANCE We report a set of differentially expressed proteins in three Alzheimer's disease brains in comparison to a normal brain. Our analyses allowed us to identify that the main affected pathways were ROS and stress responses, oxidative phosphorylation, organellar acidification and cytoskeleton. We validated some identified proteins using genetic models of Amyloid-β and Tau-induced pathology in Drosophila melanogaster. With this approach, Sideroflexin and Phosphoglucomutase-1 were identified as novel proteins connected with Alzheimer's disease.
Collapse
Affiliation(s)
- Benito Minjarez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| | - Karla Grisel Calderón-González
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| | - Ma Luz Valero Rustarazo
- Unidad de Proteómica, Centro de Investigación Príncipe Felipe, C/Rambla del Saler 16, 46012 Valencia, España.
| | - María Esther Herrera-Aguirre
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| | - María Luisa Labra-Barrios
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL 32611, USA.
| | - Manuel M Sánchez Del Pino
- Unidad de Proteómica, Centro de Investigación Príncipe Felipe, C/Rambla del Saler 16, 46012 Valencia, España.
| | - Raul Mena
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav-IPN, Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México
| | - Juan Pedro Luna-Arias
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
13
|
Kurtovic-Kozaric A, Przychodzen B, Singh J, Konarska MM, Clemente MJ, Otrock ZK, Nakashima M, Hsi ED, Yoshida K, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Ogawa S, Boultwood J, Makishima H, Maciejewski JP, Padgett RA. PRPF8 defects cause missplicing in myeloid malignancies. Leukemia 2014; 29:126-36. [PMID: 24781015 PMCID: PMC4214909 DOI: 10.1038/leu.2014.144] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/07/2014] [Accepted: 04/21/2014] [Indexed: 11/26/2022]
Abstract
Mutations of spliceosome components are common in myeloid neoplasms. One of the affected genes, PRPF8, encodes the most evolutionarily conserved spliceosomal protein. We identified either recurrent somatic PRPF8 mutations or hemizygous deletions in 15/447 and 24/450 cases, respectively. 50% of PRPF8 mutant and del(17p) cases were found in AML and conveyed poor prognosis. PRPF8 defects correlated with increased myeloblasts and ring sideroblasts in cases without SF3B1 mutations. Knockdown of PRPF8 in K562 and CD34+ primary bone marrow cells increased proliferative capacity. Whole RNA deep sequencing of primary cells from patients with PRPF8 abnormalities demonstrated consistent missplicing defects. In yeast models, homologous mutations introduced into Prp8 abrogated a block experimentally produced in the second step of the RNA splicing process suggesting that the mutants have defects in proof-reading functions. In sum, the exploration of clinical and functional consequences suggests that PRPF8 is a novel leukemogenic gene in myeloid neoplasms with a distinct phenotype likely manifested through aberrant splicing.
Collapse
Affiliation(s)
- A Kurtovic-Kozaric
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - B Przychodzen
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - J Singh
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - M J Clemente
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - Z K Otrock
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - M Nakashima
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - E D Hsi
- Department of Pathology, Cleveland Clinic, Cleveland, OH, USA
| | - K Yoshida
- Cancer Genomics Project, Graduate School of Medicine, Tokyo, Japan
| | - Y Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - K Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - H Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S Miyano
- 1] Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan [2] Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - S Ogawa
- 1] Cancer Genomics Project, Graduate School of Medicine, Tokyo, Japan [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - J Boultwood
- LLR Molecular Haematology Unit, NDCLS, RDM, John Radcliffe Hospital, Oxford, UK
| | - H Makishima
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - J P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland, OH, USA
| | - R A Padgett
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
14
|
Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 2013; 58:585-609. [DOI: 10.1016/j.survophthal.2012.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 12/26/2022]
|
15
|
Lejonklou MH, Barbu A, Stålberg P, Skogseid B. Accelerated proliferation and differential global gene expression in pancreatic islets of five-week-old heterozygous Men1 mice: Men1 is a haploinsufficient suppressor. Endocrinology 2012; 153:2588-98. [PMID: 22492302 DOI: 10.1210/en.2011-1924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Individuals carrying heterozygous (hz) MEN1 (Multiple Endocrine Neoplasia Syndrome Type 1) germ line mutations develop endocrine tumors as a result of somatic loss of the wild-type (wt) allele. However, endocrine cell proliferation has been observed despite wt allele retention, indicating haploinsufficiency. To study downstream molecular effects of the hz haplotype, a germ line Men1 hz mouse model was used to explore differences in global endocrine pancreatic gene expression. Because islet cells of 5-wk-old hz mice express Menin from the retained wt Men1 allele, these were isolated after collagenase digestion of the pancreas, and used for global gene expression array. Wild-type littermates were used for comparison. Array findings were corroborated by quantitative PCR, Western blotting, in situ proximity ligation assay, and immunohistochemistry. The hz islets show increased proliferation: the Ki-67 index was twice as high as in wt islets (3.48 vs. 1.74%; P = 0.024). The microarray results demonstrated that several genes were differentially expressed. Some selected genes were studied on the protein level, e.g. the cytoskeletal regulator myristoylated alanine-rich protein kinase C substrate (Marcks) was significantly less expressed in hz islets, using in situ proximity ligation assay and Western blotting (P < 0.001 and P < 0.01, respectively). Further, gene ontology analysis showed that genes with higher mRNA expression in the hz endocrine pancreas were associated with e.g. chromatin maintenance and apoptosis. Lower mRNA was observed for genes involved in growth factor binding. In conclusion, despite retained Menin expression, proliferation was accelerated, and numerous genes were differentially expressed in the endocrine pancreas of 5-wk-old hz Men1 mice, corroborating the hypothesis that MEN1 is a haploinsufficient suppressor.
Collapse
Affiliation(s)
- Margareta H Lejonklou
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, S-751 85 Uppsala, Sweden
| | | | | | | |
Collapse
|
16
|
Molecular cloning, sequence identification and tissue expression profile of three novel genes Sfxn1, Snai2 and Cno from Black-boned sheep (Ovis aries). Mol Biol Rep 2010; 38:1883-7. [PMID: 20853147 DOI: 10.1007/s11033-010-0306-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
The complete coding sequences of three of Black-boned sheep (Ovis aries) genes Sfxn1, Snai2 and Cno were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR) according to the conserved sequence information of the cattle or other mammals and known highly homologous sheep ESTs. Black-boned sheep Sfxn1 gene encodes a protein of 322 amino acids which has high homology with the Sfxn1 proteins of five species--cattle 98%, pig 95%, human 95%, rat 93%, and mouse 93%. Black-boned sheep Snai2 gene encodes a protein of 268 amino acids that has high identity with the Snai2 proteins of six species--cattle 99%, pig 94%, human 93%, dog 93%, rat 91%, and mouse 90%. Black-boned sheep Cno gene encodes a protein of 214 amino acids that has high homology with the Cno proteins of four species--cattle 97%, human 75%, mouse 67%, and rat 65%. The phylogenetic tree analysis demonstrated that Black-boned sheep Sfxn1, Snai2 and Cno proteins have close relationship with cattle Sfxn1, Snai2 and Cno proteins. The tissue expression analysis indicated that Black-boned sheep Sfxn1, Snai2 and Cno genes were expressed in a range of tissues including leg muscle, kidney, skin, longissimus dorsi muscle, spleen, heart and liver. Our experiment is the first to provide the primary foundation for further insight into these three sheep genes.
Collapse
|
17
|
Li X, Han D, Kin Ting Kam R, Guo X, Chen M, Yang Y, Zhao H, Chen Y. Developmental expression of sideroflexin family genes in Xenopus embryos. Dev Dyn 2010; 239:2742-7. [DOI: 10.1002/dvdy.22401] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Abstract
The phenomenon of pancreatic regeneration in mammals has been well documented. It has been shown that pancreatic tissue is able to regenerate in several species of mammal after surgical insult. This tissue is also known to have the potential to maintain or increase its beta-cell mass in response to metabolic demands during pregnancy and obesity. Since deficiency in beta-cell mass is the hallmark of most forms of diabetes, it is worthwhile understanding pancreatic regeneration in the context of this disease. With this view in mind, this article aims to discuss the potential use in clinical strategies of knowledge that we obtained from studies carried out in animal models of diabetes. Approaches to achieve this goal involve the use of biomolecules, adult stem cells and gene therapy. Various molecules, such as glucagon-like peptide-1, beta-cellulin, nicotinamide, gastrin, epidermal growth factor-1 and thyroid hormone, play major roles in the initiation of endogenous islet regeneration in diabetes. The most accepted hypothesis is that these molecules stimulate islet precursor cells to undergo neogenesis or to induce replication of existing beta-cells, emphasizing the importance of pancreas-resident stem/progenitor cells in islet regeneration. Moreover, the potential of adult stem cell population from bone marrow, umbilical cord blood, liver, spleen, or amniotic membrane, is also discussed with regard to their potential to induce pancreatic regeneration.
Collapse
Affiliation(s)
| | | | - Ramesh R. Bhonde
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune-411007, India
| |
Collapse
|