1
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
2
|
Tazhitdinova R, Timoshenko AV. The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells 2020; 9:cells9081792. [PMID: 32731422 PMCID: PMC7465113 DOI: 10.3390/cells9081792] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Galectins are a family of soluble β-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. Human cells express twelve out of sixteen recognized mammalian galectin genes and their expression profiles are very different between cell types and tissues. In this review, we summarize the current knowledge on the changes in the expression of individual galectins at mRNA and protein levels in different types of differentiating cells and the effects of recombinant galectins on cellular differentiation. A new model of galectin regulation is proposed considering the change in O-GlcNAc homeostasis between progenitor/stem cells and mature differentiated cells. The recognition of galectins as regulatory factors controlling cell differentiation and self-renewal is essential for developmental and cancer biology to develop innovative strategies for prevention and targeted treatment of proliferative diseases, tissue regeneration, and stem-cell therapy.
Collapse
|
3
|
Jariwala KA, Sherazi AA, Tazhitdinova R, Shum K, Guevorguian P, Karagiannis J, Staples JF, Timoshenko AV. The association between increasing levels of O-GlcNAc and galectins in the liver tissue of hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Cell Tissue Res 2020; 381:115-123. [PMID: 32157440 DOI: 10.1007/s00441-020-03185-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Post-translational glycosylation of proteins with O-linked β-N-acetylglucosamine (O-GlcNAcylation) and changes of galectin expression profiles are essential in many cellular stress responses. We examine this regulation in the liver tissue of hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus) representing a biological model of hypometabolism and physiological stress resistance. The tissue levels of O-GlcNAcylated proteins as well as galectin-1 and galectin-3 proteins detected by immunodot blot assay were significantly lower by 4.6-5.4-, 2.2-2.3- and 2.5-2.9-fold, respectively, in the non-hibernating summer squirrels compared with those in winter, whether hibernating or aroused. However, there were no differences in the expression of genes encoding enzymes involved in O-GlcNAc cycle (O-GlcNAc transferase and O-GlcNAcase) and such galectins as LGALS1, LGALS2, LGALS3, LGALS4 and LGALS9. Only the expression of LGALS8 gene in the liver tissue was significantly decreased by 37.6 ± 0.1% in hibernating ground squirrels relative to summer animals. Considering that the expression of a proven genetic biomarker ELOVL6 encoding ELOVL fatty acid elongase 6 was readily upregulated in non-hibernating animals by 11.3-32.9-fold, marginal differential changes in the expression of galectin genes cannot be classified as biomarkers of hibernation. Thus, this study provides evidence that hibernation in Ictidomys tridecemlineatus is associated with increasing O-GlcNAcylation of liver proteins and suggests that the contribution of galectins deserves further studies at the protein level.
Collapse
Affiliation(s)
- Komal A Jariwala
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Ali A Sherazi
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Rada Tazhitdinova
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Kathryn Shum
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Philipp Guevorguian
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Jim Karagiannis
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - James F Staples
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada
| | - Alexander V Timoshenko
- Department of Biology, The University of Western Ontario, 1151 Richmond St. N, London, ON, N6A 5B7, Canada.
| |
Collapse
|
4
|
O-GlcNAc in cancer: An Oncometabolism-fueled vicious cycle. J Bioenerg Biomembr 2018; 50:155-173. [PMID: 29594839 DOI: 10.1007/s10863-018-9751-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Cancer cells exhibit unregulated growth, altered metabolism, enhanced metastatic potential and altered cell surface glycans. Fueled by oncometabolism and elevated uptake of glucose and glutamine, the hexosamine biosynthetic pathway (HBP) sustains glycosylation in the endomembrane system. In addition, the elevated pools of UDP-GlcNAc drives the O-GlcNAc modification of key targets in the cytoplasm, nucleus and mitochondrion. These targets include transcription factors, kinases, key cytoplasmic enzymes of intermediary metabolism, and electron transport chain complexes. O-GlcNAcylation can thereby alter epigenetics, transcription, signaling, proteostasis, and bioenergetics, key 'hallmarks of cancer'. In this review, we summarize accumulating evidence that many cancer hallmarks are linked to dysregulation of O-GlcNAc cycling on cancer-relevant targets. We argue that onconutrient and oncometabolite-fueled elevation increases HBP flux and triggers O-GlcNAcylation of key regulatory enzymes in glycolysis, Kreb's cycle, pentose-phosphate pathway, and the HBP itself. The resulting rerouting of glucose metabolites leads to elevated O-GlcNAcylation of oncogenes and tumor suppressors further escalating elevation in HBP flux creating a 'vicious cycle'. Downstream, elevated O-GlcNAcylation alters DNA repair and cellular stress pathways which influence oncogenesis. The elevated steady-state levels of O-GlcNAcylated targets found in many cancers may also provide these cells with a selective advantage for sustained growth, enhanced metastatic potential, and immune evasion in the tumor microenvironment.
Collapse
|
5
|
Hyperglycemia and aberrant O-GlcNAcylation: contributions to tumor progression. J Bioenerg Biomembr 2018; 50:175-187. [DOI: 10.1007/s10863-017-9740-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022]
|
6
|
O -GlcNAc modification of Sp1 mediates hyperglycaemia-induced ICAM-1 up-regulation in endothelial cells. Biochem Biophys Res Commun 2017; 484:79-84. [DOI: 10.1016/j.bbrc.2017.01.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/14/2017] [Indexed: 01/18/2023]
|
7
|
Roth S, Khalaila I. The effect of O -GlcNAcylation on hnRNP A1 translocation and interaction with transportin1. Exp Cell Res 2017; 350:210-217. [DOI: 10.1016/j.yexcr.2016.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 01/03/2023]
|
8
|
Banerjee PS, Lagerlöf O, Hart GW. Roles of O-GlcNAc in chronic diseases of aging. Mol Aspects Med 2016; 51:1-15. [PMID: 27259471 DOI: 10.1016/j.mam.2016.05.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/18/2016] [Accepted: 05/30/2016] [Indexed: 12/22/2022]
Abstract
O-GlcNAcylation, a dynamic nutrient and stress sensitive post-translational modification, occurs on myriad proteins in the cell nucleus, cytoplasm and mitochondria. O-GlcNAcylation serves as a nutrient sensor to regulate signaling, transcription, translation, cell division, metabolism, and stress sensitivity in all cells. Aberrant protein O-GlcNAcylation plays a critical role both in the development, as well as in the progression of a variety of age related diseases. O-GlcNAcylation underlies the etiology of diabetes, and changes in specific protein O-GlcNAc levels and sites are responsible for insulin expression and sensitivity and glucose toxicity. Abnormal O-GlcNAcylation contributes directly to diabetes related dysfunction of the heart, kidney and eyes and affects progression of cardiomyopathy, nephropathy and retinopathy. O-GlcNAcylation is a critical modification in the brain and plays a role in both plaque and tangle formation, thus making its study important in neurodegenerative disorders. O-GlcNAcylation also affects cellular growth and metabolism during the development and metastasis of cancer. Finally, alterations in O-GlcNAcylation of transcription factors in macrophages and lymphocytes affect inflammation and cytokine production. Thus, O-GlcNAcylation plays key roles in many of the major diseases associated with aging. Elucidation of its specific functions in both normal and diseased tissues is likely to uncover totally novel avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Partha S Banerjee
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2185
| | - Olof Lagerlöf
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2185
| | - Gerald W Hart
- Department of Biological Chemistry, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2185.
| |
Collapse
|
9
|
Jang TJ, Kim UJ. O-GlcNAcylation is associated with the development and progression of gastric carcinoma. Pathol Res Pract 2016; 212:622-30. [PMID: 27131860 DOI: 10.1016/j.prp.2016.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/16/2016] [Accepted: 04/12/2016] [Indexed: 02/07/2023]
Abstract
INTRODUCTION O-GlcNAcylation occurs via an O-linked β-N-acetylglucosamine (O-GlcNAc) moiety linked to the side chain hydroxyl of a serine or threonine residue on nucleocytoplasmic proteins. This reaction, which is catalyzed by O-GlcNAc-transferase (OGT), is involved in a variety of human cancers; however, its clinical significance in gastric carcinomas (GC) has been poorly investigated in vivo. MATERIALS AND METHODS Immunohistochemical staining for O-GlcNAcylation and OGT was performed in 64 primary GCs, 40 gastric adenomas and nonneoplastic tissues adjacent to GCs, including 31 tissues of intestinal metaplasia and 24 normal gastric tissues. Their expressions were also studied in 20 tissues of chronic gastritis according to Helicobacter pylori (H. pylori) infection. RESULTS O-GlcNAcylation was expressed in the nucleus and both the nuclear rim and cytoplasm. OGT was strongly expressed in the nucleus and weakly expressed in the cytoplasm. O-GlcNAcylation expression levels were significantly correlated with those of OGT. Their expression levels were progressively increased during the carcinogenesis of GC. O-GlcNAcylation expression was higher in GC with intestinal type, higher pT stage and nodal metastasis, while OGT expression was higher in GC with nodal metastasis. Nuclear O-GlcNAcylation expression was more frequently observed in tumors including GC and adenoma than in nonneoplastic tissues including intestinal metaplasia and normal tissue. Nuclear O-GlcNAcylation expression in GC was closely associated with large size, moderate and poor differentiation, higher pT stage, nodal metastasis and higher clinical stage. In addition, the expression of O-GlcNAcylation and OGT was more elevated in H. pylori-infected chronic gastritis than in chronic gastritis without H. pylori infection. CONCLUSIONS O-GlcNAcylation expression and its nuclear expression were associated with the carcinogenesis and progression of GC.
Collapse
Affiliation(s)
- Tae Jung Jang
- Department of Pathology, Dongguk University College of Medicine, Gyeongju, Republic of Korea.
| | - Ui Jung Kim
- Department of Pathology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| |
Collapse
|
10
|
Peterson SB, Hart GW. New insights: A role for O-GlcNAcylation in diabetic complications. Crit Rev Biochem Mol Biol 2016; 51:150-61. [DOI: 10.3109/10409238.2015.1135102] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
O-GlcNAcylation of co-activator-associated arginine methyltransferase 1 regulates its protein substrate specificity. Biochem J 2015; 466:587-99. [PMID: 25585345 DOI: 10.1042/bj20141072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Co-activator-associated arginine methyltransferase 1 (CARM1) asymmetrically di-methylates proteins on arginine residues. CARM1 was previously known to be modified through O-linked-β-N-acetylglucosaminidation (O-GlcNAcylation). However, the site(s) of O-GlcNAcylation were not mapped and the effects of O-GlcNAcylation on biological functions of CARM1 were undetermined. In the present study, we describe the comprehensive mapping of CARM1 post-translational modification (PTM) using top-down MS. We found that all detectable recombinant CARM1 expressed in human embryonic kidney (HEK293T) cells is automethylated as we previously reported and that about 50% of this automethylated CARM1 contains a single O-linked-β-N-acetylglucosamine (O-GlcNAc) moiety [31]. The O-GlcNAc moiety was mapped by MS to four possible sites (Ser595, Ser598, Thr601 and Thr603) in the C-terminus of CARM1. Mutation of all four sites [CARM1 quadruple mutant (CARM1QM)] markedly decreased O-GlcNAcylation, but did not affect protein stability, dimerization or cellular localization of CARM1. Moreover, CARM1QM elicits similar co-activator activity as CARM1 wild-type (CARM1WT) on a few transcription factors known to be activated by CARM1. However, O-GlcNAc-depleted CARM1 generated by wheat germ agglutinin (WGA) enrichment, O-GlcNAcase (OGA) treatment and mutation of putative O-GlcNAcylation sites displays different substrate specificity from that of CARM1WT. Our findings suggest that O-GlcNAcylation of CARM1 at its C-terminus is an important determinant for CARM1 substrate specificity.
Collapse
|
12
|
Donovan K, Alekseev O, Qi X, Cho W, Azizkhan-Clifford J. O-GlcNAc modification of transcription factor Sp1 mediates hyperglycemia-induced VEGF-A upregulation in retinal cells. Invest Ophthalmol Vis Sci 2014; 55:7862-73. [PMID: 25352121 DOI: 10.1167/iovs.14-14048] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Proangiogenic protein VEGF-A contributes significantly to retinal lesions and neovascularization in diabetic retinopathy (DR). In preclinical DR, hyperglycemia can upregulate VEGF-A in retinal cells. The VEGF-A promoter is responsive to the transcription factor specificity protein 1 (Sp1). The O-GlcNAc modification is driven by glucose concentration and has a profound effect on Sp1 activity. This study investigated the effects of hyperglycemia on Sp1-mediated expression of VEGF-A in the retinal endothelium and pigment epithelium. METHODS Hyperglycemia-exposed ARPE-19 (human retinal pigment epithelial cells) and TR-iBRB (rat retinal microendothelial cells) were assayed for levels of VEGF-A by qRT-PCR, Western blot, and ELISA. Small molecule inhibitors of O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) were used to manipulate O-GlcNAc levels. Vascular endothelial growth factor-A protein and transcript were measured in cells depleted of OGT or Sp1 by shRNA. The proximal VEGF-A promoter was analyzed for glucose sensitivity by luciferase assay. Chromatin immunoprecipitation (ChIP) was used to assess Sp1 occupancy on the VEGF-A promoter. RESULTS Hyperglycemia increased VEGF-A promoter activity and upregulated VEGF-A transcript and protein. Elevation of O-GlcNAc by OGA inhibitors was sufficient to increase VEGF-A. O-GlcNAc transferase inhibition abrogated glucose-driven VEGF-A. Cellular depletion of OGT or Sp1 by shRNA significantly abrogated glucose-induced changes in VEGF-A. ChIP analysis showed that hyperglycemia significantly increased binding of Sp1 to the VEGF-A promoter. CONCLUSIONS Hyperglycemia-driven VEGF-A production is mediated by elevated O-GlcNAc modification of the Sp1 transcription factor. This mechanism may be significant in the pathogenesis of preclinical DR through VEGF-A upregulation.
Collapse
Affiliation(s)
- Kelly Donovan
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Oleg Alekseev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Xin Qi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - William Cho
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| |
Collapse
|
13
|
Singh JP, Zhang K, Wu J, Yang X. O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett 2014; 356:244-50. [PMID: 24769077 DOI: 10.1016/j.canlet.2014.04.014] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/31/2014] [Accepted: 04/16/2014] [Indexed: 12/16/2022]
Abstract
The covalent attachment of β-D-N-acetylglucosamine monosaccharides (O-GlcNAc) to serine/threonine residues of nuclear and cytoplasmic proteins is a major regulatory mechanism in cell physiology. Aberrant O-GlcNAc modification of signaling proteins, metabolic enzymes, and transcriptional and epigenetic regulators has been implicated in cancer. Relentless growth of cancer cells requires metabolic reprogramming that is intertwined with changes in the epigenetic landscape. This review highlights the emerging role of protein O-GlcNAcylation at the interface of cancer metabolism and epigenetics.
Collapse
Affiliation(s)
- Jay Prakash Singh
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA
| | - Kaisi Zhang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA
| | - Jing Wu
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoyong Yang
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Section of Comparative Medicine, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06519, USA.
| |
Collapse
|
14
|
Ma ZY, Skorobogatko Y, Vosseller K. Tandem lectin weak affinity chromatography for glycoprotein enrichment. Methods Mol Biol 2013; 951:21-31. [PMID: 23296521 DOI: 10.1007/978-1-62703-146-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this chapter we describe the application of lectin weak affinity chromatography (LWAC) for the enrichment of peptides modified by O-linked β-N-acetylglucosamine (O-GlcNAc). O-GlcNAc is a single carbohydrate moiety post-translational modification of intracellular proteins. The stoichiometry of the modification is low and identification of the sites of O-GlcNAc attachment is challenging. To map O-GlcNAc sites we use the approach where a protein sample of interest is digested with trypsin and subjected to LWAC, which employs weak interaction between lectin wheat germ agglutinin and O-GlcNAc. Obtained sample is enriched with O-GlcNAc-modified peptides, which can be identified by means of mass spectrometry.
Collapse
Affiliation(s)
- Zhi Yuan Ma
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, PA, USA
| | | | | |
Collapse
|
15
|
Dias WB, Cheung WD, Hart GW. O-GlcNAcylation of kinases. Biochem Biophys Res Commun 2012; 422:224-8. [PMID: 22564745 PMCID: PMC3387735 DOI: 10.1016/j.bbrc.2012.04.124] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 01/17/2023]
Abstract
Recent evidence indicates that site-specific crosstalk between O-GlcNAcylation and phosphorylation and the O-GlcNAcylation of kinases play an important role in regulating cell signaling. However, relatively few kinases have been analyzed for O-GlcNAcylation. Here, we identify additional kinases that are substrates for O-GlcNAcylation using an in vitro OGT assay on a functional kinase array. Forty-two kinases were O-GlcNAcylated in vitro, representing 39% of the kinases on the array. In addition, we confirmed the in vivo O-GlcNAcylation of three identified kinases. Our results suggest that O-GlcNAcylation may directly regulate a substantial number of kinases and illustrates the increasingly complex relationship between O-GlcNAcylation and phosphorylation in cellular signaling.
Collapse
Affiliation(s)
- Wagner B Dias
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
16
|
Yu Y, Zhang L, Li X, Run X, Liang Z, Li Y, Liu Y, Lee MH, Grundke-Iqbal I, Iqbal K, Vocadlo DJ, Liu F, Gong CX. Differential effects of an O-GlcNAcase inhibitor on tau phosphorylation. PLoS One 2012; 7:e35277. [PMID: 22536363 PMCID: PMC3334936 DOI: 10.1371/journal.pone.0035277] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/15/2012] [Indexed: 11/18/2022] Open
Abstract
Abnormal hyperphosphorylation of microtubule-associated protein tau plays a crucial role in neurodegeneration in Alzheimer's disease (AD). The aggregation of hyperphosphorylated tau into neurofibrillary tangles is also a hallmark brain lesion of AD. Tau phosphorylation is regulated by tau kinases, tau phosphatases, and O-GlcNAcylation, a posttranslational modification of proteins on the serine or threonine residues with β-N-acetylglucosamine (GlcNAc). O-GlcNAcylation is dynamically regulated by O-GlcNAc transferase, the enzyme catalyzing the transfer of GlcNAc to proteins, and N-acetylglucosaminidase (OGA), the enzyme catalyzing the removal of GlcNAc from proteins. Thiamet-G is a recently synthesized potent OGA inhibitor, and initial studies suggest it can influence O-GlcNAc levels in the brain, allowing OGA inhibition to be a potential route to altering disease progression in AD. In this study, we injected thiamet-G into the lateral ventricle of mice to increase O-GlcNAcylation of proteins and investigated the resulting effects on site-specific tau phosphorylation. We found that acute thiamet-G treatment led to a decrease in tau phosphorylation at Thr181, Thr212, Ser214, Ser262/Ser356, Ser404 and Ser409, and an increase in tau phosphorylation at Ser199, Ser202, Ser396 and Ser422 in the mouse brain. Investigation of the major tau kinases showed that acute delivery of a high dose of thiamet-G into the brain also led to a marked activation of glycogen synthase kinase-3β (GSK-3β), possibly as a consequence of down-regulation of its upstream regulating kinase, AKT. However, the elevation of tau phosphorylation at the sites above was not observed and GSK-3β was not activated in cultured adult hippocampal progenitor cells or in PC12 cells after thiamet-G treatment. These results suggest that acute high-dose thiamet-G injection can not only directly antagonize tau phosphorylation, but also stimulate GSK-3β activity, with the downstream consequence being site-specific, bi-directional regulation of tau phosphorylation in the mammalian brain.
Collapse
Affiliation(s)
- Yang Yu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Lan Zhang
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Xiaojing Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Xiaoqin Run
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Zhihou Liang
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Yi Li
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Ying Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Moon H. Lee
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Inge Grundke-Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Khalid Iqbal
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - David J. Vocadlo
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Cheng-Xin Gong
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| |
Collapse
|
17
|
Shen DL, Gloster TM, Yuzwa SA, Vocadlo DJ. Insights into O-linked N-acetylglucosamine ([0-9]O-GlcNAc) processing and dynamics through kinetic analysis of O-GlcNAc transferase and O-GlcNAcase activity on protein substrates. J Biol Chem 2012; 287:15395-408. [PMID: 22311971 DOI: 10.1074/jbc.m111.310664] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellular O-linked N-acetylglucosamine (O-GlcNAc) levels are modulated by two enzymes: uridine diphosphate-N-acetyl-D-glucosamine:polypeptidyltransferase (OGT) and O-GlcNAcase (OGA). To quantitatively address the activity of these enzymes on protein substrates, we generated five structurally diverse proteins in both unmodified and O-GlcNAc-modified states. We found a remarkably invariant upper limit for k(cat)/K(m) values for human OGA (hOGA)-catalyzed processing of these modified proteins, which suggests that hOGA processing is driven by the GlcNAc moiety and is independent of the protein. Human OGT (hOGT) activity ranged more widely, by up to 15-fold, suggesting that hOGT is the senior partner in fine tuning protein O-GlcNAc levels. This was supported by the observation that K(m,app) values for UDP-GlcNAc varied considerably (from 1 μM to over 20 μM), depending on the protein substrate, suggesting that some OGT substrates will be nutrient-responsive, whereas others are constitutively modified. The ratios of k(cat)/K(m) values obtained from hOGT and hOGA kinetic studies enable a prediction of the dynamic equilibrium position of O-GlcNAc levels that can be recapitulated in vitro and suggest the relative O-GlcNAc stoichiometries of target proteins in the absence of other factors. We show that changes in the specific activities of hOGT and hOGA measured in vitro on calcium/calmodulin-dependent kinase IV (CaMKIV) and its pseudophosphorylated form can account for previously reported changes in CaMKIV O-GlcNAc levels observed in cells. These studies provide kinetic evidence for the interplay between O-GlcNAc and phosphorylation on proteins and indicate that these effects can be mediated by changes in hOGT and hOGA kinetic activity.
Collapse
Affiliation(s)
- David L Shen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | | | | | |
Collapse
|
18
|
Sakiyama H, Fujiwara N, Noguchi T, Eguchi H, Yoshihara D, Uyeda K, Suzuki K. The role of O-linked GlcNAc modification on the glucose response of ChREBP. Biochem Biophys Res Commun 2010; 402:784-9. [PMID: 21036147 DOI: 10.1016/j.bbrc.2010.10.113] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 10/25/2010] [Indexed: 12/22/2022]
Abstract
The carbohydrate response element-binding protein (ChREBP) functions as a transcription factor in mediating the glucose-activated gene expression of multiple liver enzymes, which are responsible for converting excess carbohydrate to storage fat. ChREBP is translocated into the nucleus in response to high glucose levels, and then up-regulates transcriptional activity. Although this glucose activation of ChREBP is generally observed only in liver cells, overexpression of wild type max-like protein X (Mlx), but not an inactive mutant Mlx, resulted in the exhibition of the ChREBP functions also in a human kidney cell line. Because high glucose conditions induce the glycosylation of cellular proteins, the effect of O-linked GlcNAc modification on ChREBP functions was examined. Treatment with an O-GlcNAcase inhibitor (PUGNAc), which increases the O-linked GlcNAc modification of cellular proteins, caused an increase in the glucose response of ChREBP. In contrast, treatment with a glutamine fructose amidotransferase inhibitor (DON), which decreases O-GlcNAcylation by inhibiting the hexosamine biosynthetic pathway, completely blocked the glucose response of ChREBP. These results suggest that the O-linked glycosylation of ChREBP itself or other proteins that regulate ChREBP is essential for the production of functional ChREBP.
Collapse
Affiliation(s)
- Haruhiko Sakiyama
- Department of Biochemistry, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Guinez C, Mir AM, Martin N, Leprince D, Michalski JC, Vergoten G, Lefebvre T. Arginine 469 is a pivotal residue for the Hsc70-GlcNAc-binding property. Biochem Biophys Res Commun 2010; 400:537-42. [PMID: 20804732 DOI: 10.1016/j.bbrc.2010.08.089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 08/23/2010] [Indexed: 11/15/2022]
Abstract
The members of the 70kDa-heat shock proteins (HSP70) family play numerous fundamental functions in the cell such as promoting the assembly of multimeric complexes or helping the correct folding of nascent proteins to take place. In numerous previous studies we demonstrated that Hsp70 and its constitutive isoform Hsc70 are endowed of a GlcNAc-binding activity. The molecular modeling of the substrate binding domain of Hsc70 and in silico docking experiments using Ser/Thr-O-GlcNAc motifs allowed to define the potential carbohydrate-recognition region and to point out the crucial position of Arg469 as an amino-acid directly interacting with the sugar moiety. We cloned a flagged Hsc70 in a pCMV.SPORT6 vector and we showed that the mutation R469A decreased the GlcNAc-binding property of the chaperone of around 70%. This is the first work reporting the localization of the GlcNAc-binding domain of a member of the HSP70 family.
Collapse
Affiliation(s)
- Céline Guinez
- CNRS-UMR 8576, Unit of Structural and Functional Glycobiology, IFR 147, Université de Lille 1, Cité Scientifique, 59655 Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Hardivillé S, Hoedt E, Mariller C, Benaïssa M, Pierce A. O-GlcNAcylation/phosphorylation cycling at Ser10 controls both transcriptional activity and stability of delta-lactoferrin. J Biol Chem 2010; 285:19205-18. [PMID: 20404350 PMCID: PMC2885199 DOI: 10.1074/jbc.m109.080572] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 03/25/2010] [Indexed: 11/06/2022] Open
Abstract
Delta-lactoferrin (DeltaLf) is a transcription factor that up-regulates DcpS, Skp1, and Bax genes, provoking cell cycle arrest and apoptosis. It is post-translationally modified either by O-GlcNAc or phosphate, but the effects of the O-GlcNAc/phosphorylation interplay on DeltaLf function are not yet understood. Here, using a series of glycosylation mutants, we showed that Ser(10) is O-GlcNAcylated and that this modification is associated with increased DeltaLf stability, achieved by blocking ubiquitin-dependent proteolysis, demonstrating that O-GlcNAcylation protects against polyubiquitination. We highlighted the (391)KSQQSSDPDPNCVD(404) sequence as a functional PEST motif responsible for DeltaLf degradation and defined Lys(379) as the main polyubiquitin acceptor site. We next investigated the control of DeltaLf transcriptional activity by the O-GlcNAc/phosphorylation interplay. Reporter gene analyses using the Skp1 promoter fragment containing a DeltaLf response element showed that O-GlcNAcylation at Ser(10) negatively regulates DeltaLf transcriptional activity, whereas phosphorylation activates it. Using a chromatin immunoprecipitation assay, we showed that O-GlcNAcylation inhibits DNA binding. Deglycosylation leads to DNA binding and transactivation of the Skp1 promoter at a basal level. Basal transactivation was markedly enhanced by 2-3-fold when phosphorylation was mimicked at Ser(10) by aspartate. Moreover, using double chromatin immunoprecipitation assays, we showed that the DeltaLf transcriptional complex binds to the DeltaLf response element and is phosphorylated and/or ubiquitinated, suggesting that DeltaLf transcriptional activity and degradation are concomitant events. Collectively, our results indicate that reciprocal occupancy of Ser(10) by either O-phosphate or O-GlcNAc coordinately regulates DeltaLf stability and transcriptional activity.
Collapse
Affiliation(s)
- Stéphan Hardivillé
- From the Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576 CNRS, Université des Sciences et Technologies de Lille, IFR 147, 59655 Villeneuve d'Ascq, France
| | - Esthelle Hoedt
- From the Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576 CNRS, Université des Sciences et Technologies de Lille, IFR 147, 59655 Villeneuve d'Ascq, France
| | - Christophe Mariller
- From the Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576 CNRS, Université des Sciences et Technologies de Lille, IFR 147, 59655 Villeneuve d'Ascq, France
| | - Monique Benaïssa
- From the Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576 CNRS, Université des Sciences et Technologies de Lille, IFR 147, 59655 Villeneuve d'Ascq, France
| | - Annick Pierce
- From the Unité de Glycobiologie Structurale et Fonctionnelle, Unité Mixte de Recherche 8576 CNRS, Université des Sciences et Technologies de Lille, IFR 147, 59655 Villeneuve d'Ascq, France
| |
Collapse
|
21
|
McDonald WJ, Sangster SM, Moffat LD, Henderson MJ, Too CK. α4 phosphoprotein interacts with EDD E3 ubiquitin ligase and poly(A)-binding protein. J Cell Biochem 2010; 110:1123-9. [DOI: 10.1002/jcb.22624] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Ozcan S, Andrali SS, Cantrell JEL. Modulation of transcription factor function by O-GlcNAc modification. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:353-64. [PMID: 20202486 PMCID: PMC2881704 DOI: 10.1016/j.bbagrm.2010.02.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 02/19/2010] [Accepted: 02/25/2010] [Indexed: 12/22/2022]
Abstract
O-linked beta-N-acetylglucosamine (O-GlcNAc) modification of nuclear and cytoplasmic proteins is important for many cellular processes, and the number of proteins that contain this modification is steadily increasing. This modification is dynamic and reversible, and in some cases competes for phosphorylation of the same residues. O-GlcNAc modification of proteins is regulated by cell cycle, nutrient metabolism, and other extracellular signals. Compared to protein phosphorylation, which is mediated by a large number of kinases, O-GlcNAc modification is catalyzed only by one enzyme called O-linked N-acetylglucosaminyl transferase or OGT. Removal of O-GlcNAc from proteins is catalyzed by the enzyme beta-N-acetylglucosaminidase (O-GlcNAcase or OGA). Altered O-linked GlcNAc modification levels contribute to the establishment of many diseases, such as cancer, diabetes, cardiovascular disease, and neurodegeneration. Many transcription factors have been shown to be modified by O-linked GlcNAc modification, which can influence their transcriptional activity, DNA binding, localization, stability, and interaction with other co-factors. This review focuses on modulation of transcription factor function by O-linked GlcNAc modification.
Collapse
Affiliation(s)
- Sabire Ozcan
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
23
|
Lima VV, Rigsby CS, Hardy DM, Webb RC, Tostes RC. O-GlcNAcylation: a novel post-translational mechanism to alter vascular cellular signaling in health and disease: focus on hypertension. JOURNAL OF THE AMERICAN SOCIETY OF HYPERTENSION : JASH 2009; 3:374-87. [PMID: 20409980 PMCID: PMC3022480 DOI: 10.1016/j.jash.2009.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/26/2009] [Accepted: 09/28/2009] [Indexed: 12/21/2022]
Abstract
O-Linked attachment of beta-N-acetyl-glucosamine (O-GlcNAc) on serine and threonine residues of nuclear and cytoplasmic proteins is a highly dynamic posttranslational modification that plays a key role in signal transduction pathways. Preliminary data show that O-GlcNAcylation may represent a key regulatory mechanism in the vasculature, modulating contractile and relaxant responses. Proteins with an important role in vascular function, such as endothelial nitric oxide synthase, sarcoplasmic reticulum Ca(2+)-ATPase, protein kinase C, mitogen-activated protein kinases, and proteins involved in cytoskeleton regulation and microtubule assembly are targets for O-GlcNAcylation, indicating that this posttranslational modification may play an important role in vascular reactivity. Here, we will focus on a few specific pathways that contribute to vascular function and cardiovascular disease-associated vascular dysfunction, and the implications of their modification by O-GlcNAc. New chemical tools have been developed to detect and study O-GlcNAcylation, including inhibitors of O-GlcNAc enzymes, chemoenzymatic tagging methods, and quantitative proteomics strategies; these will also be briefly addressed. An exciting challenge in the future will be to better understand the cellular dynamics of this posttranslational modification, as well as the signaling pathways and mechanisms by which O-GlcNAc is regulated on specific proteins in the vasculature in health and disease.
Collapse
Affiliation(s)
- Victor V. Lima
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - David M. Hardy
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA
- Department of Surgery, Medical College of Georgia, Augusta, GA, USA
| | - R. Clinton Webb
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA
| | - Rita C. Tostes
- Department of Physiology, Medical College of Georgia, Augusta, GA, USA
- Department of Pharmacology, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
24
|
Lim K, Chang HI. O-GlcNAc modification of Sp1 inhibits the functional interaction between Sp1 and Oct1. FEBS Lett 2008; 583:512-20. [PMID: 19070619 DOI: 10.1016/j.febslet.2008.12.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 11/25/2008] [Accepted: 12/02/2008] [Indexed: 11/28/2022]
Abstract
Sp1 is a ubiquitous transcription factor that is modified by multiple O-linked N-acetylglucosamines (O-GlcNAc). Previously, O-GlcNAcylation of a specific site of Sp1 was shown to inhibit Sp1 transcriptional activity. Yet, how O-GlcNAc on other modification sites affects Sp1 function and how O-GlcNAcylation of Sp1 affects the transcriptional regulation of a target gene remains unknown. Here we show that O-GlcNAc within the second serine/threonine-rich region of Sp1 interrupts a known interaction between Sp1 and Oct1, and inhibits the cooperative activation of the U2 snRNA gene by Sp1 and Oct1.
Collapse
Affiliation(s)
- Kihong Lim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | |
Collapse
|
25
|
Taylor RP, Geisler TS, Chambers JH, McClain DA. Up-regulation of O-GlcNAc transferase with glucose deprivation in HepG2 cells is mediated by decreased hexosamine pathway flux. J Biol Chem 2008; 284:3425-32. [PMID: 19073609 DOI: 10.1074/jbc.m803198200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
O-Linked N-acetylglucosamine (O-GlcNAc) is a post-translational modification of proteins that functions as a nutrient sensing mechanism. We have previously shown a significant induction of O-GlcNAc modification under conditions of glucose deprivation. Increased O-GlcNAc modification was mediated by increased mRNA for nucleocytoplasmic O-linked N-acetylglucosaminyltransferase (ncOGT). We have investigated the mechanism mediating ncOGT induction with glucose deprivation. The signal does not appear to be general energy depletion because no differences in AMP-dependent kinase protein levels or phosphorylation were observed between glucose-deprived and normal glucose-treated cells. However, treatment of glucose-deprived cells with a small dose (1 mm) of glucosamine blocked the induction of ncOGT mRNA and subsequent increase in O-GlcNAc protein modification, suggesting that decreased hexosamine flux is the signal for ncOGT up-regulation. Consistent with this, treatment of glucose-deprived cells with an inhibitor of O-GlcNAcase (O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino N-phenyl carbamat) completely prevented the subsequent up-regulation of ncOGT. Glucosamine treatment also resulted in a 40% rescue of the down-regulation of glycogen synthase activity normally seen after glucose deprivation. We conclude that deglycosylation of proteins within the first few hours of glucose deprivation promotes ncOGT induction. These findings suggest a novel negative feedback regulatory loop for OGT and O-GlcNAc regulation.
Collapse
Affiliation(s)
- Rodrick P Taylor
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
26
|
Funakoshi Y, Suzuki T. Glycobiology in the cytosol: the bitter side of a sweet world. Biochim Biophys Acta Gen Subj 2008; 1790:81-94. [PMID: 18952151 DOI: 10.1016/j.bbagen.2008.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/03/2008] [Accepted: 09/11/2008] [Indexed: 01/11/2023]
Abstract
Progress in glycobiology has undergone explosive growth over the past decade with more of the researchers now realizing the importance of glycan chains in various inter- and intracellular processes. However, there is still an area of glycobiology awaiting exploration. This is especially the case for the field of "glycobiology in the cytosol" which remains rather poorly understood. Yet evidence is accumulating to demonstrate that the glycoconjugates and their recognition molecules (i.e. lectins) are often present in this subcellular compartment.
Collapse
Affiliation(s)
- Yoko Funakoshi
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako Saitama, 351-0198, Japan
| | | |
Collapse
|
27
|
Brown JR, Crawford BE, Esko JD. Glycan antagonists and inhibitors: a fount for drug discovery. Crit Rev Biochem Mol Biol 2008; 42:481-515. [PMID: 18066955 DOI: 10.1080/10409230701751611] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glycans, the carbohydrate chains of glycoproteins, proteoglycans, and glycolipids, represent a relatively unexploited area for drug development compared with other macromolecules. This review describes the major classes of glycans synthesized by animal cells, their mode of assembly, and available inhibitors for blocking their biosynthesis and function. Many of these agents have proven useful for studying the biological activities of glycans in isolated cells, during embryological development, and in physiology. Some are being used to develop drugs for treating metabolic disorders, cancer, and infection, suggesting that glycans are excellent targets for future drug development.
Collapse
|
28
|
Rexach JE, Clark PM, Hsieh-Wilson LC. Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat Chem Biol 2008; 4:97-106. [PMID: 18202679 PMCID: PMC3250351 DOI: 10.1038/nchembio.68] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
O-GlcNAc glycosylation is a unique, dynamic form of glycosylation found on intracellular proteins of all multicellular organisms. Studies suggest that O-GlcNAc represents a key regulatory modification in the brain, contributing to transcriptional regulation, neuronal communication and neurodegenerative disease. Recently, several new chemical tools have been developed to detect and study the modification, including chemoenzymatic tagging methods, quantitative proteomics strategies and small-molecule inhibitors of O-GlcNAc enzymes. Here we highlight some of the emerging roles for O-GlcNAc in the nervous system and describe how chemical tools have significantly advanced our understanding of the scope, functional significance and cellular dynamics of this modification.
Collapse
Affiliation(s)
- Jessica E Rexach
- Division of Chemistry and Chemical Engineering, and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
29
|
Wei Q, Eviatar-Ribak T, Miskimins WK, Miskimins R. Galectin-4 is involved in p27-mediated activation of the myelin basic protein promoter. J Neurochem 2007; 101:1214-23. [PMID: 17403142 DOI: 10.1111/j.1471-4159.2007.04488.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Our previous studies have found that expression of p27 in oligodendrocytes enhances myelin basic protein (MBP) gene expression through a mechanism that involves the transcription factor Sp1. In this study we show that this activation only requires the N-terminal 45 amino acids of p27 containing a functional cyclin-binding motif. In an effort to identify other cofactors that are involved in the p27-mediated activation of MBP gene expression, a yeast two-hybrid assay was performed using an N-terminal truncated p27 and a mouse embryo cDNA library. Galectin-4 was found to interact with p27 in the yeast two-hybrid assay. This novel interaction was also confirmed using a glutathione-S-transferase interaction assay and immunoprecipitation assays. Expression of galectin-4 in primary oligodendrocytes was confirmed by western blot. Additionally, the MBP promoter could be activated by expression of galectin-4 in CG4 oligodendrocytes, similar to the effects of increased p27 levels. We also show that Sp1 and galectin-4 interact in cells, while a complex of all three proteins could not be found. We conclude that galectin-4 is involved in the p27-mediated activation of the MBP gene, possibly through modulation of the glycosylation status of the transcription factor Sp1.
Collapse
Affiliation(s)
- Qiou Wei
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| | | | | | | |
Collapse
|
30
|
Andrali SS, Qian Q, Ozcan S. Glucose mediates the translocation of NeuroD1 by O-linked glycosylation. J Biol Chem 2007; 282:15589-96. [PMID: 17403669 PMCID: PMC2096475 DOI: 10.1074/jbc.m701762200] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
O-Linked GlcNAc modification of nuclear and cytosolic proteins has been shown to regulate the function of many cellular proteins. Increased O-linked glycosylation, observed under chronic hyperglycemia conditions, has been implicated in the pathogenesis of diabetes. However, the exact role of O-GlcNAc modification in regulating glucose homeostasis remains to be established. We report here that the subcellular localization of the pancreatic beta cell-specific transcription factor NeuroD1 is regulated by O-linked glycosylation in the mouse insulinoma cell line MIN6. Under low glucose conditions, NeuroD1 is mainly in the cytosol. However, treatment of MIN6 cells with high glucose results in O-linked GlcNAc modification of NeuroD1 and its subsequent translocation into the nucleus. Consistent with these data, treatment of MIN6 cells with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)-amino N-phenylcarbamate, an inhibitor of O-GlcNAcase, causes Neuro-D1 localization to the nucleus and induction of insulin gene expression even on low glucose. Furthermore, we demonstrate that NeuroD1 interacts with the O-GlcNAc transferase, OGT only at high concentrations of glucose and depletion of OGT by using small interfering RNA oligos interferes with the nuclear localization of NeuroD1 on high glucose. On low glucose NeuroD1 interacts with the O-GlcNAcase and becomes deglycosylated, which is likely to be important for export of Neuro-D1 into cytosol in the presence of low glucose. In summary, the presented data suggest that glucose regulates the subcellular localization of NeuroD1 in pancreatic beta cells via O-linked GlcNAc modification of NeuroD1 by OGT.
Collapse
Affiliation(s)
- Sreenath S Andrali
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
31
|
Zachara NE, Hart GW. Cell signaling, the essential role of O-GlcNAc! Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:599-617. [PMID: 16781888 DOI: 10.1016/j.bbalip.2006.04.007] [Citation(s) in RCA: 295] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Revised: 04/20/2006] [Accepted: 04/24/2006] [Indexed: 11/28/2022]
Abstract
An increasing body of evidence points to a central regulatory role for glucose in mediating cellular processes and expands the role of glucose well beyond its traditional role(s) in energy metabolism. Recently, it has been recognized that one downstream effector produced from glucose is UDP-GlcNAc. Levels of UDP-GlcNAc, and the subsequent addition of O-linked beta-N-acetylglucosamine (O-GlcNAc) to Ser/Thr residues, is involved in regulating nuclear and cytoplasmic proteins in a manner analogous to protein phosphorylation. O-GlcNAc protein modification is essential for life in mammalian cells, highlighting the importance of this simple post-translational modification in basic cellular regulation. Recent research has highlighted key roles for O-GlcNAc serving as a nutrient sensor in regulating insulin signaling, the cell cycle, and calcium handling, as well as the cellular stress response.
Collapse
Affiliation(s)
- Natasha E Zachara
- Department of Biological Chemistry, Johns Hopkins Singapore, 31 Biopolis Way, #02-01 The Nanos, 138669 Singapore
| | | |
Collapse
|