1
|
Rossi V, Hochkoeppler A, Govoni M, Di Stefano G. Lactate-Induced HBEGF Shedding and EGFR Activation: Paving the Way to a New Anticancer Therapeutic Opportunity. Cells 2024; 13:1533. [PMID: 39329717 PMCID: PMC11430493 DOI: 10.3390/cells13181533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Cancer cells can release EGF-like peptides, acquiring the capacity of autocrine stimulation via EGFR-mediated signaling. One of these peptides (HBEGF) was found to be released from a membrane-bound precursor protein and is critically implicated in the proliferative potential of cancer cells. We observed that the increased lactate levels characterizing neoplastic tissues can induce the release of uPA, a protease promoting HBEGF shedding. This effect led to EGFR activation and increased ERK1/2 phosphorylation. Since EGFR-mediated signaling potentiates glycolytic metabolism, this phenomenon can induce a self-sustaining deleterious loop, favoring tumor growth. A well characterized HBEGF inhibitor is CRM197, a single-site variant of diphtheria toxin. We observed that, when administered individually, CRM197 did not trigger evident antineoplastic effects. However, its association with a uPA inhibitor caused dampening of EGFR-mediated signaling and apoptosis induction. Overall, our study highlights that the increased glycolytic metabolism and lactate production can foster the activated state of EGFR receptor and suggests that the inhibition of EGFR-mediated signaling can be attempted by means of CRM197 administered with an appropriate protease inhibitor. This attempt could help in overcoming the problem of the acquired resistance to the conventionally used EGFR inhibitors.
Collapse
Affiliation(s)
- Valentina Rossi
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy; (V.R.); (M.G.)
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Marzia Govoni
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy; (V.R.); (M.G.)
| | - Giuseppina Di Stefano
- Department of Medical and Surgical Sciences (DIMEC), Section of General Pathology, University of Bologna, 40126 Bologna, Italy; (V.R.); (M.G.)
| |
Collapse
|
2
|
Katayama Y, Yamada T, Tanimura K, Tokuda S, Morimoto K, Hirai S, Matsui Y, Nakamura R, Ishida M, Kawachi H, Yoneda K, Hosoya K, Tsuji T, Ozasa H, Yoshimura A, Iwasaku M, Kim YH, Horinaka M, Sakai T, Utsumi T, Shiotsu S, Takeda T, Katayama R, Takayama K. Adaptive resistance to lorlatinib via EGFR signaling in ALK-rearranged lung cancer. NPJ Precis Oncol 2023; 7:12. [PMID: 36702855 PMCID: PMC9879975 DOI: 10.1038/s41698-023-00350-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/11/2023] [Indexed: 01/27/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK)-tyrosine kinase inhibitors rarely elicit complete responses in patients with advanced ALK-rearranged non-small cell lung cancer (NSCLC), as a small population of tumor cells survives due to adaptive resistance. Therefore, we focused on the mechanisms underlying adaptive resistance to lorlatinib and therapeutic strategies required to overcome them. We found that epidermal growth factor receptor (EGFR) signaling was involved in the adaptive resistance to lorlatinib in ALK-rearranged NSCLC, activation of which was induced by heparin-binding EGF-like growth factor production via c-Jun activation. EGFR inhibition halted ALK-rearranged lung cancer cell proliferation by enhancing ALK inhibition-induced apoptosis via suppression of Bcl-xL. Xenograft models showed that the combination of EGFR inhibitor and lorlatinib considerably suppressed tumor regrowth following cessation of these treatments. This study provides new insights regarding tumor evolution due to EGFR signaling after lorlatinib treatment and the development of combined therapeutic strategies for ALK-rearranged lung cancer.
Collapse
Affiliation(s)
- Yuki Katayama
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiko Tanimura
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsaku Tokuda
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Soichi Hirai
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Matsui
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryota Nakamura
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Ishida
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hayato Kawachi
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazue Yoneda
- grid.271052.30000 0004 0374 5913Second Department of Surgery, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazutaka Hosoya
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Tsuji
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Ozasa
- grid.258799.80000 0004 0372 2033Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akihiro Yoshimura
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Iwasaku
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Young Hak Kim
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mano Horinaka
- grid.272458.e0000 0001 0667 4960Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Sakai
- grid.272458.e0000 0001 0667 4960Department of Drug Discovery Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takahiro Utsumi
- grid.410807.a0000 0001 0037 4131Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan ,grid.177174.30000 0001 2242 4849Department of Respiratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinsuke Shiotsu
- grid.415604.20000 0004 1763 8262Department of Respiratory Medicine, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Takayuki Takeda
- grid.415627.30000 0004 0595 5607Department of Respiratory Medicine, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Ryohei Katayama
- grid.410807.a0000 0001 0037 4131Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Koichi Takayama
- grid.272458.e0000 0001 0667 4960Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
3
|
Zhang J, Li H, Wu Q, Chen Y, Deng Y, Yang Z, Zhang L, Liu B. Tumoral NOX4 recruits M2 tumor-associated macrophages via ROS/PI3K signaling-dependent various cytokine production to promote NSCLC growth. Redox Biol 2019; 22:101116. [PMID: 30769285 PMCID: PMC6374999 DOI: 10.1016/j.redox.2019.101116] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
M2-type tumor-associated macrophages (TAMs) infiltration contributes to cancer malignant progression. However, the mechanisms for controlling recruitment and M2 polarization of macrophages by cancer cells are largely unclear. NADPH oxidase 4 (NOX4) is abundantly expressed in non-small cell lung cancer (NSCLC) and mediates cancer progression. NOXs are in close relation with cancer-related inflammation, nevertheless, whether tumoral NOXs influence microenvironmental macrophages remains undentified. This study found that there was a close association between NOX4 expression and macrophage chemotaxis in patients with NSCLC analyzed using TCGA RNA-sequencing data. NOX4 in NSCLC cells (A549 and Calu-1 cell lines) efficiently enhanced murine peritoneal macrophage migration and induces M2 polarization. Immunohistochemical analysis of clinical specimens confirmed the positive correlation of NOX4 and CD68 or CD206. The mechanical study revealed that tumoral NOX4-induced reactive oxygen species (ROS) stimulated various cytokine production, including CCL7, IL8, CSF-1 and VEGF-C, via PI3K/Akt signaling-dependent manner. Blockade of the function of these cytokines reversed NOX4 effect on macrophages. Specifically, the results showed that tumoral NOX4-educated M2 macrophages exhibited elevated JNK activity, expressed and released HB-EGF, thus facilitating NSCLC proliferation in vitro. Pretreatment of macrophages with JNK inhibitor blocked tumoral NOX4-induced HB-EGF production in M2 macrophages. Finally, in a xenograft mouse model, overexpression of NOX4 in A549 cells enhanced the tumor growth. Elimination of ROS by NAC or inhibition of NOX4 activity by GKT137831 suppressed tumor growth accompanied by reduction in macrophage infiltration and the percentage of M2 macrophages. In conclusion, our study indicates that tumoral NOX4 recruits M2 TAMs via ROS/PI3K signaling-dependent various cytokine production, thus contributing NSCLC cell growth. NOX4 has a novel function that affects cancer progression via action on TAM. There exists a NOX4-dependent crosstalk between NSCLC cells and M2 macrophages. GKT137831 has anti-cancer potential for targeting cancer microenvironmental TAM.
Collapse
Affiliation(s)
- Jiahao Zhang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Huachao Li
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qipeng Wu
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yueming Chen
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanchao Deng
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhicheng Yang
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Luyong Zhang
- Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China; The Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Bing Liu
- Department of Pharmacology, School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of New Drug Discovery and Evaluation of Ordinary Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Kodama S, Yamazaki Y, Negishi M. Pregnane X Receptor Represses HNF4α Gene to Induce Insulin-Like Growth Factor-Binding Protein IGFBP1 that Alters Morphology of and Migrates HepG2 Cells. Mol Pharmacol 2015; 88:746-57. [PMID: 26232425 PMCID: PMC4576682 DOI: 10.1124/mol.115.099341] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/23/2015] [Indexed: 12/27/2022] Open
Abstract
Upon treatment with the pregnane X receptor (PXR) activator rifampicin (RIF), human hepatocellular carcinoma HepG2-derived ShP51 cells that stably express PXR showed epithelial-mesenchymal transition (EMT)-like morphological changes and migration. Our recent DNA microarrays have identified hepatocyte nuclear factor (HNF) 4α and insulin-like growth factor-binding protein (IGFBP) 1 mRNAs to be downregulated and upregulated, respectively, in RIF-treated ShP51 cells, and these regulations were confirmed by the subsequent real-time polymerase chain reaction and Western blot analyses. Using this cell system, we demonstrated here that the PXR-HNF4α-IGFBP1 pathway is an essential signal for PXR-induced morphological changes and migration. First, we characterized the molecular mechanism underlying the PXR-mediated repression of the HNF4α gene. Chromatin conformation capture and chromatin immunoprecipitation (ChIP) assays revealed that PXR activation by RIF disrupted enhancer-promoter communication and prompted deacetylation of histone H3 in the HNF4α P1 promoter. Cell-based reporter and ChIP assays showed that PXR targeted the distal enhancer of the HNF4α P1 promoter and stimulated dissociation of HNF3β from the distal enhancer. Subsequently, small interfering RNA knockdown of HNF4α connected PXR-mediated gene regulation with the PXR-induced cellular responses, showing that the knockdown resulted in the upregulation of IGFBP1 and EMT-like morphological changes without RIF treatment. Moreover, recombinant IGFBP1 augmented migration, whereas an anti-IGFBP1 antibody attenuated both PXR-induced morphological changes and migration in ShP51 cells. PXR indirectly activated the IGFBP1 gene by repressing the HNF4α gene, thus enabling upregulation of IGFBP1 to change the morphology of ShP51 cells and cause migration. These results provide new insights into PXR-mediated cellular responses toward xenobiotics including therapeutics.
Collapse
Affiliation(s)
- Susumu Kodama
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Yuichi Yamazaki
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
5
|
A new tumour suppression mechanism by p27Kip1: EGFR down-regulation mediated by JNK/c-Jun pathway inhibition. Biochem J 2014; 463:383-92. [PMID: 25121353 PMCID: PMC4209780 DOI: 10.1042/bj20140103] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
p27Kip1 is a potent inhibitor of cyclin-dependent kinases that drive G1-to-S cell-cycle transition. Reduced p27Kip1 expression is prevalent in a wide range of human tumours; however, the exact mechanism(s) of p27Kip1-mediated tumour suppression remains obscure. In the present study, we identified a close inverse relationship between p27Kip1 and EGFR (epidermal growth factor receptor) expression: the parental T24 human bladder cancer cells had high p27Kip1 expression but low EGFR expression and, in striking contrast, the metastatic derivative of T24 (T24T) had low p27Kip1 expression but high EGFR expression. This relationship was also found in various human cancer tissues, and was not only just correlative but also causal; depletion of p27Kip1 in MEF (mouse embryonic fibroblast) cells resulted in markedly elevated EGFR expression, a result reproducible with an Egfr promoter-luciferase reporter in both T24 and MEF cells, suggesting transcriptional repression of EGFR by p27Kip1. Indeed, p27Kip1 was found to regulate EGFR expression via the JNK (c-Jun N-terminal kinase)/c-Jun transcription factor: p27Kip1 deficiency activated JNK/c-Jun, whereas inhibition of JNK/c-Jun by dominant-negative mutants dramatically repressed Egfr transcription. Furthermore, the proximal promoter of the Egfr gene was crucial for its transcription, where the recruiting activity of c-Jun was much greater in p27Kip1−/− cells than in p27Kip1+/+ cells. Introduction of GFP–p27Kip1 into T24T cells suppressed JNK/c-Jun activation, EGFR expression and anchorage-independent growth. The results of the present study demonstrate that p27Kip1 suppresses JNK/c-Jun activation and EGFR expression in MEFs and human bladder cancer cells, and the results obtained are consistent with those from human cancer specimens. The present study provides new insights into p27Kip1 suppression of cancer cell growth, migration and metastasis. An inverse relationship between p27Kip1 and EGFR expression in parental T24 human bladder cancer cells and various human cancer tissues was found. Depletion of p27Kip1 in cells markedly elevated EGFR expression through transcriptional repression of Egfr by p27Kip1 via the JNK/c-Jun cascade.
Collapse
|
6
|
Martínez-Hernández MG, Baiza-Gutman LA, Castillo-Trápala A, Armant DR. Regulation of proteinases during mouse peri-implantation development: urokinase-type plasminogen activator expression and cross talk with matrix metalloproteinase 9. Reproduction 2010; 141:227-39. [PMID: 21075828 DOI: 10.1530/rep-10-0334] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Trophoblast cells express urokinase-type plasminogen activator (PLAU) and may depend on its activity for endometrial invasion and tissue remodeling during peri-implantation development. However, the developmental regulation, tissue distribution, and function of PLAU are not completely understood. In this study, the expression of PLAU and its regulation by extracellular matrix proteins was examined by RT-PCR, immunocytochemistry, and plasminogen-casein zymography in cultured mouse embryos. There was a progressive increase in Plau mRNA expression in blastocysts cultured on gestation days 4-8. Tissue-type plasminogen activator (55 kDa) and PLAU (a triplet of 40, 37, and 31 kDa) were present in conditioned medium and embryo lysates, and were adsorbed to the culture plate surface. The temporal expression pattern of PLAU, according to semi-quantitative gel zymography, was similar in non-adhering embryos and embryos cultured on fibronectin, laminin, or type IV collagen, although type IV collagen and laminin upregulated Plau mRNA expression. Immunofluorescence revealed PLAU on the surface of the mural trophectoderm and in non-spreading giant trophoblast cells. Exogenous human plasminogen was transformed to plasmin by cultured embryos and activated endogenous matrix metalloproteinase 9 (MMP9). Indeed, the developmental expression profile of MMP9 was similar to that of PLAU. Our data suggest that the intrinsic developmental program predominantly regulates PLAU expression during implantation, and that PLAU could be responsible for activation of MMP9, leading to localized matrix proteolysis as trophoblast invasion commences.
Collapse
Affiliation(s)
- M G Martínez-Hernández
- Obstetrics and Gynecology and Anatomy and Cell Biology, C. S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, 275 East Hancock Avenue, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
7
|
Transcriptional profiling after lipid raft disruption in keratinocytes identifies critical mediators of atopic dermatitis pathways. J Invest Dermatol 2010; 131:46-58. [PMID: 20882041 DOI: 10.1038/jid.2010.272] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lipid rafts are cholesterol-rich cell signaling platforms, and their physiological role can be explored by cholesterol depletion. To characterize transcriptional changes ongoing after lipid raft disruption in epidermal keratinocytes, a cell type that synthesizes its cholesterol in situ, we performed whole-genome expression profiling. Microarray results show that over 3,000 genes are differentially regulated. In particular, IL-8, urokinase-like plasminogen activator receptor, and metalloproteinases are highly upregulated after cholesterol extraction. Quantitative reverse transcriptase PCR validation and protein release measurements demonstrate the physiological relevance of microarray data. Major enriched terms and functions, determined by Ingenuity Pathways Analysis, identify cholesterol biosynthesis as a major function, illustrating the specificity of keratinocyte response toward cholesterol depletion. Moreover, the inflammatory skin disorder atopic dermatitis (AD) is identified as the disease most closely associated with the profile of lipid raft-disrupted keratinocytes. This finding is confirmed in skin of AD patients, in whom transcript levels of major lipid raft target genes are similarly regulated in lesional atopic skin, compared with non-lesional and normal skin. Thus, lipid raft disruption evokes typical features of AD, thereby suggesting that lipid raft organization and signaling could be perturbed in atopic keratinocytes.
Collapse
|
8
|
Wang Y, Chan DW, Liu VWS, Chiu P, Ngan HYS. Differential functions of growth factor receptor-bound protein 7 (GRB7) and its variant GRB7v in ovarian carcinogenesis. Clin Cancer Res 2010; 16:2529-39. [PMID: 20388850 DOI: 10.1158/1078-0432.ccr-10-0018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Aberrant overexpression of growth factor receptor-bound protein 7 (GRB7) and its variant GRB7v has been found in numerous human cancers. The goal of this study was to characterize the functions of GRB7 and GRB7v in the ovarian carcinogenesis and to investigate the differential roles of GRB7 and GRB7v in the modulation of signaling pathways. EXPERIMENTAL DESIGN Quantitative reverse transcription-PCR, Western blot, and immunohistochemical analyses were used to evaluate the levels of GRB7 and GRB7v. The cellular localization, functions, and signaling pathways regulated by GRB7 and GRB7v were investigated by enforced expression of GRB7 and GRB7v. RESULTS Quantitative reverse transcription-PCR and Western blot analyses showed that GRB7 and GRB7v were frequently upregulated in ovarian cancer samples. The overexpressed GRB7 (P = 0.009) and GRB7v (P = 0.017) were significantly correlated with high-grade ovarian cancer. Immunohistochemical analysis on ovarian cancer tissue array confirmed that the upregulated GRB7 was significantly correlated with high-grade ovarian cancer (P = 0.001). Confocal microscopy analysis showed that GRB7 and GRB7v predominately localized in cytoplasm of ovarian cancer cells, consistent with their roles as signaling adaptors. Enforced expression of GRB7 promoted cell proliferation, migration, and invasion, whereas GRB7v only increased cell proliferation and anchorage-independent growth ability. With the treatment of specific kinase inhibitors, we showed that both GRB7 and GRB7v promoted cell proliferation through activating extracellular signal-regulated kinase signaling, whereas GRB7 enhanced cell migration/invasion by activating c-Jun NH(2) terminal kinase signaling. CONCLUSIONS Our studies implicate that the overexpressed GRB7 and GRB7v are associated with high-grade tumors and exert distinct tumorigenic functions through regulating different signaling pathways in ovarian cancer cells.
Collapse
Affiliation(s)
- Yajun Wang
- Department of Obstetrics and Gynecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | | | | | | | | |
Collapse
|
9
|
Arancibia R, Cáceres M, Martínez J, Smith PC. Triclosan inhibits tumor necrosis factor-alpha-stimulated urokinase production in human gingival fibroblasts. J Periodontal Res 2010; 44:726-35. [PMID: 19874453 DOI: 10.1111/j.1600-0765.2008.01184.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND OBJECTIVES Destruction of the supporting periodontal tissues is mediated by the action of several proteolytic enzymes. Urokinase is a serine protease that plays a key role in connective tissue destruction through conversion of plasminogen into plasmin. The present study was conducted to evaluate the effect of triclosan on the production and activity of urokinase in cultured gingival fibroblasts. MATERIAL AND METHODS Urokinase production was studied in primary cultures of human gingival fibroblasts stimulated with tumor necrosis factor-alpha. Urokinase activity and production were evaluated using casein zymography and western blotting, respectively. Urokinase mRNA expression was evaluated using the reverse transcription-polymerase chain reaction. Triclosan was used to interfere with this stimulatory effect. The roles of different cell-signaling cascades involved in urokinase production were assessed through western blotting and immunofluorescence using several cell-signaling inhibitors. RESULTS Tumor necrosis factor-alpha was found to be a strong stimulus for urokinase production and triclosan was able to inhibit this response at the protein and mRNA levels. Triclosan was also able to inhibit conversion of plasminogen into plasmin. Tumor necrosis factor-alpha-stimulated urokinase production was shown to be dependent on the nuclear factor-kappaB and c-Jun N-terminal kinase signaling pathways. Triclosan inhibited c-Jun N-terminal kinase phosphorylation and c-Jun production. CONCLUSIONS Within the limits of this study, these results show that triclosan may inhibit urokinase production and plasminogen activation in gingival fibroblasts through modulation of the c-Jun N-terminal kinase signaling pathway.
Collapse
Affiliation(s)
- R Arancibia
- Laboratory of Periodontal Physiology, Dentistry Academic Unit, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
10
|
Kenny S, Duval C, Sammut SJ, Steele I, Pritchard DM, Atherton JC, Argent RH, Dimaline R, Dockray GJ, Varro A. Increased expression of the urokinase plasminogen activator system by Helicobacter pylori in gastric epithelial cells. Am J Physiol Gastrointest Liver Physiol 2008; 295:G431-41. [PMID: 18599586 PMCID: PMC2536790 DOI: 10.1152/ajpgi.90283.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastric pathogen Helicobacter pylori (H. pylori) is linked to peptic ulcer and gastric cancer, but the relevant pathophysiological mechanisms are unclear. We now report that H. pylori stimulates the expression of plasminogen activator inhibitor (PAI)-1, urokinase plasminogen activator (uPA), and its receptor (uPAR) in gastric epithelial cells and the consequences for epithelial cell proliferation. Real-time PCR of biopsies from gastric corpus, but not antrum, showed significantly increased PAI-1, uPA, and uPAR in H. pylori-positive patients. Transfection of primary human gastric epithelial cells with uPA, PAI-1, or uPAR promoters in luciferase reporter constructs revealed expression of all three in H+/K+ATPase- and vesicular monoamine transporter 2-expressing cells; uPA was also expressed in pepsinogen- and uPAR-containing trefoil peptide-1-expressing cells. In each case expression was increased in response to H. pylori and for uPA, but not PAI-1 or uPAR, required the virulence factor CagE. H. pylori also stimulated soluble and cell surface-bound uPA activity, and both were further increased by PAI-1 knockdown, consistent with PAI-1 inhibition of endogenous uPA. H. pylori stimulated epithelial cell proliferation, which was inhibited by uPA immunoneutralization and uPAR knockdown; exogenous uPA also stimulated proliferation that was further increased after PAI-1 knockdown. The proliferative effects of uPA were inhibited by immunoneutralization of the EGF receptor and of heparin-binding EGF (HB-EGF) by the mutant diphtheria toxin CRM197 and an EGF receptor tyrosine kinase inhibitor. H. pylori induction of uPA therefore leads to epithelial proliferation through activation of HB-EGF and is normally inhibited by concomitant induction of PAI-1; treatments directed at inhibition of uPA may slow the progression to gastric cancer.
Collapse
Affiliation(s)
- Susan Kenny
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Cedric Duval
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Stephen J. Sammut
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Islay Steele
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - D. Mark Pritchard
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - John C. Atherton
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Richard H. Argent
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Rod Dimaline
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Graham J. Dockray
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| | - Andrea Varro
- Physiological Laboratory, School of Biomedical Sciences, Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom; and Wolfson Digestive Diseases Centre and Institute of Infection, Immunity and Inflammation, University of Nottingham, United Kingdom
| |
Collapse
|