1
|
Ji LL. Nuclear factor κB signaling revisited: Its role in skeletal muscle and exercise. Free Radic Biol Med 2025; 232:158-170. [PMID: 40010515 DOI: 10.1016/j.freeradbiomed.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/28/2025]
Abstract
Nuclear factor (NF) κB as a redox sensitive, anti-apoptotic and pro-inflammatory signaling molecule has been studied extensively for more than three decades. Its role in inducing antioxidant enzymes, defending against extracellular and intracellular stress and maintaining redox homeostasis in skeletal muscle has also been recognized. New research continues to explore the polytropic nature of NFκB in cellular function, especially its crosstalk with other important signaling pathways. Understanding of the broad impact of these functions has significant implications in health and disease of skeletal muscle as an organ designed for contraction and mobility. Two important aspects of muscle wellbeing, i.e., disease and aging, are not discussed in this review. This review will provide an update on the new findings related to NFκB involvement in multiple signaling pathways and refresh our knowledge of its activation in skeletal muscle with a special reference to physical exercise.
Collapse
Affiliation(s)
- Li Li Ji
- The Laboratory of Physiological Hygiene and Exercise Science, School of Kinesiology, University of Minnesota Twin Cities, USA.
| |
Collapse
|
2
|
Lagunas-Rangel FA, Liepinsh E, Fredriksson R, Alsehli AM, Williams MJ, Dambrova M, Jönsson J, Schiöth HB. Off-target effects of statins: molecular mechanisms, side effects and the emerging role of kinases. Br J Pharmacol 2024; 181:3799-3818. [PMID: 39180421 DOI: 10.1111/bph.17309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 08/26/2024] Open
Abstract
Statins are one of the most important classes of drugs. In this analytical review, we elucidate the intricate molecular mechanisms and toxicological rationale regarding both the on- (targeting 3-hydroxy-3-methylglutaryl-coenzyme A reductase [HMGCR]) and off-target effects of statins. Statins interact with a number of membrane kinases, such as epidermal growth factor receptor (EGFR), erb-b2 receptor tyrosine kinase 2 (HER2) and MET proto-oncogene, receptor tyrosine kinase (MET), as well as cytosolic kinases, such as SRC proto-oncogene, non-receptor tyrosine kinase (Src) and show inhibitory activity at nanomolar concentrations. In addition, they interact with calcium ATPases and peroxisome proliferator-activated receptor α (PPARα/NR1C1) at higher concentrations. Statins interact with mitochondrial complexes III and IV, and their inhibition of coenzyme Q10 synthesis also impairs the functioning of complexes I and II. Statins act as inhibitors of kinases, calcium ATPases and mitochondrial complexes, while activating PPARα. These off-target effects likely contribute to the side effects observed in patients undergoing statin therapy, including musculoskeletal symptoms and hepatic effects. Interestingly, some off-target effects of statins could also be the cause of favourable outcomes, relating to repurposing statins in conditions such as inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Francisco Alejandro Lagunas-Rangel
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ahmed M Alsehli
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Michael J Williams
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, Riga, Latvia
- Department of Pharmaceutical Chemistry, Riga Stradiņš University, Riga, Latvia
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
Chen Y, Pethö A, Ganapathy A, George A. DPP promotes odontogenic differentiation of DPSCs through NF-κB signaling. Sci Rep 2021; 11:22076. [PMID: 34764323 PMCID: PMC8586344 DOI: 10.1038/s41598-021-01359-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
Dentin phosphophoryn synthesized and processed predominantly by the odontoblasts, functions as both structural and signaling protein. Mechanistic studies revealed that DPP stimulation of DPSCs positively impacted the differentiation of DPSCs into functional odontoblasts. Results show that NF-κB signaling and transcriptional activation of genes involved in odontoblast differentiation were influenced by DPP signaling. Specifically, RelA/p65 subunit of NF-κB was identified as being responsible for the initiation of the differentiation cascade. Confocal imaging demonstrated the nuclear translocation of p65 with DPP stimulation. Moreover, direct binding of nuclear NF-κB p65 subunit to the promoter elements of Runx2, Osx, OCN, MMP1, MMP3, BMP4 and PTX3 were identified by ChIP analysis. Pharmacological inhibition of the NF-κB pathway using TPCA-1, a selective inhibitor of IKK-2 and JSH-23, an inhibitor that prevents nuclear translocation and DNA binding of p65 showed impairment in the differentiation process. Functional studies using Alizarin-Red staining showed robust mineral deposits with DPP stimulation and sparse deposition with defective odontoblast differentiation in the presence of inhibitors. In vivo expression of NF-κB targets such as OSX, OCN, PTX3 and p65 in odontoblasts and dental pulp cells from DSPP null mouse was lower when compared with the wild-type. Overall, the results suggest an important role for DPP-mediated NF-κB activation in the transcriptional regulation of early odontogenic markers that promote differentiation of DPSCs.
Collapse
Affiliation(s)
- Yinghua Chen
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Adrienn Pethö
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Amudha Ganapathy
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Anne George
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Sebastian-Valverde M, Pasinetti GM. The NLRP3 Inflammasome as a Critical Actor in the Inflammaging Process. Cells 2020; 9:cells9061552. [PMID: 32604771 PMCID: PMC7348816 DOI: 10.3390/cells9061552] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
As a consequence of the considerable increase in the human lifespan over the last century, we are experiencing the appearance and impact of new age-related diseases. The causal relationships between aging and an enhanced susceptibility of suffering from a broad spectrum of diseases need to be better understood. However, one specific shared feature seems to be of capital relevance for most of these conditions: the low-grade chronic inflammatory state inherently associated with aging, i.e., inflammaging. Here, we review the molecular and cellular mechanisms that link aging and inflammaging, focusing on the role of the innate immunity and more concretely on the nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, as well as how the chronic activation of this inflammasome has a detrimental effect on different age-related disorders.
Collapse
Affiliation(s)
| | - Giulio M. Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY 10468, USA
- Correspondence: ; Tel.: +1-212-241-1952
| |
Collapse
|
5
|
Porphyromonas gingivalis promotes the motility of esophageal squamous cell carcinoma by activating NF-κB signaling pathway. Microbes Infect 2019; 21:296-304. [DOI: 10.1016/j.micinf.2019.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
|
6
|
Park HS, Seo CS, Wijerathne CUB, Jeong HY, Moon OS, Seo YW, Won YS, Son HY, Lim JH, Kwun HJ. Effect of Veratrum maackii on Testosterone Propionate-Induced Benign Prostatic Hyperplasia in Rats. Biol Pharm Bull 2019; 42:1-9. [DOI: 10.1248/bpb.b18-00313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hee-Seon Park
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Chang-Seob Seo
- K-herb Research Center, Korea Institute of Oriental Medicine
| | - Charith UB Wijerathne
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Hye-Yun Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Og-Sung Moon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology
| | - Young-Won Seo
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology
| | - Hwa-Young Son
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| | - Jong-Hwan Lim
- HUONS Research Center, Hanyang University in ERICA Campus
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University
| |
Collapse
|
7
|
Cleary MM, Mansoor A, Settelmeyer T, Ijiri Y, Ladner KJ, Svalina MN, Rubin BP, Guttridge DC, Keller C. NFκB signaling in alveolar rhabdomyosarcoma. Dis Model Mech 2018; 10:1109-1115. [PMID: 28883017 PMCID: PMC5611971 DOI: 10.1242/dmm.030882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/03/2017] [Indexed: 11/23/2022] Open
Abstract
Alveolar rhabdomyosarcoma (aRMS) is a pediatric soft tissue cancer commonly associated with a chromosomal translocation that leads to the expression of a Pax3:Foxo1 or Pax7:Foxo1 fusion protein, the developmental underpinnings of which may give clues to its therapeutic approaches. In aRMS, the NFκB–YY1–miR-29 regulatory circuit is dysregulated, resulting in repression of miR-29 and loss of the associated tumor suppressor activity. To further elucidate the role of NFκB in aRMS, we first tested 55 unique sarcoma cell lines and primary cell cultures in a large-scale chemical screen targeting diverse molecular pathways. We found that pharmacological inhibition of NFκB activity resulted in decreased cell proliferation of many of the aRMS tumor cultures. Surprisingly, mice that were orthotopically allografted with aRMS tumor cells exhibited no difference in tumor growth when administered an NFκB inhibitor, compared to control. Furthermore, inhibition of NFκB by genetically ablating its activating kinase inhibitor, IKKβ, by conditional deletion in a mouse model harboring the Pax3:Foxo1 chimeric oncogene failed to abrogate spontaneous tumor growth. Genetically engineered mice with conditionally deleted IKKβ exhibited a paradoxical decrease in tumor latency compared with those with active NFκB. However, using a synthetic-lethal approach, primary cell cultures derived from tumors with inactivated NFκB showed sensitivity to the BCL-2 inhibitor navitoclax. When used in combination with an NFκB inhibitor, navitoclax was synergistic in decreasing the growth of both human and IKKβ wild-type mouse aRMS cells, indicating that inactivation of NFκB alone may not be sufficient for reducing tumor growth, but, when combined with another targeted therapeutic, may be clinically beneficial. Summary: In a genetically engineered mouse model of aRMS, disrupting the NFκB pathway facilitated tumor initiation, suggesting it is a modifier of the disease rather than the driver.
Collapse
Affiliation(s)
- Megan M Cleary
- Children's Cancer Therapy Development Institute, Beaverton, OR 97005, USA .,Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Atiya Mansoor
- Department of Pathology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Teagan Settelmeyer
- Children's Cancer Therapy Development Institute, Beaverton, OR 97005, USA
| | - Yuichi Ijiri
- Department of Cancer Biology and Genetics and The Arthur G. James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Katherine J Ladner
- Department of Cancer Biology and Genetics and The Arthur G. James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Matthew N Svalina
- Children's Cancer Therapy Development Institute, Beaverton, OR 97005, USA
| | - Brian P Rubin
- Department of Anatomic Pathology, Department of Molecular Genetics, Taussig Cancer Center, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Denis C Guttridge
- Department of Cancer Biology and Genetics and The Arthur G. James Comprehensive Cancer Center, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, OR 97005, USA
| |
Collapse
|
8
|
Meiyanto E, Septisetyani EP, Larasati YA, Kawaichi M. Curcumin Analog Pentagamavunon-1 (PGV-1) Sensitizes Widr Cells to 5-Fluorouracil through Inhibition of NF-κB Activation. Asian Pac J Cancer Prev 2018; 19:49-56. [PMID: 29373892 PMCID: PMC5844636 DOI: 10.22034/apjcp.2018.19.1.49] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cell cycle regulation and the NF-κB pathway in cancer cells are important in mediating resistance to 5-Fluorouracil (5-FU). Pentagamavunon-1 (PGV-1), a curcumin analog, is known to exhibit stronger growth inhibitory effects than curcumin itself in several cancer cells. In this study, we evaluated the potency of PGV-1 in combination with 5-FU in WiDr colon cancer cells. In MTT assays, PGV-1 did not only exhibit stronger growth inhibitory effects than both 5-FU and curcumin, but also enhanced the cytotoxicity of 5-FU. Flow cytometry demonstrated that single treatments with PGV-1 and 5-FU resulted in different effects on cell cycle profiles. PGV-1 induced G2/M arrest while 5-FU caused S-phase arrest at low concentration (1 μM) and G1-phase arrest at high concentration (100 μM). Interestingly, the combination of 5-FU and PGV-1 enhanced cell accumulation in S-phase. Although a single treatment with either 5-FU or PGV-1 increased cyclin D1 at the protein level, the combination treatment resulted in significant suppression. In addition, PGV-1 inhibited activation of NF-κB and suppressed the expression of cyclooxygenase-2, an NF-κB downstream protein. In conclusion, PGV-1 increased the cytotoxic effect of 5-FU on WiDr cells through inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Jalan Sekip Utara Yogyakarta, Indonesia.
| | | | | | | |
Collapse
|
9
|
Proto JD, Lu A, Dorronsoro A, Scibetta A, Robbins PD, Niedernhofer LJ, Huard J. Inhibition of NF-κB improves the stress resistance and myogenic differentiation of MDSPCs isolated from naturally aged mice. PLoS One 2017. [PMID: 28640861 PMCID: PMC5480862 DOI: 10.1371/journal.pone.0179270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A decline in the regenerative capacity of adult stem cells with aging is well documented. As a result of this decline, the efficacy of autologous stem cell therapies is likely to decline with increasing donor age. In these cases, strategies to restore the function of aged stem cells would have clinical utility. Globally, the transcription factor NF-κB is up-regulated in aged tissues. Given the negative role that NF-κB plays in myogenesis, we investigated whether the age-related decline in the function of muscle-derived stem/progenitor cells (MDSPCs) could be improved by inhibition of NF-κB. Herein, we demonstrate that pharmacologic or genetic inhibition of NF-κB activation increases myogenic differentiation and improves resistance to oxidative stress. Our results suggest that MDSPC “aging” may be reversible, and that pharmacologic targeting of pathways such as NF-κB may enhance the efficacy of cell-based therapies.
Collapse
Affiliation(s)
- Jonathan D. Proto
- Department of Medicine, Division of Molecular Medicine, Columbia University, New York, NY, United States of America
| | - Aiping Lu
- Department of Orthopaedic Surgery, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States of America
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, United States of America
| | - Akaitz Dorronsoro
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Alex Scibetta
- Department of Orthopaedic Surgery, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States of America
| | - Paul D. Robbins
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Laura J. Niedernhofer
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL, United States of America
| | - Johnny Huard
- Department of Orthopaedic Surgery, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, United States of America
- Center for Regenerative Sports Medicine, Steadman Philippon Research Institute, Vail, CO, United States of America
- * E-mail:
| |
Collapse
|
10
|
Ma Y, Zhang B, Wang D, Qian L, Song X, Wang X, Yang C, Zhao G. HTLV-1 basic leucine zipper factor downregulates cyclin D1 expression via interactions with NF-κB. Int J Mol Med 2017; 39:764-770. [PMID: 28204810 DOI: 10.3892/ijmm.2017.2868] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/20/2017] [Indexed: 11/06/2022] Open
Abstract
Human T cell leukemia virus type 1 (HTLV-1) is an oncogenic retrovirus. It can cause adult T cell leukemia (ATL) and other diseases. The HTLV-1 basic leucine zipper (bZIP) factor (HBZ), which is encoded by the minus-strand of the provirus, is expressed in all cases of ATL and involved in T cell proliferation. However, the exact mechanism underlying its growth-promoting activity is poorly understood. Herein, we demonstrated that HBZ suppressed cyclin D1 expression by inhibiting the nuclear factor (NF)-κB signaling pathway. Among the potential mechanisms of cyclin D1 inhibition mediated by HBZ, we found that HBZ suppressed cyclin D1 promoter activity. Luciferase assay analysis revealed that HBZ repressed cyclin D1 promoter activity by suppressing NF-κB‑driven transcription mediated by the p65 subunit. Using an immunoprecipitation assay, we found that HBZ could bind to p65, but not p50. Finally, we showed that HBZ selectively interacted with p65 via its AD+bZIP domains. By suppressing cyclin D1 expression, HBZ can alter cell cycle progression of HTLV-1-infected cells, which may be critical for oncogenesis.
Collapse
Affiliation(s)
- Yunyun Ma
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Bo Zhang
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Dong Wang
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Lili Qian
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Xianmei Song
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Xueyin Wang
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Chaokuan Yang
- Henan Medical College, Zhengzhou, Henan 451191, P.R. China
| | - Guoqiang Zhao
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
11
|
Dias NJ, Selcer KW. Steroid sulfatase in the human MG-63 preosteoblastic cell line: Antagonistic regulation by glucocorticoids and NFκB. Mol Cell Endocrinol 2016; 420:85-96. [PMID: 26631368 DOI: 10.1016/j.mce.2015.11.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 10/22/2022]
Abstract
Steroid sulfatase (STS) converts sulfated steroids into active forms in cells. Preosteoblastic cells possess STS, but its role and regulation in bone are unclear. We examined STS activity and gene expression during differentiation of human MG-63 preosteoblasts. STS activity and gene expression were decreased during differentiation in cells treated with osteogenic supplement containing dexamethasone (DEX). DEX also inhibited STS activity and expression in undifferentiated cells, and the glucocorticoid antagonist RU486 reversed DEX inhibition of STS. These data may have implications for glucocorticoid-induced osteoporosis. The NFκB activators lipopolysaccharide and phorbol myristate acetate increased STS expression in undifferentiated and differentiated MG-63 cells, while the NFκB inhibitor BAY-11-7082 partially blocked these responses. The antagonistic actions of glucocorticoids and NFkB on STS expression are similar to the regulation of inflammatory response proteins. We propose a model of STS regulation whereby inflammation leads to increased STS, resulting in increased estrogen, which modulates the inflammatory response.
Collapse
Affiliation(s)
- Natasha J Dias
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Kyle W Selcer
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Meyer SU, Krebs S, Thirion C, Blum H, Krause S, Pfaffl MW. Tumor Necrosis Factor Alpha and Insulin-Like Growth Factor 1 Induced Modifications of the Gene Expression Kinetics of Differentiating Skeletal Muscle Cells. PLoS One 2015; 10:e0139520. [PMID: 26447881 PMCID: PMC4598026 DOI: 10.1371/journal.pone.0139520] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/13/2015] [Indexed: 12/19/2022] Open
Abstract
Introduction TNF-α levels are increased during muscle wasting and chronic muscle degeneration and regeneration processes, which are characteristic for primary muscle disorders. Pathologically increased TNF-α levels have a negative effect on muscle cell differentiation efficiency, while IGF1 can have a positive effect; therefore, we intended to elucidate the impact of TNF-α and IGF1 on gene expression during the early stages of skeletal muscle cell differentiation. Methodology/Principal Findings This study presents gene expression data of the murine skeletal muscle cells PMI28 during myogenic differentiation or differentiation with TNF-α or IGF1 exposure at 0 h, 4 h, 12 h, 24 h, and 72 h after induction. Our study detected significant coregulation of gene sets involved in myoblast differentiation or in the response to TNF-α. Gene expression data revealed a time- and treatment-dependent regulation of signaling pathways, which are prominent in myogenic differentiation. We identified enrichment of pathways, which have not been specifically linked to myoblast differentiation such as doublecortin-like kinase pathway associations as well as enrichment of specific semaphorin isoforms. Moreover to the best of our knowledge, this is the first description of a specific inverse regulation of the following genes in myoblast differentiation and response to TNF-α: Aknad1, Cmbl, Sepp1, Ndst4, Tecrl, Unc13c, Spats2l, Lix1, Csdc2, Cpa1, Parm1, Serpinb2, Aspn, Fibin, Slc40a1, Nrk, and Mybpc1. We identified a gene subset (Nfkbia, Nfkb2, Mmp9, Mef2c, Gpx, and Pgam2), which is robustly regulated by TNF-α across independent myogenic differentiation studies. Conclusions This is the largest dataset revealing the impact of TNF-α or IGF1 treatment on gene expression kinetics of early in vitro skeletal myoblast differentiation. We identified novel mRNAs, which have not yet been associated with skeletal muscle differentiation or response to TNF-α. Results of this study may facilitate the understanding of transcriptomic networks underlying inhibited muscle differentiation in inflammatory diseases.
Collapse
Affiliation(s)
- Swanhild U Meyer
- Physiology Weihenstephan, ZIEL Research Center for Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, University of Munich, Ludwig-Maximilians-Universität München, München, Germany
| | | | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, University of Munich, Ludwig-Maximilians-Universität München, München, Germany
| | - Sabine Krause
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Michael W Pfaffl
- Physiology Weihenstephan, ZIEL Research Center for Nutrition and Food Sciences, Technische Universität München, Freising, Germany
| |
Collapse
|
13
|
Tyagi N, Bhardwaj A, Singh AP, McClellan S, Carter JE, Singh S. p-21 activated kinase 4 promotes proliferation and survival of pancreatic cancer cells through AKT- and ERK-dependent activation of NF-κB pathway. Oncotarget 2015; 5:8778-89. [PMID: 25238288 PMCID: PMC4226721 DOI: 10.18632/oncotarget.2398] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Identification of novel molecular targets and understanding the mechanisms underlying the aggressive nature of pancreatic cancer (PC) remain prime focus areas of research. Here, we investigated the expression and pathobiological significance of p21-activated kinase 4 (PAK4), a gene that was earlier shown to be amplified in a sub-set of PC. Our data demonstrate PAK4 overexpression in PC tissues and cell lines with little or no expression in the normal pancreas. PAK4 silencing in two PC cell lines, MiaPaCa and T3M4, by RNA interference causes suppression of growth and clonogenic ability due to decreased cell cycle progression and apoptosis-resistance. PAK4-silenced PC cells exhibit altered expression of proliferation- and survival-associated proteins. Moreover, we observe decreased nuclear accumulation and transcriptional activity of NF-κB in PAK4-silenced PC cells associated with stabilization of its inhibitory protein, IκBα. Transfection of PAK4-silenced PC cells with constitutively-active mutant of IKKβ, an upstream kinase of IκBα, leads to restoration of NF-κB activity and PC cell growth. Furthermore, we show that PAK4-induced NF-κB activity is mediated through activation and concerted action of ERK and Akt kinases. Together, these findings suggest that PAK4 is a regulator of NF-κB pathway in PC cells and can serve as a novel target for therapy.
Collapse
Affiliation(s)
- Nikhil Tyagi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA. Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Steven McClellan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| | - James E Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
14
|
Proto JD, Tang Y, Lu A, Chen WCW, Stahl E, Poddar M, Beckman SA, Robbins PD, Nidernhofer LJ, Imbrogno K, Hannigan T, Mars WM, Wang B, Huard J. NF-κB inhibition reveals a novel role for HGF during skeletal muscle repair. Cell Death Dis 2015; 6:e1730. [PMID: 25906153 PMCID: PMC4650539 DOI: 10.1038/cddis.2015.66] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 01/08/2015] [Accepted: 02/09/2015] [Indexed: 11/10/2022]
Abstract
The transcription factor nuclear factor κB (NF-κB)/p65 is the master regulator of inflammation in Duchenne muscular dystrophy (DMD). Disease severity is reduced by NF-κB inhibition in the mdx mouse, a murine DMD model; however, therapeutic targeting of NF-κB remains problematic for patients because of its fundamental role in immunity. In this investigation, we found that the therapeutic effect of NF-κB blockade requires hepatocyte growth factor (HGF) production by myogenic cells. We found that deleting one allele of the NF-κB subunit p65 (p65+/-) improved the survival and enhanced the anti-inflammatory capacity of muscle-derived stem cells (MDSCs) following intramuscular transplantation. Factors secreted from p65+/- MDSCs in cell cultures modulated macrophage cytokine expression in an HGF-receptor-dependent manner. Indeed, we found that following genetic or pharmacologic inhibition of basal NF-κB/p65 activity, HGF gene transcription was induced in MDSCs. We investigated the role of HGF in anti-NF-κB therapy in vivo using mdx;p65+/- mice, and found that accelerated regeneration coincided with HGF upregulation in the skeletal muscle. This anti-NF-κB-mediated dystrophic phenotype was reversed by blocking de novo HGF production by myogenic cells following disease onset. HGF silencing resulted in increased inflammation and extensive necrosis of the diaphragm muscle. Proteolytic processing of matrix-associated HGF is known to activate muscle stem cells at the earliest stages of repair, but our results indicate that the production of a second pool of HGF by myogenic cells, negatively regulated by NF-κB/p65, is crucial for inflammation resolution and the completion of repair in dystrophic skeletal muscle. Our findings warrant further investigation into the potential of HGF mimetics for the treatment of DMD.
Collapse
Affiliation(s)
- J D Proto
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Y Tang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - A Lu
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W C W Chen
- 1] Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E Stahl
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M Poddar
- 1] Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA [2] Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S A Beckman
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P D Robbins
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - L J Nidernhofer
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - K Imbrogno
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - T Hannigan
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - W M Mars
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - B Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Huard
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Grabiec K, Gajewska M, Milewska M, Błaszczyk M, Grzelkowska-Kowalczyk K. The influence of high glucose and high insulin on mechanisms controlling cell cycle progression and arrest in mouse C2C12 myoblasts: the comparison with IGF-I effect. J Endocrinol Invest 2014; 37:233-45. [PMID: 24615360 PMCID: PMC3949044 DOI: 10.1007/s40618-013-0007-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 11/17/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Myogenesis is susceptible to the availability of nutrients and humoral factors and suboptimal fetal environments affect the number of myofibers and muscle mass. AIM We examined the mechanisms regulating cell cycle progression and arrest in skeletal myoblasts. MATERIALS AND METHODS Mouse C2C12 myoblasts were subjected to proliferation or induction of differentiation in the presence of high glucose and high insulin (HGHI glucose 15 mmol/l, insulin 50 nmol/l), and these effects were compared with the influence of anabolic factor for skeletal muscle, insulin-like growth factor-I (IGF-I 30 nmol/l). RESULTS High glucose and high insulin, similarly to IGF-I, increased the intracellular level of cyclin A, cyclin B1 and cyclin D1 during myoblast proliferation. In HGHI-treated myoblasts, these cyclins were localized mostly in the nuclei, and the level of cdk4-bound cyclin D1 was augmented. HGHI significantly stimulated the expression of cyclin D3, total level of p21 and cdk-bound fraction of p21 in differentiating cells. The cellular level of MyoD was augmented by HGHI both in proliferating and differentiating myogenic cells. CONCLUSIONS High glucose and insulin modify the mechanisms controlling cell cycle progression and the onset of myogenesis by: (1) increase of cyclin A, cyclin B1 and cyclin D1 in myoblast nuclei, and stimulation of cyclin D1-cdk4 binding; (2) increase in cyclin D3 and MyoD levels, and the p21-cdk4 complexes after induction of differentiation. Hyperglycemia/hyperinsulinemia during fetal or postnatal life could exert effects similar to IGF-I and can be, therefore, favourable for skeletal muscle growth and regeneration.
Collapse
Affiliation(s)
- K. Grabiec
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - M. Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - M. Milewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - M. Błaszczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| | - K. Grzelkowska-Kowalczyk
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
16
|
Functional crosstalk of PGC-1 coactivators and inflammation in skeletal muscle pathophysiology. Semin Immunopathol 2013; 36:27-53. [DOI: 10.1007/s00281-013-0406-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023]
|
17
|
Li HP, Zeng XC, Zhang B, Long JT, Zhou B, Tan GS, Zeng WX, Chen W, Yang JY. miR-451 inhibits cell proliferation in human hepatocellular carcinoma through direct suppression of IKK-β. Carcinogenesis 2013; 34:2443-2451. [PMID: 23740840 DOI: 10.1093/carcin/bgt206] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
It has been demonstrated that nuclear factor-kappa B (NF-κB), which is overactivated in hepatocellular carcinoma (HCC), plays important roles in the development of HCC. Recently, a group of dysregulated micro RNAs were reported to be involved in HCC progression. Further understanding of micro RNA-mediated regulation of NF-κB pathway may provide novel therapeutic targets for HCC. In this study, we found that miR-451 expression was markedly downregulated in HCC cells and tissues compared with immortalized normal liver epithelial cells and adjacent non- cancerous tissues, respectively. Upregulation of miR-451 inhibited, while downregulation of miR-451 promoted, the tumorigenicity of HCC cells both in vitro and in vivo. These changes in the properties of HCC cells were associated with deregulation of two well-known cellular G1/S transitional regulators, cyclin D1 and c-Myc, which are downstream targets of NF-κB pathway. Furthermore, we demonstrated that miR-451 upregulation led to downregulation of cyclin D1 and c-Myc through inhibition of NF-κB pathway initiated by direct targeting of the IKBKB 3'-untranslated region. Therefore, these results suggest that miR-451 downregulation plays an important role in promoting proliferation of HCC cells and may provide the basis for the development of novel anti-HCC therapies.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Adhesion
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Flow Cytometry
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic
- Humans
- I-kappa B Kinase/antagonists & inhibitors
- I-kappa B Kinase/genetics
- I-kappa B Kinase/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- He-Ping Li
- Department of Interventional Radiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Monitoring of hydrogen peroxide and other reactive oxygen and nitrogen species generated by skeletal muscle. Methods Enzymol 2013. [PMID: 23849872 DOI: 10.1016/b978-0-12-405881-1.00017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Understanding the roles and functions of reactive oxygen and nitrogen species in skeletal muscle requires the ability to monitor specific species at rest and during muscle use. These species are generated at a variety of sites in muscle fibers, and approaches to their analysis are becoming available. We utilize microdialysis approaches to sample the interstitial space of skeletal muscle in vivo to allow continuous monitoring of nitric oxide and some reactive oxygen species. The approach to monitor intracellular species that we currently favor utilizes isolated single muscle fibers to allow the use of fluorescent probes and epifluorescence microscopy. Methods are described that illustrate these approaches.
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Nuclear factor-kappaB (NF-κB) activation is associated with a wide range of muscle-related diseases. Here, we review the evidence implicating specific NF-κB components in different disease pathologies and discuss therapies designed to target aberrant NF-κB signaling for the treatment of those pathologies. RECENT FINDINGS Many components of the NF-κB signaling pathway contribute to muscle pathologies, presumably through activation of the transcription factor. In addition, an increasing number of upstream factors have been connected to disease progression. Genetic models and therapeutic approaches affecting these upstream targets associate with ameliorating disease progression. SUMMARY Dissecting the crosstalk between NF-κB, its upstream mediators, and other signaling pathways is vital to our understanding of how activation of this signaling pathway is mediated in various diseases. The strides made in therapeutically inhibiting the NF-κB pathway provide some promise for the treatment of these diseases.
Collapse
Affiliation(s)
- Jonathan Shintaku
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
20
|
Sims JT, Ganguly SS, Bennett H, Friend JW, Tepe J, Plattner R. Imatinib reverses doxorubicin resistance by affecting activation of STAT3-dependent NF-κB and HSP27/p38/AKT pathways and by inhibiting ABCB1. PLoS One 2013; 8:e55509. [PMID: 23383209 PMCID: PMC3561297 DOI: 10.1371/journal.pone.0055509] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 12/23/2012] [Indexed: 02/07/2023] Open
Abstract
Despite advances in cancer detection and prevention, a diagnosis of metastatic disease remains a death sentence due to the fact that many cancers are either resistant to chemotherapy (conventional or targeted) or develop resistance during treatment, and residual chemoresistant cells are highly metastatic. Metastatic cancer cells resist the effects of chemotherapeutic agents by upregulating drug transporters, which efflux the drugs, and by activating proliferation and survival signaling pathways. Previously, we found that c-Abl and Arg non-receptor tyrosine kinases are activated in breast cancer, melanoma, and glioblastoma cells, and promote cancer progression. In this report, we demonstrate that the c-Abl/Arg inhibitor, imatinib (imatinib mesylate, STI571, Gleevec), reverses intrinsic and acquired resistance to the anthracycline, doxorubicin, by inducing G2/M arrest and promoting apoptosis in cancer cells expressing highly active c-Abl and Arg. Significantly, imatinib prevents intrinsic resistance by promoting doxorubicin-mediated NF-κB/p65 nuclear localization and repression of NF-κB targets in a STAT3-dependent manner, and by preventing activation of a novel STAT3/HSP27/p38/Akt survival pathway. In contrast, imatinib prevents acquired resistance by inhibiting upregulation of the ABC drug transporter, ABCB1, directly inhibiting ABCB1 function, and abrogating survival signaling. Thus, imatinib inhibits multiple novel chemoresistance pathways, which indicates that it may be effective in reversing intrinsic and acquired resistance in cancers containing highly active c-Abl and Arg, a critical step in effectively treating metastatic disease. Furthermore, since imatinib converts a master survival regulator, NF-κB, from a pro-survival into a pro-apoptotic factor, our data suggest that NF-κB inhibitors may be ineffective in sensitizing tumors containing activated c-Abl/Arg to anthracyclines, and instead might antagonize anthracycline-induced apoptosis.
Collapse
Affiliation(s)
- Jonathan T. Sims
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, Kentucky, United States of America
| | - Sourik S. Ganguly
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, Kentucky, United States of America
| | - Holly Bennett
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, Kentucky, United States of America
| | - J. Woodrow Friend
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, Kentucky, United States of America
| | - Jessica Tepe
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, Kentucky, United States of America
| | - Rina Plattner
- Department of Molecular and Biomedical Pharmacology, University of Kentucky School of Medicine, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
21
|
Dahlman JM, Guttridge DC. Detection of NF-κB activity in skeletal muscle cells by electrophoretic mobility shift analysis. Methods Mol Biol 2012; 798:505-516. [PMID: 22130857 DOI: 10.1007/978-1-61779-343-1_30] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An electrophoretic mobility shift assay (EMSA) is a common and invaluable technique which can be utilized to study the affinity of proteins to a specific DNA or RNA sequence. These assays are performed in vitro with protein extracts isolated from either cultured cells or isolated tissues. Here, we describe the methodology used to isolate the cytoplasmic and nuclear protein extracts from both cultured cells and tissues and utilize the nuclear protein fraction to assess NF-κB DNA-binding activity by EMSA analysis.
Collapse
Affiliation(s)
- Jason M Dahlman
- Department of Molecular Virology, Immunology, and Medical Genetics, Human Cancer Genetics Program, Integrated Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
22
|
Jackson MJ. Control of reactive oxygen species production in contracting skeletal muscle. Antioxid Redox Signal 2011; 15:2477-86. [PMID: 21699411 PMCID: PMC3176346 DOI: 10.1089/ars.2011.3976] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/21/2011] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE The increased activities of free radicals or reactive oxygen species in tissues of exercising humans and animals were first reported ∼30 years ago. A great deal has been learned about the processes that can generate these molecules, but there is little agreement on which are important, how they are controlled, and there are virtually no quantitative data. Superoxide and nitric oxide are generated by skeletal muscle and their reactions lead to formation of secondary species. A considerable amount is known about control of superoxide generation by xanthine oxidase activity, but similar information for other generation systems is lacking. RECENT ADVANCES Re-evaluation of published data indicates potential approaches to quantification of the hydrogen peroxide concentration in resting and contracting muscle cells. Such calculations reveal that, during contractions, intracellular hydrogen peroxide concentrations in skeletal muscle may only increase by ∼100 nM. The primary effects of this modest increase appear to be in "redox" signaling processes that mediate some of the responses and adaptations of muscle to exercise. These act, in part, to increase the expression of cytoprotective proteins (e.g., heat shock proteins and antioxidant enzymes) that help maintain cell viability. During aging, these redox-mediated adaptations fail and this contributes to age-related loss of skeletal muscle. CRITICAL ISSUES AND FUTURE DIRECTIONS Understanding the control of ROS generation in muscle and the effect of aging and some disease states will aid design of interventions to maintain muscle mass and function, but is dependent upon development of new analytical approaches. The final part of this review indicates areas where such developments are occurring.
Collapse
Affiliation(s)
- Malcolm J Jackson
- Pathophysiology Research Unit, Institute of Ageing and Chronic Disease, University of Liverpool, United Kingdom.
| |
Collapse
|
23
|
Arora S, Bhardwaj A, Srivastava SK, Singh S, McClellan S, Wang B, Singh AP. Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells. PLoS One 2011; 6:e21573. [PMID: 21720559 PMCID: PMC3123370 DOI: 10.1371/journal.pone.0021573] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/02/2011] [Indexed: 01/25/2023] Open
Abstract
Survival rates for patients with pancreatic cancer are extremely poor due to its asymptomatic progression to advanced and metastatic stage for which current therapies remain largely ineffective. Therefore, novel therapeutic agents and treatment approaches are desired to improve the clinical outcome. In this study, we determined the effects of honokiol, a biologically active constituent of oriental medicinal herb Magnolia officinalis/grandiflora, on two pancreatic cancer cell lines, MiaPaCa and Panc1, alone and in combination with the standard chemotherapeutic drug, gemcitabine. Honokiol exerted growth inhibitory effects on both the pancreatic cancer cell lines by causing cell cycle arrest at G1 phase and induction of apoptosis. At the molecular level, honokiol markedly decreased the expression of cyclins (D1 and E) and cyclin-dependent kinases (Cdk2 and Cdk4), and caused an increase in Cdk inhibitors, p21 and p27. Furthermore, honokiol treatment led to augmentation of Bax/Bcl-2 and Bax/Bcl-xL ratios to favor apoptosis in pancreatic cancer cells. These changes were accompanied by enhanced cytoplasmic accumulation of NF-κB with a concomitant decrease in nuclear fraction and reduced transcriptional activity of NF-κB responsive promoter. This was associated with decreased phosphorylation of inhibitor of kappa B alpha (IκB-α) causing its stabilization and thus increased cellular levels. Importantly, honokiol also potentiated the cytotoxic effects of gemcitabine, in part, by restricting the gemcitabine-induced nuclear accumulation of NF-κB in the treated pancreatic cancer cell lines. Altogether, these findings demonstrate, for the first time, the growth inhibitory effects of honokiol in pancreatic cancer and indicate its potential usefulness as a novel natural agent in prevention and therapy.
Collapse
Affiliation(s)
- Sumit Arora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Sanjeev K. Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Steven McClellan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
| | - Bin Wang
- Department of Mathematics and Statistics, College of Arts and Sciences, University of South Alabama, Mobile, Alabama, United States of America
| | - Ajay P. Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
24
|
Stoppani E, Rossi S, Meacci E, Penna F, Costelli P, Bellucci A, Faggi F, Maiolo D, Monti E, Fanzani A. Point mutated caveolin-3 form (P104L) impairs myoblast differentiation via Akt and p38 signalling reduction, leading to an immature cell signature. Biochim Biophys Acta Mol Basis Dis 2011; 1812:468-79. [DOI: 10.1016/j.bbadis.2010.12.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 11/30/2010] [Accepted: 12/08/2010] [Indexed: 11/24/2022]
|
25
|
Shukla R, Yue J, Siouda M, Gheit T, Hantz O, Merle P, Zoulim F, Krutovskikh V, Tommasino M, Sylla BS. Proinflammatory cytokine TNF-α increases the stability of hepatitis B virus X protein through NF-κB signaling. Carcinogenesis 2011; 32:978-85. [PMID: 21459755 DOI: 10.1093/carcin/bgr057] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus (HBV) X protein (HBx) is a key player in HBV-induced hepatocellular carcinoma (HCC). HBx interacts with several cell signaling molecules, leading to activation of various transcription factors including nuclear factor-kappaB (NF-κB). Activated NF-κB signaling is implicated in many human cancers including HCC. Here, we present evidence that the NF-κB signaling activator, tumor necrosis factor (TNF)-α, induces the accumulation of HBx in cells by increasing protein stability due to reduced proteasomal degradation. The effects of TNF-α on HBx protein stability are mediated via activated NF-κB effector kinases IKKα and IKKβ and p65. The non-IKK-phosphorylable p65-S534A mutant did not induce HBx protein stability; hence, phosphorylation of p65 by IKK is a key step in TNF-α-induced stabilization of HBx. Phospho-p65 showed higher affinity to HBx compared with the non-phosphorylable p65 mutant, suggesting that the interaction of phospho-p65 with HBx might be important for HBx stabilization. We also show that the increased level of HBx in cells cooperates with TNF-α toward activation of NF-κB and expression of NF-κB-regulated genes, indicating a positive feedback loop between HBx and NF-κB signaling. Overall, our study provides evidence for interplay between HBx and NF-κB signaling, which may account for HBV-mediated liver carcinogenesis.
Collapse
Affiliation(s)
- Ruchi Shukla
- Infections and Cancer Biology Group, International Agency for Research on Cancer, 150 cours Albert-Thomas, 69372 Lyon Cedex 08, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Nithipatikom K, Isbell MA, Endsley MP, Woodliff JE, Campbell WB. Anti-proliferative effect of a putative endocannabinoid, 2-arachidonylglyceryl ether in prostate carcinoma cells. Prostaglandins Other Lipid Mediat 2011; 94:34-43. [PMID: 21167293 PMCID: PMC3039283 DOI: 10.1016/j.prostaglandins.2010.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 11/16/2010] [Accepted: 12/08/2010] [Indexed: 12/31/2022]
Abstract
Endocannabinoids (ECs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), inhibit proliferation of carcinoma cells. Several enzymes hydrolyze ECs to reduce endogenous EC concentrations and produce eicosanoids that promote cell growth. In this study, we determined the effects of EC hydrolysis inhibitors and a putative EC, 2-arachidonylglyceryl ether (noladin ether, NE) on proliferation of prostate carcinoma (PC-3, DU-145, and LNCaP) cells. PC-3 cells had the least specific hydrolysis activity for AEA and administration of AEA effectively inhibited cell proliferation. The proliferation inhibition was blocked by SR141716A (a selective CB1R antagonist) but not SR144528 (a selective CB2R antagonist), suggesting a CB1R-mediated inhibition mechanism. On the other hand, specific hydrolysis activity for 2-AG was high and 2-AG inhibited proliferation only in the presence of EC hydrolysis inhibitors. NE inhibited proliferation in a concentration-dependent manner; however, SR141716A, SR144528 and pertussis toxin did not block the NE-inhibited proliferation, suggesting a CBR-independent mechanism of NE. A peroxisome proliferator-activated receptor gamma (PPARγ) antagonist GW9662 did not block the NE-inhibited proliferation, suggesting that PPARγ was not involved. NE also induced cell cycle arrest in G(0)/G(1) phase in PC-3 cells. NE inhibited the nuclear translocation of nuclear factor-kappa B (NF-κB p65) and down-regulated the expression of cyclin D1 and cyclin E in PC-3 cells, suggesting the NF-κB/cyclin D and cyclin E pathways are involved in the arrest of G1 cell cycle and inhibition of cell growth. These results indicate therapeutic potentials of EC hydrolysis inhibitors and the enzymatically stable NE in prostate cancer.
Collapse
Affiliation(s)
- Kasem Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
27
|
Peterson JM, Bakkar N, Guttridge DC. NF-κB Signaling in Skeletal Muscle Health and Disease. Curr Top Dev Biol 2011; 96:85-119. [DOI: 10.1016/b978-0-12-385940-2.00004-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
NF-κB p65 represses β-catenin-activated transcription of cyclin D1. Biochem Biophys Res Commun 2010; 403:79-84. [PMID: 21056029 DOI: 10.1016/j.bbrc.2010.10.118] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 10/26/2010] [Indexed: 12/14/2022]
Abstract
Signaling crosstalk between the β-catenin and NF-κB pathways represents a functional network. To test whether the crosstalk also occurs on their common target genes, the cyclin D1 promoter was used as a model because it contains binding sites for both proteins. β-catenin activated transcription from the cyclin D1 promoter, while co-expression of NF-κB p65 reduced β-catenin-induced transcription. Chromatin immunoprecipitation revealed lithium chloride-induced binding of β-catenin on one of the T-cell activating factor binding sites. More interestingly, β-catenin binding was greatly reduced by NF-κB p65, possibly by the protein-protein interaction between the two proteins. Such a dynamic and complex binding of β-catenin and NF-κB on promoters might contribute to the regulated expression of their target genes.
Collapse
|
29
|
Bakkar N, Guttridge DC. NF-kappaB signaling: a tale of two pathways in skeletal myogenesis. Physiol Rev 2010; 90:495-511. [PMID: 20393192 DOI: 10.1152/physrev.00040.2009] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
NF-kappaB is a ubiquitiously expressed transcription factor that plays vital roles in innate immunity and other processes involving cellular survival, proliferation, and differentiation. Activation of NF-kappaB is controlled by an IkappaB kinase (IKK) complex that can direct either canonical (classical) NF-kappaB signaling by degrading the IkappaB inhibitor and releasing p65/p50 dimers to the nucleus, or causes p100 processing and nuclear translocation of RelB/p52 via a noncanonical (alternative) pathway. Under physiological conditions, NF-kappaB activity is transiently regulated, whereas constitutive activation of this transcription factor typically in the classical pathway is associated with a multitude of disease conditions, including those related to skeletal muscle. How NF-kappaB functions in muscle diseases is currently under intense investigation. Insight into this role of NF-kappaB may be gained by understanding at a more basic level how this transcription factor contributes to skeletal muscle cell differentiation. Recent data from knockout mice support that the classical NF-kappaB pathway functions as an inhibitor of skeletal myogenesis and muscle regeneration acting through multiple mechanisms. In contrast, alternative NF-kappaB signaling does not appear to be required for myofiber conversion, but instead functions in myotube homeostasis by regulating mitochondrial biogenesis. Additional knowledge of these signaling pathways in skeletal myogenesis should aid in the development of specific inhibitors that may be useful in treatments of muscle disorders.
Collapse
Affiliation(s)
- Nadine Bakkar
- Department of Molecular Virology, Immunology, and Medical Genetics, Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|