1
|
Transcriptomic Changes in Endothelial Cells Triggered by Na,K-ATPase Inhibition: A Search for Upstream Na +i/K +i Sensitive Genes. Int J Mol Sci 2020; 21:ijms21217992. [PMID: 33121152 PMCID: PMC7662270 DOI: 10.3390/ijms21217992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
Stimulus-dependent elevation of intracellular Ca2+ affects gene expression via well-documented calmodulin-mediated signaling pathways. Recently, we found that the addition of extra- and intracellular Ca2+ chelators increased, rather than decreased, the number of genes expressed, and that this is affected by the elevation of [Na+]i/[K+]i-ratio. This assumes the existence of a novel Na+i/K+i-mediated Ca2+i-independent mechanism of excitation-transcription coupling. To identify upstream Na+i/K+i-sensitive genes, we examined the kinetics of transcriptomic changes in human umbilical vein endothelial cells (HUVEC) subjected to Na,K-ATPase inhibition by ouabain or K+-free medium. According to our data, microRNAs, transcription factors, and proteins involved in immune response and inflammation might be considered as key components of Na+i/K+i-mediated excitation-transcription coupling. Special attention was focused on the FOS gene and the possible mechanism of transcription regulation via G-quadruplexes, non-canonical secondary structures of nucleic acids, whose stability depends on [Na+]i/[K+]i-ratio. Verification of the [Na+]i/[K+]i-sensitive transcription regulation mechanism should be continued in forthcoming studies.
Collapse
|
2
|
Cutler SJ, Doecke JD, Ghazawi I, Yang J, Griffiths LR, Spring KJ, Ralph SJ, Mellick AS. Novel STAT binding elements mediate IL-6 regulation of MMP-1 and MMP-3. Sci Rep 2017; 7:8526. [PMID: 28819304 PMCID: PMC5561029 DOI: 10.1038/s41598-017-08581-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/24/2017] [Indexed: 01/30/2023] Open
Abstract
Dynamic remodelling of the extracellular matrix (ECM) is a key feature of cancer progression. Enzymes that modify the ECM, such as matrix metalloproteinases (MMPs), have long been recognised as important targets of anticancer therapy. Inflammatory cytokines are known to play a key role in regulating protease expression in cancer. Here we describe the identification of gamma-activated site (GAS)-like, signal transducer and activator of transcription (STAT) binding elements (SBEs) within the proximal promoters of the MMP-1 and MMP-3 genes, which in association with AP-1 components (c-Fos or Jun), bind STAT-1 in a homodimer like complex (HDLC). We further demonstrate that MMP expression and binding of this complex to SBEs can either be enhanced by interleukin (IL)-6, or reduced by interferon gamma (IFN-γ), and that IL-6 regulation of MMPs is not STAT-3 dependent. Collectively, this data adds to existing understanding of the mechanism underlying cytokine regulation of MMP expression via STAT-1, and increases our understanding of the links between inflammation and malignancy in colon cancer.
Collapse
Affiliation(s)
- Samuel J Cutler
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia
| | - James D Doecke
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia
| | - Ibtisam Ghazawi
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia
| | - Jinbo Yang
- Department of Molecular Genetics, Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio, 44195, USA
| | - Lyn R Griffiths
- Institute for Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD 4059, Australia
| | - Kevin J Spring
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.,Ingham Institute for Applied Medical Research, South Western Sydney Clinical School UNSW & CONCERT Translational Cancer Research Centre, 1 Campbell Street, Liverpool, NSW 2170, Australia
| | - Stephen J Ralph
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia.
| | - Albert S Mellick
- School of Medical Science, Griffith Institute for Health and Medical Research, Griffith University, Parklands Drive, Southport, 4215, QLD, Australia. .,School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia. .,Ingham Institute for Applied Medical Research, South Western Sydney Clinical School UNSW & CONCERT Translational Cancer Research Centre, 1 Campbell Street, Liverpool, NSW 2170, Australia.
| |
Collapse
|
3
|
Glidewell-Kenney CA, Trang C, Shao PP, Gutierrez-Reed N, Uzo-Okereke AM, Coss D, Mellon PL. Neurokinin B induces c-fos transcription via protein kinase C and activation of serum response factor and Elk-1 in immortalized GnRH neurons. Endocrinology 2014; 155:3909-19. [PMID: 25057795 PMCID: PMC4164922 DOI: 10.1210/en.2014-1263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in neurokinin B (NKB) and its receptor, NK3R, were identified in human patients with hypogonadotropic hypogonadism, a disorder characterized by lack of puberty and infertility. Further studies have suggested that NKB acts at the level of the hypothalamus to control GnRH neuron activity, either directly or indirectly. We recently reported that treatment with senktide, a NK3R agonist, induced GnRH secretion and expression of c-fos mRNA in GT1-7 cells. Here, we map the responsive region in the murine c-fos promoter to between -400 and -200 bp, identify the signal transducer and activator of transcription (STAT) (-345) and serum response element (-310) sites as required for induction, a modulatory role for the Ets site (-318), and show that induction is protein kinase C dependent. Using gel shift and Gal4 assays, we further show that phosphorylation of Elk-1 leads to binding to DNA in complex with serum response factor at serum response element and Ets sites within the c-fos promoter. Thus, we determine molecular mechanisms involved in NKB regulation of c-fos induction, which may play a role in modulation of GnRH neuron activation.
Collapse
Affiliation(s)
- Christine A Glidewell-Kenney
- Department of Reproductive Medicine and the Center for Reproductive Science and Medicine, University of California, San Diego, La Jolla, California 92093-0674
| | | | | | | | | | | | | |
Collapse
|
4
|
Benbernou N, Esnault S, Galibert F. Activation of SRE and AP1 by olfactory receptors via the MAPK and Rho dependent pathways. Cell Signal 2013; 25:1486-97. [PMID: 23524338 DOI: 10.1016/j.cellsig.2013.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Whereas the activation of MAPKs (mitogen activated kinases) and Rho dependant pathways by GPCR (G protein coupled receptors) has been the subject of many studies, its implication in the signalling of olfactory receptors, which constitute the largest GPCR family, has been far less analysed. Using an in vitro heterologous system, we showed that odorant activated ORs activate SRE containing promoters via the ERK pathway. We also demonstrated that RhoA and Rock kinases but not Rac were involved in ORs-induced SRE/SRF activation and that AP1 was activated, via JNK and p38 MAPKinase. Using real time PCR we found that mOR23, RnI7 and CfOR12A07 induced elevated levels of transcription factors ELK-4, srf, c-fos and c-jun mRNAs whereas mOREG induced an elevated transcription levels of c-fos and c-jun mRNA only. We showed also that odorant activated ORs stimulate the downstream MAPKs and Rho pathways in primary cultures of rat olfactory sensory neurons (OSNs). Similar results were also obtained with OE (olfactory epithelium) extracts prepared from rats exposed to odorants in vivo. Finally, we showed the important role of the AKT and MAPK signalling pathways in OSNs survival. Taken together, these data provide direct evidence that the binding of odorants onto their ORs activates the MAPK and Rho signalling pathways that are involved in OSNs survival events. This suggests that these pathways could be implicated in the regulation of OSNs homeostasis.
Collapse
|
5
|
Moldrup ML, Georg B, Falktoft B, Mortensen R, Hansen JL, Fahrenkrug J. Light inducesFosexpression via extracellular signal-regulated kinases 1/2 in melanopsin-expressing PC12 cells. J Neurochem 2010; 112:797-806. [DOI: 10.1111/j.1471-4159.2009.06504.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|