1
|
Golatkar V, Bhatt LK. mAKAPβ signalosome: A potential target for cardiac hypertrophy. Drug Dev Res 2023; 84:1072-1084. [PMID: 37203301 DOI: 10.1002/ddr.22081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/05/2023] [Accepted: 05/06/2023] [Indexed: 05/20/2023]
Abstract
Pathological cardiac hypertrophy is the result of a prolonged increase in the workload of the heart that activates various signaling pathways such as MAPK pathway, PKA-dependent cAMP signaling, and CaN-NFAT signaling pathway which further activates genes for cardiac remodeling. Various signalosomes are present in the heart that regulates the signaling of physiological and pathological cardiac hypertrophy. mAKAPβ is one such scaffold protein that regulates signaling pathways involved in promoting cardiac hypertrophy. It is present in the outer nuclear envelope of the cardiomyocytes, which provides specificity of the target toward the heart. In addition, nuclear translocation of signaling components and transcription factors such as MEF2D, NFATc, and HIF-1α is facilitated due to the localization of mAKAPβ near the nuclear envelope. These factors are required for activation of genes promoting cardiac remodeling. Downregulation of mAKAPβ improves cardiac function and attenuates cardiac hypertrophy which in turn prevents the development of heart failure. Unlike earlier therapies for heart failure, knockout or silencing of mAKAPβ is not associated with side effects because of its high specificity in the striated myocytes. Downregulating expression of mAKAPβ is a favorable therapeutic approach toward attenuating cardiac hypertrophy and hence preventing heart failure. This review discusses mAKAPβ signalosome as a potential target for cardiac hypertrophy intervention.
Collapse
Affiliation(s)
- Vaishnavi Golatkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| | - Lokesh K Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai, India
| |
Collapse
|
2
|
Xiao R, Zhao HC, Yan TT, Zhang Q, Huang YS. Angiotensin II and hypoxia induce autophagy in cardiomyocytes via activating specific protein kinase C subtypes. Cardiovasc Diagn Ther 2021; 11:744-759. [PMID: 34295701 DOI: 10.21037/cdt-20-883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
Background The purpose of this study was to explore the role of protein kinase C (PKC) isozymes and reactive oxygen species (ROS) in hypoxia and angiotensin (Ang) II-induced autophagy. Methods Primary cardiomyocytes were isolated from Sprague-Dawley (SD) neonatal rats and cultured in hypoxia and/or Ang II conditions. Dihydroethidium fluorescence staining was used to detect the content of ROS. Cardiomyocyte autophagy was determined using Monodansylcadaverine fluorescence staining and Western blot. We also inhibited ROS production to explore the relationship between ROS and autophagy. ELISA was used to detect the contents of PKC δ and PKC ε. After inhibition of PKC δ activation and PKC ε expression by lentiviral siRNA, ROS content and autophagy of cultured cardiomyocytes were detected. Results Hypoxia and Ang II stimulation increased autophagy in cardiomyocytes, accompanied by increased intracellular ROS production. Inhibiting ROS following hypoxia or Ang II stimulation significantly suppressed autophagy in comparison with hypoxia or Ang II stimulation group. Inhibiting PKC δ significantly reduced ROS production and autophagy activity following hypoxia or accompanied with Ang II stimulation except Ang II stimulation alone. Knockdown of PKC ε notably decreased ROS production and autophagy in response to Ang II alone and in combination with hypoxia rather than hypoxia alone. Conclusions Both hypoxia and Ang II stimulation can induce autophagy in cardiomyocytes through increasing intracellular ROS. However, hypoxia and Ang II stimulation induced myocardial autophagy via PKC δ and PKC ε, respectively.
Collapse
Affiliation(s)
- Rong Xiao
- Burn Center of PLA, No. 990 Hospital of PLA, Zhumadian, China
| | - Hai-Chun Zhao
- Burn Center of PLA, No. 990 Hospital of PLA, Zhumadian, China
| | - Tian-Tian Yan
- Burn Center of PLA, No. 990 Hospital of PLA, Zhumadian, China
| | - Qiong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yue-Sheng Huang
- Department of Wound Repair, Institute of Wound Repair, Shenzhen People's Hospital, the First Affiliated Hospital of Southern University of Science and Technology, and the Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
3
|
ERK: A Key Player in the Pathophysiology of Cardiac Hypertrophy. Int J Mol Sci 2019; 20:ijms20092164. [PMID: 31052420 PMCID: PMC6539093 DOI: 10.3390/ijms20092164] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy is an adaptive and compensatory mechanism preserving cardiac output during detrimental stimuli. Nevertheless, long-term stimuli incite chronic hypertrophy and may lead to heart failure. In this review, we analyze the recent literature regarding the role of ERK (extracellular signal-regulated kinase) activity in cardiac hypertrophy. ERK signaling produces beneficial effects during the early phase of chronic pressure overload in response to G protein-coupled receptors (GPCRs) and integrin stimulation. These functions comprise (i) adaptive concentric hypertrophy and (ii) cell death prevention. On the other hand, ERK participates in maladaptive hypertrophy during hypertension and chemotherapy-mediated cardiac side effects. Specific ERK-associated scaffold proteins are implicated in either cardioprotective or detrimental hypertrophic functions. Interestingly, ERK phosphorylated at threonine 188 and activated ERK5 (the big MAPK 1) are associated with pathological forms of hypertrophy. Finally, we examine the connection between ERK activation and hypertrophy in (i) transgenic mice overexpressing constitutively activated RTKs (receptor tyrosine kinases), (ii) animal models with mutated sarcomeric proteins characteristic of inherited hypertrophic cardiomyopathies (HCMs), and (iii) mice reproducing syndromic genetic RASopathies. Overall, the scientific literature suggests that during cardiac hypertrophy, ERK could be a “good” player to be stimulated or a “bad” actor to be mitigated, depending on the pathophysiological context.
Collapse
|
4
|
Kong Q, Zhu Q, Wang L. Bayesian Meta-Analysis: The Effect of Statins on the Treatment of Hypercholesterolemia. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.151.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Mylroie H, Dumont O, Bauer A, Thornton CC, Mackey J, Calay D, Hamdulay SS, Choo JR, Boyle JJ, Samarel AM, Randi AM, Evans PC, Mason JC. PKCε-CREB-Nrf2 signalling induces HO-1 in the vascular endothelium and enhances resistance to inflammation and apoptosis. Cardiovasc Res 2015; 106:509-19. [PMID: 25883219 PMCID: PMC4431664 DOI: 10.1093/cvr/cvv131] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/03/2015] [Indexed: 12/25/2022] Open
Abstract
AIMS Vascular injury leading to endothelial dysfunction is a characteristic feature of chronic renal disease, diabetes mellitus, and systemic inflammatory conditions, and predisposes to apoptosis and atherogenesis. Thus, endothelial dysfunction represents a potential therapeutic target for atherosclerosis prevention. The observation that activity of either protein kinase C epsilon (PKCε) or haem oxygenase-1 (HO-1) enhances endothelial cell (EC) resistance to inflammation and apoptosis led us to test the hypothesis that HO-1 is a downstream target of PKCε. METHODS AND RESULTS Expression of constitutively active PKCε in human EC significantly increased HO-1 mRNA and protein, whereas conversely aortas or cardiac EC from PKCε-deficient mice exhibited reduced HO-1 when compared with wild-type littermates. Angiotensin II activated PKCε and induced HO-1 via a PKCε-dependent pathway. PKCε activation significantly attenuated TNFα-induced intercellular adhesion molecule-1, and increased resistance to serum starvation-induced apoptosis. These responses were reversed by the HO antagonist zinc protoporphyrin IX. Phosphokinase antibody array analysis identified CREB1((Ser133)) phosphorylation as a PKCε signalling intermediary, and cAMP response element-binding protein 1 (CREB1) siRNA abrogated PKCε-induced HO-1 up-regulation. Likewise, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) was identified as a PKCε target using nuclear translocation and DNA-binding assays, and Nrf2 siRNA prevented PKCε-mediated HO-1 induction. Moreover, depletion of CREB1 inhibited PKCε-induced Nrf2 DNA binding, suggestive of transcriptional co-operation between CREB1 and Nrf2. CONCLUSIONS PKCε activity in the vascular endothelium regulates HO-1 via a pathway requiring CREB1 and Nrf2. Given the potent protective actions of HO-1, we propose that this mechanism is an important contributor to the emerging role of PKCε in the maintenance of endothelial homeostasis and resistance to injury.
Collapse
Affiliation(s)
- Hayley Mylroie
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Odile Dumont
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Andrea Bauer
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Clare C Thornton
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - John Mackey
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Damien Calay
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Shahir S Hamdulay
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Joan R Choo
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Joseph J Boyle
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Allen M Samarel
- The Cardiovascular Institute, Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Paul C Evans
- Department of Cardiovascular Sciences, University of Sheffield, Sheffield, UK
| | - Justin C Mason
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
6
|
Angiotensin II and ischemic preconditioning synergize to improve mitochondrial function while showing additive effects on ventricular postischemic recovery. J Cardiovasc Pharmacol 2015; 64:172-9. [PMID: 24705171 DOI: 10.1097/fjc.0000000000000103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent studies indicate that the cardioprotective effects of ischemic preconditioning (IPC) against sustained ischemia/reperfusion can be replicated by angiotensin II (Ang II). However, it is not clear whether IPC and Ang II-induced preconditioning (APC) act through similar mechanisms or synergize to enhance cardioprotection. In this study, Langendorff-perfused rat hearts were subjected to IPC, APC, or their combination (IPC/APC) followed by ischemia/reperfusion. IPC, and less potently APC, significantly increased the percent recoveries of the left ventricular developed pressure, the first derivative of developed pressure, and the rate pressure product compared with control. Furthermore, the postischemic recovery of the heart was significantly higher for IPC/APC compared with IPC or APC. The improvements in cardiac function by IPC, APC, and IPC/APC were associated with similar reductions in lactate dehydrogenase release and infarct size. However, a significant improvement in mitochondrial respiration was observed with IPC/APC. The postischemic recovery observed with APC and IPC/APC was inhibited by treatment with losartan, an Ang II type-1 receptor blocker, during the preconditioning phase but not by chelerythrine, a pan-PKC inhibitor. Both drugs, however, abolished the enhanced mitochondrial respiration by IPC/APC. Altogether, these results indicate that APC and IPC interact through mechanisms that enhance cardioprotection by affecting cardiac function and mitochondrial respiration.
Collapse
|
7
|
García-Hoz C, Sánchez-Fernández G, García-Escudero R, Fernández-Velasco M, Palacios-García J, Ruiz-Meana M, Díaz-Meco MT, Leitges M, Moscat J, García-Dorado D, Boscá L, Mayor F, Ribas C. Protein kinase C (PKC)ζ-mediated Gαq stimulation of ERK5 protein pathway in cardiomyocytes and cardiac fibroblasts. J Biol Chem 2012; 287:7792-7802. [PMID: 22232556 PMCID: PMC3293562 DOI: 10.1074/jbc.m111.282210] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/20/2011] [Indexed: 02/05/2023] Open
Abstract
Gq-coupled G protein-coupled receptors (GPCRs) mediate the actions of a variety of messengers that are key regulators of cardiovascular function. Enhanced Gα(q)-mediated signaling plays an important role in cardiac hypertrophy and in the transition to heart failure. We have recently described that Gα(q) acts as an adaptor protein that facilitates PKCζ-mediated activation of ERK5 in epithelial cells. Because the ERK5 cascade is known to be involved in cardiac hypertrophy, we have investigated the potential relevance of this pathway in cardiovascular Gq-dependent signaling using both cultured cardiac cell types and chronic administration of angiotensin II in mice. We find that PKCζ is required for the activation of the ERK5 pathway by Gq-coupled GPCR in neonatal and adult murine cardiomyocyte cultures and in cardiac fibroblasts. Stimulation of ERK5 by angiotensin II is blocked upon pharmacological inhibition or siRNA-mediated silencing of PKCζ in primary cultures of cardiac cells and in neonatal cardiomyocytes isolated from PKCζ-deficient mice. Moreover, upon chronic challenge with angiotensin II, these mice fail to promote the changes in the ERK5 pathway, in gene expression patterns, and in hypertrophic markers observed in wild-type animals. Taken together, our results show that PKCζ is essential for Gq-dependent ERK5 activation in cardiomyocytes and cardiac fibroblasts and indicate a key cardiac physiological role for the Gα(q)/PKCζ/ERK5 signaling axis.
Collapse
Affiliation(s)
- Carlota García-Hoz
- From the Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Universidad Autónoma de Madrid, Spain
- the Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Guzmán Sánchez-Fernández
- From the Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Universidad Autónoma de Madrid, Spain
- the Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Ramón García-Escudero
- the Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040 Madrid, Spain
| | | | - Julia Palacios-García
- From the Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Universidad Autónoma de Madrid, Spain
- the Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Marisol Ruiz-Meana
- the Vall d'Hebron University Hospital and Research Institute, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain
| | - Maria Teresa Díaz-Meco
- the Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Michael Leitges
- The Biotechnology Centre of Oslo, University of Oslo, 0317 Oslo, Norway, and
| | - Jorge Moscat
- the Tumor Microenvironment Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - David García-Dorado
- the Vall d'Hebron University Hospital and Research Institute, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain
| | - Lisardo Boscá
- the Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, 28029 Madrid, Spain
| | - Federico Mayor
- From the Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Universidad Autónoma de Madrid, Spain
- the Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Catalina Ribas
- From the Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa,” Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28049 Madrid, Universidad Autónoma de Madrid, Spain
- the Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| |
Collapse
|
8
|
Nowak G, Bakajsova D, Samarel AM. Protein kinase C-epsilon activation induces mitochondrial dysfunction and fragmentation in renal proximal tubules. Am J Physiol Renal Physiol 2011; 301:F197-208. [PMID: 21289057 DOI: 10.1152/ajprenal.00364.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PKC-ε activation mediates protection from ischemia-reperfusion injury in the myocardium. Mitochondria are a subcellular target of these protective mechanisms of PKC-ε. Previously, we have shown that PKC-ε activation is involved in mitochondrial dysfunction in oxidant-injured renal proximal tubular cells (RPTC; Nowak G, Bakajsova D, Clifton GL Am J Physiol Renal Physiol 286: F307-F316, 2004). The goal of this study was to examine the role of PKC-ε activation in mitochondrial dysfunction and to identify mitochondrial targets of PKC-ε in RPTC. The constitutively active and inactive mutants of PKC-ε were overexpressed in primary cultures of RPTC using the adenoviral technique. Increases in active PKC-ε levels were accompanied by PKC-ε translocation to mitochondria. Sustained PKC-ε activation resulted in decreases in state 3 respiration, electron transport rate, ATP production, ATP content, and activities of complexes I and IV and F(0)F(1)-ATPase. Furthermore, PKC-ε activation increased mitochondrial membrane potential and oxidant production and induced mitochondrial fragmentation and RPTC death. Accumulation of the dynamin-related protein in mitochondria preceded mitochondrial fragmentation. Antioxidants blocked PKC-ε-induced increases in the oxidant production but did not prevent mitochondrial fragmentation and cell death. The inactive PKC-ε mutant had no effect on mitochondrial functions, morphology, oxidant production, and RPTC viability. We conclude that active PKC-ε targets complexes I and IV and F(0)F(1)-ATPase in RPTC. PKC-ε activation mediates mitochondrial dysfunction, hyperpolarization, and fragmentation. It also induces oxidant generation and cell death, but oxidative stress is not the mechanism of RPTC death. These results show that in contrast to protective effects of PKC-ε activation in cardiomyocytes, sustained PKC-ε activation is detrimental to mitochondrial function and viability in RPTC.
Collapse
Affiliation(s)
- Grazyna Nowak
- University of Arkansas for Medical Sciences, Dept. of Pharmaceutical Sciences, 4301 West Markham St., Little Rock, AR 72205, USA.
| | | | | |
Collapse
|