1
|
Cheng L, Li Y, Yan J. Space biological and human survival: Investigations into plants, animals, microorganisms and their components and bioregenerative life support systems. LIFE SCIENCES IN SPACE RESEARCH 2025; 44:143-153. [PMID: 39864907 DOI: 10.1016/j.lssr.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 01/28/2025]
Abstract
Space life science has been a frontier discipline in the life sciences, aiming to study the life phenomena of earth organisms and their activity patterns under the special environment of space. This review summarizes studies in various key topics in space life science, namely, how microbiome changes in humans and plants, the development of space agriculture and the use of animal, plant and cell models to study the effect of space environments on physiology. We highlight the new possibilities of using high-quality protein crystals uniquely available when grown under space conditions to aid drug development on earth, and the state-of-the-art Bioregenerative Life Support Systems (BLSS) to achieve long term human survival in space.
Collapse
Affiliation(s)
- Lin Cheng
- Holosensor Medical Technology Ltd, Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou 215000, PR China
| | - Yitong Li
- Holosensor Medical Technology Ltd, Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou 215000, PR China
| | - Jing Yan
- Holosensor Medical Technology Ltd, Room 12, No. 1798, Zhonghuayuan West Road, Yushan Town, Suzhou 215000, PR China; Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Adamopoulos KI, Sanders LM, Costes SV. NASA GeneLab derived microarray studies of Mus musculus and Homo sapiens organisms in altered gravitational conditions. NPJ Microgravity 2024; 10:49. [PMID: 38671027 PMCID: PMC11053165 DOI: 10.1038/s41526-024-00392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
One of the greatest challenges of humanity for deep space exploration is to fully understand how altered gravitational conditions affect human physiology. It is evident that the spaceflight environment causes multiple alterations to musculoskeletal, cardiovascular, immune and central nervous systems, to name a few known effects. To better characterize these biological effects, we compare gene expression datasets from microarray studies found in NASA GeneLab, part of the NASA Open Science Data Repository. In this review, we summarize these archived results for various tissues, emphasizing key genes which are highly reproducible in different mice or human experiments. Such exhaustive mining shows the potential of NASA Open Science data to identify and validate mechanisms taking place when mammalian organisms are exposed to microgravity or other spaceflight conditions. Our comparative meta-analysis findings highlight certain degrees of overlap and reproducibility in genes identified as differentially expressed within musculoskeletal tissues in each species across a variety of altered gravity conditions. However, the level of overlap between species was found to be significantly limited, partly attributed to the limited availability of human samples.
Collapse
Affiliation(s)
- Konstantinos I Adamopoulos
- National Technical University of Athens, School of Electrical and Computer Engineering, Biomedical Engineering Laboratory, Zografou, Athens, Greece
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Lauren M Sanders
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
- NASA Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA
| | - Sylvain V Costes
- NASA Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
| |
Collapse
|
3
|
Liu Y, Shi H, Hu Y, Yao R, Liu P, Yang Y, Li S. RNA binding motif protein 3 (RBM3) promotes protein kinase B (AKT) activation to enhance glucose metabolism and reduce apoptosis in skeletal muscle of mice under acute cold exposure. Cell Stress Chaperones 2022; 27:603-618. [PMID: 36149580 PMCID: PMC9672220 DOI: 10.1007/s12192-022-01297-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/01/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023] Open
Abstract
The main danger of cold stress to animals in cold regions is systemic metabolic changes and protein synthesis inhibition. RBM3, an exceptional cold shock protein, is rapidly upregulated in response to hypothermia to resist the adverse effects of cold stress. However, the mechanism of the protective effect and the rapid upregulation of RBM3 remains unclear. O-GlcNAcylation, an atypical O-glycosylation, is precisely regulated only by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) and participates in the signal transduction of multiple cellular stress responses as a "stress and nutrition receptor." Therefore, our study aimed to explore the mechanism of RBM3 regulating glucose metabolism and promoting survival in skeletal muscle under acute cold exposure. Meanwhile, our study verifies whether O-GlcNAcylation mediated by OGT rapidly upregulates RBM3. The blood and skeletal muscle of mice were collected at the end of cold exposure treatment for 0, 2, and 4 h. Changes in levels of RBM3, AKT, glycolysis apoptosis, and OGT were measured. The results show that acute cold exposure upregulated RBM3, OGT, and AKT phosphorylation and increased energy consumption, which enhanced glycolysis and prevent apoptosis. In the 32 °C mild hypothermia model in vitro, overexpression of RBM3 enhanced AKT phosphorylation. Meanwhile, inactivation of AKT by wortmannin resulted in increased apoptosis and decreased glucose metabolism in skeletal muscle under acute cold exposure. In addition, OGT-mediated O-GlcNAcylation of p65 was confirmed in mouse myoblast cell line (C2C12) cells at mild hypothermia. O-GlcNAcylation level affected p65 activity and nuclear translocation. Compared with wild type (WT) mice, RBM3 and p65 phosphorylation were decreased in specific skeletal muscle Ogt (KO) mice, whereas AKT phosphorylation, glycolysis, and apoptosis were increased. Taken together, O-GlcNAcylation of p65 upregulates RBM3 to promote AKT phosphorylation, enhance glucose metabolism, and reduce apoptosis in skeletal muscle of mice under acute cold exposure.
Collapse
Affiliation(s)
- Yang Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Hongzhao Shi
- Department of Animal Engineering, Yangling Vocational & Technical College, Xianyang, 712199, People's Republic of China
| | - Yajie Hu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Ruizhi Yao
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028000, People's Republic of China
| | - Peng Liu
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Yuying Yang
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China
| | - Shize Li
- National Experimental Teaching Demonstration Center of Animal Medicine Foundation, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163319, People's Republic of China.
| |
Collapse
|
4
|
Hu Y, Liu Y, Quan X, Fan W, Xu B, Li S. RBM3 is an outstanding cold shock protein with multiple physiological functions beyond hypothermia. J Cell Physiol 2022; 237:3788-3802. [PMID: 35926117 DOI: 10.1002/jcp.30852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
RNA-binding motif protein 3 (RBM3), an outstanding cold shock protein, is rapidly upregulated to ensure homeostasis and survival in a cold environment, which is an important physiological mechanism in response to cold stress. Meanwhile, RBM3 has multiple physiological functions and participates in the regulation of various cellular physiological processes, such as antiapoptosis, circadian rhythm, cell cycle, reproduction, and tumogenesis. The structure, conservation, and tissue distribution of RBM3 in human are demonstrated in this review. Herein, the multiple physiological functions of RBM3 were summarized based on recent research advances. Meanwhile, the cytoprotective mechanism of RBM3 during stress under various adverse conditions and its regulation of transcription were discussed. In addition, the neuroprotection of RBM3 and its oncogenic role and controversy in various cancers were investigated in our review.
Collapse
Affiliation(s)
- Yajie Hu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Yang Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Xin Quan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Wenxuan Fan
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| | - Shize Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, National Experimental Teaching Demonstration Center of Animal Medicine Foundation, Daqing, China
| |
Collapse
|
5
|
Manian V, Orozco-Sandoval J, Diaz-Martinez V. An Integrative Network Science and Artificial Intelligence Drug Repurposing Approach for Muscle Atrophy in Spaceflight Microgravity. Front Cell Dev Biol 2021; 9:732370. [PMID: 34604234 PMCID: PMC8481783 DOI: 10.3389/fcell.2021.732370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Muscle atrophy is a side effect of several terrestrial diseases which also affects astronauts severely in space missions due to the reduced gravity in spaceflight. An integrative graph-theoretic network-based drug repurposing methodology quantifying the interplay of key gene regulations and protein-protein interactions in muscle atrophy conditions is presented. Transcriptomic datasets from mice in spaceflight from GeneLab have been extensively mined to extract the key genes that cause muscle atrophy in organ muscle tissues such as the thymus, liver, and spleen. Top muscle atrophy gene regulators are selected by Bayesian Markov blanket method and gene-disease knowledge graph is constructed using the scalable precision medicine knowledge engine. A deep graph neural network is trained for predicting links in the network. The top ranked diseases are identified and drugs are selected for repurposing using drug bank resource. A disease drug knowledge graph is constructed and the graph neural network is trained for predicting new drugs. The results are compared with machine learning methods such as random forest, and gradient boosting classifiers. Network measure based methods shows that preferential attachment has good performance for link prediction in both the gene-disease and disease-drug graphs. The receiver operating characteristic curves, and prediction accuracies for each method show that the random walk similarity measure and deep graph neural network outperforms the other methods. Several key target genes identified by the graph neural network are associated with diseases such as cancer, diabetes, and neural disorders. The novel link prediction approach applied to the disease drug knowledge graph identifies the Monoclonal Antibodies drug therapy as suitable candidate for drug repurposing for spaceflight induced microgravity. There are a total of 21 drugs identified as possible candidates for treating muscle atrophy. Graph neural network is a promising deep learning architecture for link prediction from gene-disease, and disease-drug networks.
Collapse
Affiliation(s)
- Vidya Manian
- Laboratory for Applied Remote Sensing, Imaging, and Photonics, Department of Electrical and Computer Engineering, University of Puerto Rico, Mayaguez, PR, United States
| | | | | |
Collapse
|
6
|
Nelson CA, Acuna AU, Paul AM, Scott RT, Butte AJ, Cekanaviciute E, Baranzini SE, Costes SV. Knowledge Network Embedding of Transcriptomic Data from Spaceflown Mice Uncovers Signs and Symptoms Associated with Terrestrial Diseases. Life (Basel) 2021; 11:life11010042. [PMID: 33445483 PMCID: PMC7828077 DOI: 10.3390/life11010042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
There has long been an interest in understanding how the hazards from spaceflight may trigger or exacerbate human diseases. With the goal of advancing our knowledge on physiological changes during space travel, NASA GeneLab provides an open-source repository of multi-omics data from real and simulated spaceflight studies. Alone, this data enables identification of biological changes during spaceflight, but cannot infer how that may impact an astronaut at the phenotypic level. To bridge this gap, Scalable Precision Medicine Oriented Knowledge Engine (SPOKE), a heterogeneous knowledge graph connecting biological and clinical data from over 30 databases, was used in combination with GeneLab transcriptomic data from six studies. This integration identified critical symptoms and physiological changes incurred during spaceflight.
Collapse
Affiliation(s)
- Charlotte A. Nelson
- Integrated Program in Quantitative Biology, University of California San Francisco, San Francisco, CA 94143, USA;
| | - Ana Uriarte Acuna
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (A.U.A.); (A.M.P.); (R.T.S.); (E.C.)
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Amber M. Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (A.U.A.); (A.M.P.); (R.T.S.); (E.C.)
- NASA Postdoctoral Program, Universities Space Research Association (USRA), Mountain View, CA 94043, USA
| | - Ryan T. Scott
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (A.U.A.); (A.M.P.); (R.T.S.); (E.C.)
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Atul J. Butte
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA 94143, USA;
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Egle Cekanaviciute
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (A.U.A.); (A.M.P.); (R.T.S.); (E.C.)
| | - Sergio E. Baranzini
- Integrated Program in Quantitative Biology, University of California San Francisco, San Francisco, CA 94143, USA;
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA 94143, USA;
- Weill Institute for Neuroscience, Department of Neurology, University of California San Francisco, San Francisco, CA 94143, USA
- Correspondence: (S.E.B.); (S.V.C.)
| | - Sylvain V. Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (A.U.A.); (A.M.P.); (R.T.S.); (E.C.)
- Correspondence: (S.E.B.); (S.V.C.)
| |
Collapse
|
7
|
McDonald JT, Stainforth R, Miller J, Cahill T, da Silveira WA, Rathi KS, Hardiman G, Taylor D, Costes SV, Chauhan V, Meller R, Beheshti A. NASA GeneLab Platform Utilized for Biological Response to Space Radiation in Animal Models. Cancers (Basel) 2020; 12:E381. [PMID: 32045996 PMCID: PMC7072278 DOI: 10.3390/cancers12020381] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Ionizing radiation from galactic cosmic rays (GCR) is one of the major risk factors that will impact the health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. The NASA GeneLab project has detailed information on radiation exposure using animal models with curated dosimetry information for spaceflight experiments. Methods: We analyzed multiple GeneLab omics datasets associated with both ground-based and spaceflight radiation studies that included in vivo and in vitro approaches. A range of ions from protons to iron particles with doses from 0.1 to 1.0 Gy for ground studies, as well as samples flown in low Earth orbit (LEO) with total doses of 1.0 mGy to 30 mGy, were utilized. Results: From this analysis, we were able to identify distinct biological signatures associating specific ions with specific biological responses due to radiation exposure in space. For example, we discovered changes in mitochondrial function, ribosomal assembly, and immune pathways as a function of dose. Conclusions: We provided a summary of how the GeneLab's rich database of omics experiments with animal models can be used to generate novel hypotheses to better understand human health risks from GCR exposures.
Collapse
Affiliation(s)
| | - Robert Stainforth
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Jack Miller
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| | - Thomas Cahill
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Willian A. da Silveira
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
| | - Komal S. Rathi
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Gary Hardiman
- School of Biological Sciences & Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK; (T.C.); (W.A.d.S.)
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Deanne Taylor
- Department of Biomedical Informatics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
- The Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain V. Costes
- NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA;
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON K1A-1C1, Canada; (R.S.); (V.C.)
| | - Robert Meller
- Department of Neurobiology and Pharmacology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Afshin Beheshti
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| |
Collapse
|
8
|
Horie K, Kato T, Kudo T, Sasanuma H, Miyauchi M, Akiyama N, Miyao T, Seki T, Ishikawa T, Takakura Y, Shirakawa M, Shiba D, Hamada M, Jeon H, Yoshida N, Inoue JI, Muratani M, Takahashi S, Ohno H, Akiyama T. Impact of spaceflight on the murine thymus and mitigation by exposure to artificial gravity during spaceflight. Sci Rep 2019; 9:19866. [PMID: 31882694 PMCID: PMC6934594 DOI: 10.1038/s41598-019-56432-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
The environment experienced during spaceflight may impact the immune system and the thymus appears to undergo atrophy during spaceflight. However, molecular aspects of this thymic atrophy remain to be elucidated. In this study, we analysed the thymi of mice on board the international space station (ISS) for approximately 1 month. Thymic size was significantly reduced after spaceflight. Notably, exposure of mice to 1 × g using centrifugation cages in the ISS significantly mitigated the reduction in thymic size. Although spaceflight caused thymic atrophy, the global thymic structure was not largely changed. However, RNA sequencing analysis of the thymus showed significantly reduced expression of cell cycle-regulating genes in two independent spaceflight samples. These reductions were partially countered by 1 × g exposure during the space flights. Thus, our data suggest that spaceflight leads to reduced proliferation of thymic cells, thereby reducing the size of the thymus, and exposure to 1 × g might alleviate the impairment of thymus homeostasis induced by spaceflight.
Collapse
Affiliation(s)
- Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Hiroki Sasanuma
- Laboratory of Developmental Genetics, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Nobuko Akiyama
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takao Seki
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Tatsuya Ishikawa
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Yuki Takakura
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Masaki Shirakawa
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Ibaraki, 305-8505, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Hyojung Jeon
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Nobuaki Yoshida
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.,Laboratory of Developmental Genetics, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Jun-Ichiro Inoue
- Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | - Masafumi Muratani
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.,Transborder Medical Research Center, and Department of Genome Biology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan.,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan. .,Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Ibaraki, 305-8505, Japan.
| |
Collapse
|
9
|
Rosenthal LM, Leithner C, Tong G, Streitberger KJ, Krech J, Storm C, Schmitt KRL. RBM3 and CIRP expressions in targeted temperature management treated cardiac arrest patients-A prospective single center study. PLoS One 2019; 14:e0226005. [PMID: 31821351 PMCID: PMC6903712 DOI: 10.1371/journal.pone.0226005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/17/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Management of cardiac arrest patients includes active body temperature control and strict prevention of fever to avoid further neurological damage. Cold-shock proteins RNA-binding motif 3 (RBM3) and cold inducible RNA-binding protein (CIRP) expressions are induced in vitro in response to hypothermia and play a key role in hypothermia-induced neuroprotection. OBJECTIVE To measure gene expressions of RBM3, CIRP, and inflammatory biomarkers in whole blood samples from targeted temperature management (TTM)-treated post-cardiac arrest patients for the potential application as clinical biomarkers for the efficacy of TTM treatment. METHODS A prospective single center trial with the inclusion of 22 cardiac arrest patients who were treated with TTM (33°C for 24 hours) after ROSC was performed. RBM3, CIRP, interleukin 6 (IL-6), monocyte chemotactic protein 1 (MCP-1), and inducible nitric oxide synthase (iNOS) mRNA expressions were quantified by RT-qPCR. Serum RBM3 protein concentration was quantified using an enzyme-linked immunosorbent assay (ELISA). RESULTS RBM3 mRNA expression was significantly induced in post-cardiac arrest patients in response to TTM. RBM3 mRNA was increased 2.2-fold compared to before TTM. A similar expression kinetic of 1.4-fold increase was observed for CIRP mRNA, but did not reached significancy. Serum RBM3 protein was not increased in response to TTM. IL-6 and MCP-1 expression peaked after ROSC and then significantly decreased. iNOS expression was significantly increased 24h after return of spontaneous circulation (ROSC) and TTM. CONCLUSIONS RBM3 is temperature regulated in patients treated with TTM after CA and ROSC. RBM3 is a possible biomarker candidate to ensure the efficacy of TTM treatment in post-cardiac arrest patients and its pharmacological induction could be a potential future intervention strategy that warrants further research.
Collapse
Affiliation(s)
- Lisa-Maria Rosenthal
- Dept. for Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Christoph Leithner
- Dept. of Neurology, Charité Universtitätsmedizin Berlin, Berlin, Germany
| | - Giang Tong
- Dept. for Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Kaspar Josche Streitberger
- Berlin Institute of Health, Berlin, Germany
- Dept. of Neurology, Charité Universtitätsmedizin Berlin, Berlin, Germany
| | - Jana Krech
- Dept. for Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Christian Storm
- Dept. of Internal Medicine, Nephrology and Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Rose Luise Schmitt
- Dept. for Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
- Dept. for Pediatric Cardiology, Charité Universitätsmedizin Berlin, Berlin, Germany
- DHZK (German Centre for Cardiovascular Research), Berlin, Germany
- * E-mail:
| |
Collapse
|
10
|
Thiel CS, Tauber S, Christoffel S, Huge A, Lauber BA, Polzer J, Paulsen K, Lier H, Engelmann F, Schmitz B, Schütte A, Raig C, Layer LE, Ullrich O. Rapid coupling between gravitational forces and the transcriptome in human myelomonocytic U937 cells. Sci Rep 2018; 8:13267. [PMID: 30185876 PMCID: PMC6125427 DOI: 10.1038/s41598-018-31596-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The gravitational force has been constant throughout Earth's evolutionary history. Since the cell nucleus is subjected to permanent forces induced by Earth's gravity, we addressed the question, if gene expression homeostasis is constantly shaped by the gravitational force on Earth. We therefore investigated the transcriptome in force-free conditions of microgravity, determined the time frame of initial gravitational force-transduction to the transcriptome and assessed the role of cation channels. We combined a parabolic flight experiment campaign with a suborbital ballistic rocket experiment employing the human myelomonocytic cell line U937 and analyzed the whole gene transcription by microarray, using rigorous controls for exclusion of effects not related to gravitational force and cross-validation through two fully independent research campaigns. Experiments with the wide range ion channel inhibitor SKF-96365 in combination with whole transcriptome analysis were conducted to study the functional role of ion channels in the transduction of gravitational forces at an integrative level. We detected profound alterations in the transcriptome already after 20 s of microgravity or hypergravity. In microgravity, 99.43% of all initially altered transcripts adapted after 5 min. In hypergravity, 98.93% of all initially altered transcripts adapted after 75 s. Only 2.4% of all microgravity-regulated transcripts were sensitive to the cation channel inhibitor SKF-96365. Inter-platform comparison of differentially regulated transcripts revealed 57 annotated gravity-sensitive transcripts. We assume that gravitational forces are rapidly and constantly transduced into the nucleus as omnipresent condition for nuclear and chromatin structure as well as homeostasis of gene expression.
Collapse
Affiliation(s)
- Cora S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Swantje Christoffel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Andreas Huge
- Core Facility Genomic, Medical Faculty of Muenster, University of Muenster, Albert-Schweitzer-Campus 1, D3, Domagstrasse 3, 48149, Muenster, Germany
| | - Beatrice A Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Hartwin Lier
- KEK GmbH, Kemberger Str. 5, 06905, Bad Schmiedeberg, Germany
| | - Frank Engelmann
- KEK GmbH, Kemberger Str. 5, 06905, Bad Schmiedeberg, Germany
- Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745, Jena, Germany
| | | | | | - Christiane Raig
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Liliana E Layer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany.
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
11
|
Common and differential transcriptional responses to different models of traumatic stress exposure in rats. Transl Psychiatry 2018; 8:165. [PMID: 30139969 PMCID: PMC6107654 DOI: 10.1038/s41398-018-0223-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/14/2018] [Indexed: 11/22/2022] Open
Abstract
The effect of six different traumatic stress protocols on the transcriptome of the rat adrenal gland was examined using RNA sequencing. These protocols included chronic variable stress, chronic shock, social defeat and social isolation. The response of the transcriptome to stress suggested that there are genes that respond in a universal or stress modality-independent manner, as well as genes that respond in a stress modality-specific manner. Using a small number of the genes selected from the modality-independent set of stress-sensitive genes, a sensitive and robust measure of chronic stress exposure was developed. This stress-sensitive gene expression (SSGE) index could detect chronic traumatic stress exposure in a wide range of different stress models in a manner that was relatively independent of the modality of stress exposure and that paralleled the intensity of stress exposure in a dose-dependent manner. This measure could reliably distinguish control and stressed individuals in the case of animals exposed to the most intense stress protocols. The response of a subset of the modality-specific genes could also distinguish some types of stress exposure, based solely on changes in the pattern of gene expression. The results suggest that it is possible to develop diagnostic measures of traumatic stress exposure based solely on changes in the level of expression of a relatively small number of genes.
Collapse
|
12
|
Parra M, Jung J, Boone TD, Tran L, Blaber EA, Brown M, Chin M, Chinn T, Cohen J, Doebler R, Hoang D, Hyde E, Lera M, Luzod LT, Mallinson M, Marcu O, Mohamedaly Y, Ricco AJ, Rubins K, Sgarlato GD, Talavera RO, Tong P, Uribe E, Williams J, Wu D, Yousuf R, Richey CS, Schonfeld J, Almeida EAC. Microgravity validation of a novel system for RNA isolation and multiplex quantitative real time PCR analysis of gene expression on the International Space Station. PLoS One 2017; 12:e0183480. [PMID: 28877184 PMCID: PMC5587110 DOI: 10.1371/journal.pone.0183480] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/04/2017] [Indexed: 11/29/2022] Open
Abstract
The International Space Station (ISS) National Laboratory is dedicated to studying the effects of space on life and physical systems, and to developing new science and technologies for space exploration. A key aspect of achieving these goals is to operate the ISS National Lab more like an Earth-based laboratory, conducting complex end-to-end experimentation, not limited to simple microgravity exposure. Towards that end NASA developed a novel suite of molecular biology laboratory tools, reagents, and methods, named WetLab-2, uniquely designed to operate in microgravity, and to process biological samples for real-time gene expression analysis on-orbit. This includes a novel fluidic RNA Sample Preparation Module and fluid transfer devices, all-in-one lyophilized PCR assays, centrifuge, and a real-time PCR thermal cycler. Here we describe the results from the WetLab-2 validation experiments conducted in microgravity during ISS increment 47/SPX-8. Specifically, quantitative PCR was performed on a concentration series of DNA calibration standards, and Reverse Transcriptase-quantitative PCR was conducted on RNA extracted and purified on-orbit from frozen Escherichia coli and mouse liver tissue. Cycle threshold (Ct) values and PCR efficiencies obtained on-orbit from DNA standards were similar to Earth (1 g) controls. Also, on-orbit multiplex analysis of gene expression from bacterial cells and mammalian tissue RNA samples was successfully conducted in about 3 h, with data transmitted within 2 h of experiment completion. Thermal cycling in microgravity resulted in the trapping of gas bubbles inside septa cap assay tubes, causing small but measurable increases in Ct curve noise and variability. Bubble formation was successfully suppressed in a rapid follow-up on-orbit experiment using standard caps to pressurize PCR tubes and reduce gas release during heating cycles. The WetLab-2 facility now provides a novel operational on-orbit research capability for molecular biology and demonstrates the feasibility of more complex wet bench experiments in the ISS National Lab environment.
Collapse
Affiliation(s)
- Macarena Parra
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Jimmy Jung
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- KBRWyle, Mountain View, California, United States of America
| | - Travis D. Boone
- Office of the Director, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Luan Tran
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- KBRWyle, Mountain View, California, United States of America
| | - Elizabeth A. Blaber
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- Universities Space Research Association, Mountain View, California, United States of America
| | - Mark Brown
- Applications Development, Claremont Biosolutions, Upland, California, United States of America
| | - Matthew Chin
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Tori Chinn
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Jacob Cohen
- Office of the Director, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Robert Doebler
- Applications Development, Claremont Biosolutions, Upland, California, United States of America
| | - Dzung Hoang
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Elizabeth Hyde
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Matthew Lera
- KBRWyle, Mountain View, California, United States of America
- Flight Systems Implementation Branch, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Louie T. Luzod
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Mark Mallinson
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Oana Marcu
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- KBRWyle, Mountain View, California, United States of America
| | - Youssef Mohamedaly
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Antonio J. Ricco
- Mission Design Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Stanford University, Palo Alto, California, United States of America
| | - Kathleen Rubins
- NASA Astronaut Corps, NASA Johnson Space Center, Houston, Texas, United States of America
| | - Gregory D. Sgarlato
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- KBRWyle, Mountain View, California, United States of America
| | - Rafael O. Talavera
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Peter Tong
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
- Millenium Engineering & Integration Co, Mountain View, California, United States of America
| | - Eddie Uribe
- Universities Space Research Association, Mountain View, California, United States of America
| | - Jeffrey Williams
- NASA Astronaut Corps, NASA Johnson Space Center, Houston, Texas, United States of America
| | - Diana Wu
- KBRWyle, Mountain View, California, United States of America
- Mission Design Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Rukhsana Yousuf
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- KBRWyle, Mountain View, California, United States of America
| | - Charles S. Richey
- Universities Space Research Association, Mountain View, California, United States of America
| | - Julie Schonfeld
- Engineering Systems Division, NASA Ames Research Center, Moffett Field, California, United States of America
| | - Eduardo A. C. Almeida
- Space Biosciences Research Branch, NASA Ames Research Center, Moffett Field, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Thiel CS, Huge A, Hauschild S, Tauber S, Lauber BA, Polzer J, Paulsen K, Lier H, Engelmann F, Schmitz B, Schütte A, Layer LE, Ullrich O. Stability of gene expression in human T cells in different gravity environments is clustered in chromosomal region 11p15.4. NPJ Microgravity 2017; 3:22. [PMID: 28868355 PMCID: PMC5579209 DOI: 10.1038/s41526-017-0028-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 07/10/2017] [Accepted: 07/20/2017] [Indexed: 12/22/2022] Open
Abstract
In the last decades, a plethora of in vitro studies with living human cells contributed a vast amount of knowledge about cellular and molecular effects of microgravity. Previous studies focused mostly on the identification of gravity-responsive genes, whereas a multi-platform analysis at an integrative level, which specifically evaluates the extent and robustness of transcriptional response to an altered gravity environment was not performed so far. Therefore, we investigated the stability of gene expression response in non-activated human Jurkat T lymphocytic cells in different gravity environments through the combination of parabolic flights with a suborbital ballistic rocket and 2D clinostat and centrifuge experiments, using strict controls for excluding all possible other factors of influence. We revealed an overall high stability of gene expression in microgravity and identified olfactory gene expression in the chromosomal region 11p15.4 as particularly robust to altered gravity. We identified that classical reference genes ABCA5, GAPDH, HPRT1, PLA2G4A, and RPL13A were stably expressed in all tested gravity conditions and platforms, while ABCA5 and GAPDH were also known to be stably expressed in U937 cells in all gravity conditions. In summary, 10-20% of all transcripts remained totally unchanged in any gravitational environment tested (between 10-4 and 9 g), 20-40% remained unchanged in microgravity (between 10-4 and 10-2 g) and 97-99% were not significantly altered in microgravity if strict exclusion criteria were applied. Therefore, we suppose a high stability of gene expression in microgravity. Comparison with other stressors suggests that microgravity alters gene expression homeostasis not stronger than other environmental factors.
Collapse
Affiliation(s)
- Cora S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Andreas Huge
- Core Facility Genomic, Medical Faculty of Muenster, University of Muenster, Albert-Schweitzer-Campus 1, D3, Domagstrasse 3, D-48149 Muenster, Germany
| | - Swantje Hauschild
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Svantje Tauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany
| | - Beatrice A Lauber
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jennifer Polzer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Katrin Paulsen
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hartwin Lier
- KEK GmbH, Kemberger Str. 5, D-06905 Bad Schmiedeberg, Germany
| | - Frank Engelmann
- KEK GmbH, Kemberger Str. 5, D-06905 Bad Schmiedeberg, Germany.,Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, D-07745 Jena, Germany
| | - Burkhard Schmitz
- Airbus Defence and Space, Airbus DS GmbH, D-28199 Bremen, Germany
| | - Andreas Schütte
- Airbus Defence and Space, Airbus DS GmbH, D-28199 Bremen, Germany
| | - Liliana E Layer
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Department of Machine Design, Engineering Design and Product Development, Institute of Mechanical Engineering, Otto-von-Guericke-University Magdeburg, Universitätsplatz 2, D-39106 Magdeburg, Germany.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.,Institute of Space Life Sciences, School of Life Sciences, Beijing Institute of Technology, Beijing, 100081 China
| |
Collapse
|
14
|
Dynamic gene expression response to altered gravity in human T cells. Sci Rep 2017; 7:5204. [PMID: 28701719 PMCID: PMC5507981 DOI: 10.1038/s41598-017-05580-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/31/2017] [Indexed: 01/02/2023] Open
Abstract
We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.
Collapse
|
15
|
Fusco DN, Pratt H, Kandilas S, Cheon SSY, Lin W, Cronkite DA, Basavappa M, Jeffrey KL, Anselmo A, Sadreyev R, Yapp C, Shi X, O'Sullivan JF, Gerszten RE, Tomaru T, Yoshino S, Satoh T, Chung RT. HELZ2 Is an IFN Effector Mediating Suppression of Dengue Virus. Front Microbiol 2017; 8:240. [PMID: 28265266 PMCID: PMC5316548 DOI: 10.3389/fmicb.2017.00240] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 02/03/2017] [Indexed: 01/07/2023] Open
Abstract
Flaviviral infections including dengue virus are an increasing clinical problem worldwide. Dengue infection triggers host production of the type 1 IFN, IFN alpha, one of the strongest and broadest acting antivirals known. However, dengue virus subverts host IFN signaling at early steps of IFN signal transduction. This subversion allows unbridled viral replication which subsequently triggers ongoing production of IFN which, again, is subverted. Identification of downstream IFN antiviral effectors will provide targets which could be activated to restore broad acting antiviral activity, stopping the signal to produce endogenous IFN at toxic levels. To this end, we performed a targeted functional genomic screen for IFN antiviral effector genes (IEGs), identifying 56 IEGs required for antiviral effects of IFN against fully infectious dengue virus. Dengue IEGs were enriched for genes encoding nuclear receptor interacting proteins, including HELZ2, MAP2K4, SLC27A2, HSP90AA1, and HSP90AB1. We focused on HELZ2 (Helicase With Zinc Finger 2), an IFN stimulated gene and IEG which encodes a promiscuous nuclear factor coactivator that exists in two isoforms. The two unique HELZ2 isoforms are both IFN responsive, contain ISRE elements, and gene products increase in the nucleus upon IFN stimulation. Chromatin immunoprecipitation-sequencing revealed that the HELZ2 complex interacts with triglyceride-regulator LMF1. Mass spectrometry revealed that HELZ2 knockdown cells are depleted of triglyceride subsets. We thus sought to determine whether HELZ2 interacts with a nuclear receptor known to regulate immune response and lipid metabolism, AHR, and identified HELZ2:AHR interactions via co-immunoprecipitation, found that AHR is a dengue IEG, and that an AHR ligand, FICZ, exhibits anti-dengue activity. Primary bone marrow derived macrophages from HELZ2 knockout mice, compared to wild type controls, exhibit enhanced dengue infectivity. Overall, these findings reveal that IFN antiviral response is mediated by HELZ2 transcriptional upregulation, enrichment of HELZ2 protein levels in the nucleus, and activation of a transcriptional program that appears to modulate intracellular lipid state. IEGs identified in this study may serve as both (1) potential targets for host directed antiviral design, downstream of the common flaviviral subversion point, as well as (2) possible biomarkers, whose variation, natural, or iatrogenic, could affect host response to viral infections.
Collapse
Affiliation(s)
- Dahlene N. Fusco
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
- Division of Infectious Diseases, Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
- Laboratory for Systems Pharmacology, Harvard Medical SchoolBoston, MA, USA
| | - Henry Pratt
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Stephen Kandilas
- Division of Infectious Diseases, Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
- Department of Medicine, Athens University Medical SchoolAthens, Greece
| | | | - Wenyu Lin
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - D. Alex Cronkite
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Megha Basavappa
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Kate L. Jeffrey
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Anthony Anselmo
- Department of Molecular Biology, Massachusetts General HospitalBoston, MA, USA
| | - Ruslan Sadreyev
- Department of Molecular Biology, Massachusetts General HospitalBoston, MA, USA
| | - Clarence Yapp
- Laboratory for Systems Pharmacology, Harvard Medical SchoolBoston, MA, USA
| | - Xu Shi
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical CenterBoston, MA, USA
| | - John F. O'Sullivan
- Division of Cardiology, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Robert E. Gerszten
- Division of Cardiology, Department of Medicine, Beth Israel Deaconess Medical CenterBoston, MA, USA
- Division of Cardiology, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| | - Takuya Tomaru
- Department of Medicine and Molecular Science, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Satoshi Yoshino
- Department of Medicine and Molecular Science, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Tetsurou Satoh
- Department of Medicine and Molecular Science, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Raymond T. Chung
- Gastrointestinal Division, Department of Medicine, Massachusetts General HospitalBoston, MA, USA
| |
Collapse
|
16
|
Frippiat JP, Crucian BE, de Quervain DJF, Grimm D, Montano N, Praun S, Roozendaal B, Schelling G, Thiel M, Ullrich O, Choukèr A. Towards human exploration of space: The THESEUS review series on immunology research priorities. NPJ Microgravity 2016; 2:16040. [PMID: 28725745 PMCID: PMC5515533 DOI: 10.1038/npjmgrav.2016.40] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/19/2023] Open
Abstract
Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer. These recommendations should contribute to improve our knowledge about spaceflight effects on the immune system and the development of countermeasures that, beyond astronauts, could have a societal impact.
Collapse
Affiliation(s)
- Jean-Pol Frippiat
- Stress Immunity Pathogens Laboratory, EA7300, Lorraine University, Nancy, France
| | | | | | - Daniela Grimm
- Department of Biomedicine, Pharmacology, Aarhus University, Aarhus, Denmark
| | - Nicola Montano
- Cardiovascular Neuroscience Laboratory, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | - Benno Roozendaal
- Department of Cognitive Neuroscience, Radboud University Medical Centre and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Gustav Schelling
- Department of Anaesthesiology, 'Stress and Immunity' Laboratory, University of Munich, Munich, Germany
| | - Manfred Thiel
- Department of Anaesthesiology and Surgical Intensive Care Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Oliver Ullrich
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Alexander Choukèr
- Department of Anaesthesiology, 'Stress and Immunity' Laboratory, University of Munich, Munich, Germany
| |
Collapse
|
17
|
Zhu X, Bührer C, Wellmann S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 2016; 73:3839-59. [PMID: 27147467 PMCID: PMC5021741 DOI: 10.1007/s00018-016-2253-7] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Cold-inducible RNA-binding protein (CIRP) and RNA-binding motif protein 3 (RBM3) are two evolutionarily conserved RNA-binding proteins that are transcriptionally upregulated in response to low temperature. Featuring an RNA-recognition motif (RRM) and an arginine-glycine-rich (RGG) domain, these proteins display many similarities and specific disparities in the regulation of numerous molecular and cellular events. The resistance to serum withdrawal, endoplasmic reticulum stress, or other harsh conditions conferred by RBM3 has led to its reputation as a survival gene. Once CIRP protein is released from cells, it appears to bolster inflammation, contributing to poor prognosis in septic patients. A variety of human tumor specimens have been analyzed for CIRP and RBM3 expression. Surprisingly, RBM3 expression was primarily found to be positively associated with the survival of chemotherapy-treated patients, while CIRP expression was inversely linked to patient survival. In this comprehensive review, we summarize the evolutionary conservation of CIRP and RBM3 across species as well as their molecular interactions, cellular functions, and roles in diverse physiological and pathological processes, including circadian rhythm, inflammation, neural plasticity, stem cell properties, and cancer development.
Collapse
Affiliation(s)
- Xinzhou Zhu
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, Berlin, Germany
| | - Sven Wellmann
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
18
|
Benjamin CL, Stowe RP, St. John L, Sams CF, Mehta SK, Crucian BE, Pierson DL, Komanduri KV. Decreases in thymopoiesis of astronauts returning from space flight. JCI Insight 2016; 1:e88787. [PMID: 27699228 PMCID: PMC5033888 DOI: 10.1172/jci.insight.88787] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/30/2016] [Indexed: 12/23/2022] Open
Abstract
Following the advent of molecular assays that measure T cell receptor excision circles (TRECs) present in recent thymic emigrants, it has been conclusively shown that thymopoiesis persists in most adults, but that functional output decreases with age, influencing the maintenance of a diverse and functional T cell receptor (TCR) repertoire. Space flight has been shown to result in a variety of phenotypic and functional changes in human T cells and in the reactivation of latent viruses. While space flight has been shown to influence thymic architecture in rodents, thymopoiesis has not previously been assessed in astronauts. Here, we assessed thymopoiesis longitudinally over a 1-year period prior to and after long-term space flight (median duration, 184 days) in 16 astronauts. While preflight assessments of thymopoiesis remained quite stable in individual astronauts, we detected significant suppression of thymopoiesis in all subjects upon return from space flight. We also found significant increases in urine and plasma levels of endogenous glucocorticoids coincident with the suppression of thymopoiesis. The glucocorticoid induction and thymopoiesis suppression were transient, and they normalized shortly after return to Earth. This is the first report to our knowledge to prospectively demonstrate a significant change in thymopoiesis in healthy individuals in association with a defined physiologic emotional and physical stress event. These results suggest that suppression of thymopoiesis has the potential to influence the maintenance of the TCR repertoire during extended space travel. Further studies of thymopoiesis and endogenous glucocorticoids in other stress states, including illness, are warranted.
Collapse
Affiliation(s)
- Cara L. Benjamin
- Adult Stem Cell Transplant Program, University of Miami Sylvester Cancer Center, Miami, Florida, USA
| | | | - Lisa St. John
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | - Krishna V. Komanduri
- Adult Stem Cell Transplant Program, University of Miami Sylvester Cancer Center, Miami, Florida, USA
| |
Collapse
|
19
|
Ghislin S, Ouzren-Zarhloul N, Kaminski S, Frippiat JP. Hypergravity exposure during gestation modifies the TCRβ repertoire of newborn mice. Sci Rep 2015; 5:9318. [PMID: 25792033 PMCID: PMC5380131 DOI: 10.1038/srep09318] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/02/2015] [Indexed: 01/03/2023] Open
Abstract
During spaceflight, organisms are subjected to mechanical force changes (gravity (G) changes) that affect the immune system. However, gravitational effects on lymphopoiesis have rarely been studied. Consequently, we investigated whether the TCRβ repertoire, created by V(D)J recombination during T lymphopoiesis, is affected by hypergravity exposure during murine development. To address this question, C57BL/6j mice were mated in a centrifuge so that embryonic development, birth and TCRβ rearrangements occurred at 2G. Pups were sacrificed at birth, and their thymus used to quantify transcripts coding for factors required for V(D)J recombination and T lymphopoiesis. We also created cDNA mini-libraries of TCRβ transcripts to study the impact of hypergravity on TCRβ diversity. Our data show that hypergravity exposure increases the transcription of TCRβ chains, and of genes whose products are involved in TCR signaling, and affects the V(D)J recombination process. We also observed that ~85% of the TCRβ repertoire is different between hypergravity and control pups. These data indicate that changing a mechanical force (the gravity) during ontogeny will likely affect host immunity because properties of loops constituting TCR antigen-binding sites are modified in hypergravity newborns. The spectrum of peptides recognized by TCR will therefore likely be different.
Collapse
Affiliation(s)
- Stéphanie Ghislin
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Lorraine University, F-54500 Vandœuvre-lès-Nancy, France
| | - Nassima Ouzren-Zarhloul
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Lorraine University, F-54500 Vandœuvre-lès-Nancy, France
| | - Sandra Kaminski
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Lorraine University, F-54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pol Frippiat
- EA7300, Stress Immunity Pathogens Laboratory, Faculty of Medicine, Lorraine University, F-54500 Vandœuvre-lès-Nancy, France
| |
Collapse
|
20
|
Gridley DS, Mao XW, Stodieck LS, Ferguson VL, Bateman TA, Moldovan M, Cunningham CE, Jones TA, Slater JM, Pecaut MJ. Changes in mouse thymus and spleen after return from the STS-135 mission in space. PLoS One 2013; 8:e75097. [PMID: 24069384 PMCID: PMC3777930 DOI: 10.1371/journal.pone.0075097] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/08/2013] [Indexed: 11/21/2022] Open
Abstract
Our previous results with flight (FLT) mice showed abnormalities in thymuses and spleens that have potential to compromise immune defense mechanisms. In this study, the organs were further evaluated in C57BL/6 mice after Space Shuttle Atlantis returned from a 13-day mission. Thymuses and spleens were harvested from FLT mice and ground controls housed in similar animal enclosure modules (AEM). Organ and body mass, DNA fragmentation and expression of genes related to T cells and cancer were determined. Although significance was not obtained for thymus mass, DNA fragmentation was greater in the FLT group (P<0.01). Spleen mass alone and relative to body mass was significantly decreased in FLT mice (P<0.05). In FLT thymuses, 6/84 T cell-related genes were affected versus the AEM control group (P<0.05; up: IL10, Il18bp, Il18r1, Spp1; down: Ccl7, IL6); 15/84 cancer-related genes had altered expression (P<0.05; up: Casp8, FGFR2, Figf, Hgf, IGF1, Itga4, Ncam1, Pdgfa, Pik3r1, Serpinb2, Sykb; down: Cdc25a, E2F1, Mmp9, Myc). In the spleen, 8/84 cancer-related genes were affected in FLT mice compared to AEM controls (P<0.05; up: Cdkn2a; down: Birc5, Casp8, Ctnnb1, Map2k1, Mdm2, NFkB1, Pdgfa). Pathway analysis (apoptosis signaling and checkpoint regulation) was used to map relationships among the cancer–related genes. The results showed that a relatively short mission in space had a significant impact on both organs. The findings also indicate that immune system aberrations due to stressors associated with space travel should be included when estimating risk for pathologies such as cancer and infection and in designing appropriate countermeasures. Although this was the historic last flight of NASA’s Space Shuttle Program, exploration of space will undoubtedly continue.
Collapse
Affiliation(s)
- Daila S. Gridley
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Louis S. Stodieck
- BioServe Space Technologies, Aerospace Engineering Sciences, University of Colorado, Boulder, Colorado, United States of America
| | - Virginia L. Ferguson
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado, United States of America
| | - Ted A. Bateman
- Department of Bioengineering, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Maria Moldovan
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Christopher E. Cunningham
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Tamako A. Jones
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Jerry M. Slater
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| | - Michael J. Pecaut
- Department of Basic Sciences, Division of Radiation Research, Loma Linda University, Loma Linda, California, United States of America
| |
Collapse
|
21
|
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH, Sherman PM, Holko M, Yefanov A, Lee H, Zhang N, Robertson CL, Serova N, Davis S, Soboleva A. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 2012. [PMID: 23193258 PMCID: PMC3531084 DOI: 10.1093/nar/gks1193] [Citation(s) in RCA: 6655] [Impact Index Per Article: 511.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) is an international public repository for high-throughput microarray and next-generation sequence functional genomic data sets submitted by the research community. The resource supports archiving of raw data, processed data and metadata which are indexed, cross-linked and searchable. All data are freely available for download in a variety of formats. GEO also provides several web-based tools and strategies to assist users to query, analyse and visualize data. This article reports current status and recent database developments, including the release of GEO2R, an R-based web application that helps users analyse GEO data.
Collapse
Affiliation(s)
- Tanya Barrett
- National Center for Biotechnology Information, National Library of Medicine and Molecular Genetics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Thiel CS, Paulsen K, Bradacs G, Lust K, Tauber S, Dumrese C, Hilliger A, Schoppmann K, Biskup J, Gölz N, Sang C, Ziegler U, Grote KH, Zipp F, Zhuang F, Engelmann F, Hemmersbach R, Cogoli A, Ullrich O. Rapid alterations of cell cycle control proteins in human T lymphocytes in microgravity. Cell Commun Signal 2012; 10:1. [PMID: 22273506 PMCID: PMC3275513 DOI: 10.1186/1478-811x-10-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 01/24/2012] [Indexed: 02/02/2023] Open
Abstract
In our study we aimed to identify rapidly reacting gravity-responsive mechanisms in mammalian cells in order to understand if and how altered gravity is translated into a cellular response. In a combination of experiments using "functional weightlessness" provided by 2D-clinostats and real microgravity provided by several parabolic flight campaigns and compared to in-flight-1g-controls, we identified rapid gravity-responsive reactions inside the cell cycle regulatory machinery of human T lymphocytes. In response to 2D clinorotation, we detected an enhanced expression of p21 Waf1/Cip1 protein within minutes, less cdc25C protein expression and enhanced Ser147-phosphorylation of cyclinB1 after CD3/CD28 stimulation. Additionally, during 2D clinorotation, Tyr-15-phosphorylation occurred later and was shorter than in the 1 g controls. In CD3/CD28-stimulated primary human T cells, mRNA expression of the cell cycle arrest protein p21 increased 4.1-fold after 20s real microgravity in primary CD4+ T cells and 2.9-fold in Jurkat T cells, compared to 1 g in-flight controls after CD3/CD28 stimulation. The histone acetyltransferase (HAT) inhibitor curcumin was able to abrogate microgravity-induced p21 mRNA expression, whereas expression was enhanced by a histone deacetylase (HDAC) inhibitor. Therefore, we suppose that cell cycle progression in human T lymphocytes requires Earth gravity and that the disturbed expression of cell cycle regulatory proteins could contribute to the breakdown of the human immune system in space.
Collapse
Affiliation(s)
- Cora S Thiel
- Institute of Anatomy, Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bascove M, Guéguinou N, Schaerlinger B, Gauquelin‐Koch G, Frippiat J. Decrease in antibody somatic hypermutation frequency under extreme, extended spaceflight conditions. FASEB J 2011; 25:2947-55. [DOI: 10.1096/fj.11-185215] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Matthieu Bascove
- Faculty of Medicine, Development and ImmunogeneticsNancy‐UniversityVandœuvre‐lès‐NancyFrance
| | - Nathan Guéguinou
- Faculty of Medicine, Development and ImmunogeneticsNancy‐UniversityVandœuvre‐lès‐NancyFrance
| | - Bérénice Schaerlinger
- Faculty of Medicine, Development and ImmunogeneticsNancy‐UniversityVandœuvre‐lès‐NancyFrance
| | | | - Jean‐Pol Frippiat
- Faculty of Medicine, Development and ImmunogeneticsNancy‐UniversityVandœuvre‐lès‐NancyFrance
| |
Collapse
|
24
|
Ehlén A, Brennan DJ, Nodin B, O'Connor DP, Eberhard J, Alvarado-Kristensson M, Jeffrey IB, Manjer J, Brändstedt J, Uhlén M, Pontén F, Jirström K. Expression of the RNA-binding protein RBM3 is associated with a favourable prognosis and cisplatin sensitivity in epithelial ovarian cancer. J Transl Med 2010; 8:78. [PMID: 20727170 PMCID: PMC2936876 DOI: 10.1186/1479-5876-8-78] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/20/2010] [Indexed: 12/22/2022] Open
Abstract
Background We recently demonstrated that increased expression of the RNA-binding protein RBM3 is associated with a favourable prognosis in breast cancer. The aim of this study was to examine the prognostic value of RBM3 mRNA and protein expression in epithelial ovarian cancer (EOC) and the cisplatin response upon RBM3 depletion in a cisplatin-sensitive ovarian cancer cell line. Methods RBM3 mRNA expression was analysed in tumors from a cohort of 267 EOC cases (Cohort I) and RBM3 protein expression was analysed using immunohistochemistry (IHC) in an independent cohort of 154 prospectively collected EOC cases (Cohort II). Kaplan Meier analysis and Cox proportional hazards modelling were applied to assess the relationship between RBM3 and recurrence free survival (RFS) and overall survival (OS). Immunoblotting and IHC were used to examine the expression of RBM3 in a cisplatin-resistant ovarian cancer cell line A2780-Cp70 and its cisplatin-responsive parental cell line A2780. The impact of RBM3 on cisplatin response in EOC was assessed using siRNA-mediated silencing of RBM3 in A2780 cells followed by cell viability assay and cell cycle analysis. Results Increased RBM3 mRNA expression was associated with a prolonged RFS (HR = 0.64, 95% CI = 0.47-0.86, p = 0.003) and OS (HR = 0.64, 95% CI = 0.44-0.95, p = 0.024) in Cohort I. Multivariate analysis confirmed that RBM3 mRNA expression was an independent predictor of a prolonged RFS, (HR = 0.61, 95% CI = 0.44-0.84, p = 0.003) and OS (HR = 0.62, 95% CI = 0.41-0.95; p = 0.028) in Cohort I. In Cohort II, RBM3 protein expression was associated with a prolonged OS (HR = 0.53, 95% CI = 0.35-0.79, p = 0.002) confirmed by multivariate analysis (HR = 0.61, 95% CI = 0.40-0.92, p = 0.017). RBM3 mRNA and protein expression levels were significantly higher in the cisplatin sensitive A2780 cell line compared to the cisplatin resistant A2780-Cp70 derivative. siRNA-mediated silencing of RBM3 expression in the A2780 cells resulted in a decreased sensitivity to cisplatin as demonstrated by increased cell viability and reduced proportion of cells arrested in the G2/M-phase. Conclusions These data demonstrate that RBM3 expression is associated with cisplatin sensitivity in vitro and with a good prognosis in EOC. Taken together these findings suggest that RBM3 may be a useful prognostic and treatment predictive marker in EOC.
Collapse
Affiliation(s)
- Asa Ehlén
- Center for Molecular Pathology, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|