1
|
Lugo CI, Liu LP, Bala N, Morales AG, Gholam MF, Abchee JC, Elmoujahid N, Elshikha AS, Avdiaj R, Searcy LA, Denslow ND, Song S, Alli AA. Human Alpha-1 Antitrypsin Attenuates ENaC and MARCKS and Lowers Blood Pressure in Hypertensive Diabetic db/db Mice. Biomolecules 2022; 13:66. [PMID: 36671451 PMCID: PMC9856210 DOI: 10.3390/biom13010066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/17/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Hypertension may develop before or after the onset of diabetes and it is known to increase the risk of developing diabetic nephropathy. Alpha-1 antitrypsin (AAT) is a multi-functional protein with beneficial effects in various diseases but its role in reducing blood pressure in the diabetic kidney has not been thoroughly studied. Like blood pressure, epithelial sodium channels (ENaC) and its adaptor protein myristoylated alanine-rich C-kinase substrate (MARCKS) are regulated by circadian rhythms. Our hypothesis is that administration of human AAT (hAAT) reduces blood pressure in hypertensive diabetic mice by attenuating membrane expression of ENaC and its association with the actin cytoskeleton. First, we show hAAT administration results in reduced blood pressure in diabetic db/db mice compared to vehicle treatment in both the inactive and active cycles. Western blotting and immunohistochemistry analyses showed a reduction of ENaC and the actin cytoskeleton protein, MARCKS in the kidneys of diabetic db/db mice treated with hAAT compared to vehicle. hAAT treatment resulted in elevated amounts of extracellular vesicles present in the urine of diabetic db/db mice compared to vehicle treatment both in the inactive and active cycles. Multiple hexosylceramides, among other lipid classes increased in urinary EVs released from hAAT treated hypertensive diabetic mice compared to vehicle treated mice. Taken together, these data suggest hAAT treatment could normalize blood pressure in the diabetic kidney in a mechanism involving attenuation of renal ENaC and MARCKS protein expression and possibly ceramide metabolism to hexosylceramide in kidney cells.
Collapse
Affiliation(s)
- Carlos I. Lugo
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lauren P. Liu
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Niharika Bala
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Angelica G. Morales
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mohammed F. Gholam
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
| | - Julia C. Abchee
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Nasseem Elmoujahid
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ahmed Samir Elshikha
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| | - Rigena Avdiaj
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| | - Louis A. Searcy
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida College of Veterinary Medicine, Gainesville, FL 32610, USA
| | - Sihong Song
- Department of Pharmaceutics, University of Florida College of Pharmacy, Gainesville, FL 32610, USA
| | - Abdel A. Alli
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
2
|
Yu L, Nouri MZ, Liu LP, Bala N, Denslow ND, LaDisa JF, Alli AA. C Type Natriuretic Peptide Receptor Activation Inhibits Sodium Channel Activity in Human Aortic Endothelial Cells by Activating the Diacylglycerol-Protein Kinase C Pathway. Int J Mol Sci 2022; 23:13959. [PMID: 36430437 PMCID: PMC9698807 DOI: 10.3390/ijms232213959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/04/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The C-type natriuretic peptide receptor (NPRC) is expressed in many cell types and binds all natriuretic peptides with high affinity. Ligand binding results in the activation or inhibition of various intracellular signaling pathways. Although NPRC ligand binding has been shown to regulate various ion channels, the regulation of endothelial sodium channel (EnNaC) activity by NPRC activation has not been studied. The objective of this study was to investigate mechanisms of EnNaC regulation associated with NPRC activation in human aortic endothelial cells (hAoEC). EnNaC protein expression and activity was attenuated after treating hAoEC with the NPRC agonist cANF compared to vehicle, as demonstrated by Western blotting and patch clamping studies, respectively. NPRC knockdown studies using siRNA's corroborated the specificity of EnNaC regulation by NPRC activation mediated by ligand binding. The concentration of multiple diacylglycerols (DAG) and the activity of protein kinase C (PKC) was augmented after treating hAoEC with cANF compared to vehicle, suggesting EnNaC activity is down-regulated upon NPRC ligand binding in a DAG-PKC dependent manner. The reciprocal cross-talk between NPRC activation and EnNaC inhibition represents a feedback mechanism that presumably is involved in the regulation of endothelial function and aortic stiffness.
Collapse
Affiliation(s)
- Ling Yu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mohammad-Zaman Nouri
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA
| | - Lauren P. Liu
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Niharika Bala
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32610, USA
| | - John F. LaDisa
- Department of Pediatrics, Section of Cardiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- The Herma Heart Institute, Children’s Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Division of Cardiovascular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Abdel A. Alli
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Medicine, Division of Nephrology, Hypertension, and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Liu LP, Gholam MF, Elshikha AS, Kawakibi T, Elmoujahid N, Moussa HH, Song S, Alli AA. Transgenic Mice Overexpressing Human Alpha-1 Antitrypsin Exhibit Low Blood Pressure and Altered Epithelial Transport Mechanisms in the Inactive and Active Cycles. Front Physiol 2021; 12:710313. [PMID: 34630137 PMCID: PMC8493122 DOI: 10.3389/fphys.2021.710313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Human alpha-1 antitrypsin (hAAT) is a versatile protease inhibitor, but little is known about its targets in the aldosterone-sensitive distal nephron and its role in electrolyte balance and blood pressure control. We analyzed urinary electrolytes, osmolality, and blood pressure from hAAT transgenic (hAAT-Tg) mice and C57B/6 wild-type control mice maintained on either a normal salt or high salt diet. Urinary sodium, potassium, and chloride concentrations as well as urinary osmolality were lower in hAAT-Tg mice maintained on a high salt diet during both the active and inactive cycles. hAAT-Tg mice showed a lower systolic blood pressure compared to C57B6 mice when maintained on a normal salt diet but this was not observed when they were maintained on a high salt diet. Cathepsin B protein activity was less in hAAT-Tg mice compared to wild-type controls. Protein expression of the alpha subunit of the sodium epithelial channel (ENaC) alpha was also reduced in the hAAT-Tg mice. Natriuretic peptide receptor C (NPRC) protein expression in membrane fractions of the kidney cortex was reduced while circulating levels of atrial natriuretic peptide (ANP) were greater in hAAT-Tg mice compared to wild-type controls. This study characterizes the electrolyte and blood pressure phenotype of hAAT-Tg mice during the inactive and active cycles and investigates the mechanism by which ENaC activation is inhibited in part by a mechanism involving decreased cathepsin B activity and increased ANP levels in the systemic circulation.
Collapse
Affiliation(s)
- Lauren P Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mohammed F Gholam
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ahmed Samir Elshikha
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Tamim Kawakibi
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Nasseem Elmoujahid
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hassan H Moussa
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Sihong Song
- Department of Pharmaceutics, University of Florida College of Medicine, Gainesville, FL, United States
| | - Abdel A Alli
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, FL, United States.,Division of Nephrology, Hypertension, and Renal Transplantation, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
4
|
Montgomery DS, Yu L, Ghazi ZM, Thai TL, Al-Khalili O, Ma HP, Eaton DC, Alli AA. ENaC activity is regulated by calpain-2 proteolysis of MARCKS proteins. Am J Physiol Cell Physiol 2017; 313:C42-C53. [PMID: 28468944 PMCID: PMC5538800 DOI: 10.1152/ajpcell.00244.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 12/27/2022]
Abstract
We previously demonstrated a role for the myristoylated alanine-rich C kinase substrate (MARCKS) to serve as an adaptor protein in the anionic phospholipid phosphate-dependent regulation of the epithelial sodium channel (ENaC). Both MARCKS and ENaC are regulated by proteolysis. Calpains are a family of ubiquitously expressed intracellular Ca2+-dependent cysteine proteases involved in signal transduction. Here we examine the role of calpain-2 in regulating MARCKS and ENaC in cultured renal epithelial cells and in the mouse kidney. Using recombinant fusion proteins, we show that MARCKS, but not the ENaC subunits, are a substrate of calpain-2 in the presence of Ca2+ Pharmacological inhibition of calpain-2 alters MARCKS protein expression in light-density sucrose gradient fractions from cell lysates of mouse cortical collecting duct cells. Calpain-dependent cleaved products of MARCKS are detectable in cultured renal cells. Ca2+ mobilization and calpain-2 inhibition decrease the association between ENaC and MARCKS. The inhibition of calpain-2 reduces ENaC activity as demonstrated by single-channel patch-clamp recordings and transepithelial current measurements. These results suggest that calpain-2 proteolysis of MARCKS promotes its interaction with lipids and ENaC at the plasma membrane to allow for the phosphatidylinositol 4,5-bisphosphate (PIP2)-dependent regulation of ENaC activity in the kidney.
Collapse
Affiliation(s)
- Darrice S Montgomery
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida
| | - Ling Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China; and
| | - Zinah M Ghazi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Tiffany L Thai
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Otor Al-Khalili
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - He-Ping Ma
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Abdel A Alli
- Department of Physiology and Functional Genomics and Department of Medicine Division of Nephrology, Hypertension, and Renal Transplantation, University of Florida College of Medicine, Gainesville, Florida;
| |
Collapse
|
5
|
Lucas R, Yue Q, Alli A, Duke BJ, Al-Khalili O, Thai TL, Hamacher J, Sridhar S, Lebedyeva I, Su H, Tzotzos S, Fischer B, Gameiro AF, Loose M, Chakraborty T, Shabbir W, Aufy M, Lemmens-Gruber R, Eaton DC, Czikora I. The Lectin-like Domain of TNF Increases ENaC Open Probability through a Novel Site at the Interface between the Second Transmembrane and C-terminal Domains of the α-Subunit. J Biol Chem 2016; 291:23440-23451. [PMID: 27645999 DOI: 10.1074/jbc.m116.718163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/29/2022] Open
Abstract
Regulation of the epithelial sodium channel (ENaC), which regulates fluid homeostasis and blood pressure, is complex and remains incompletely understood. The TIP peptide, a mimic of the lectin-like domain of TNF, activates ENaC by binding to glycosylated residues in the extracellular loop of ENaC-α, as well as to a hitherto uncharacterized internal site. Molecular docking studies suggested three residues, Val567, Glu568, and Glu571, located at the interface between the second transmembrane and C-terminal domains of ENaC-α, as a critical site for binding of the TIP peptide. We generated Ala replacement mutants in this region of ENaC-α and examined its interaction with TIP peptide (3M, V567A/E568A/E571A; 2M, V567A/E568A; and 1M, E571A). 3M and 2M ENaC-α, but not 1M ENaC-α, displayed significantly reduced binding capacity to TIP peptide and to TNF. When overexpressed in H441 cells, 3M mutant ENaC-α formed functional channels with similar gating and density characteristics as the WT subunit and efficiently associated with the β and γ subunits in the plasma membrane. We subsequently assayed for increased open probability time and membrane expression, both of which define ENaC activity, following addition of TIP peptide. TIP peptide increased open probability time in H441 cells overexpressing wild type and 1M ENaC-α channels, but not 3M or 2M ENaC-α channels. On the other hand, TIP peptide-mediated reduction in ENaC ubiquitination was similar in cells overexpressing either WT or 3M ENaC-α subunits. In summary, this study has identified a novel site in ENaC-α that is crucial for activation of the open probability of the channel, but not membrane expression, by the lectin-like domain of TNF.
Collapse
Affiliation(s)
- Rudolf Lucas
- From the Vascular Biology Center, .,the Department of Pharmacology and Toxicology, and.,the Division of Pulmonary and Critical Care Medicine, Medical College of Georgia, Augusta, Georgia 30912
| | - Qiang Yue
- the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Abdel Alli
- the Department of Physiology, Emory University, Atlanta, Georgia 30322.,the Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida 32610
| | | | - Otor Al-Khalili
- the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Tiffany L Thai
- the Department of Physiology, Emory University, Atlanta, Georgia 30322
| | - Jürg Hamacher
- the Department of Pulmonology, Saarland University, D-66421 Homburg, Germany
| | | | - Iryna Lebedyeva
- the Department of Chemistry, Augusta University, Augusta, Georgia 30912
| | - Huabo Su
- From the Vascular Biology Center
| | - Susan Tzotzos
- Apeptico Research and Development, 1150 Vienna, Austria
| | | | | | - Maria Loose
- the Institute for Medical Microbiology, Justus-Liebig University, 35390 Giessen, Germany, and
| | - Trinad Chakraborty
- the Institute for Medical Microbiology, Justus-Liebig University, 35390 Giessen, Germany, and
| | - Waheed Shabbir
- the Department of Pharmacology and Toxicology, University Vienna, 1010 Vienna, Austria
| | - Mohammed Aufy
- the Department of Pharmacology and Toxicology, University Vienna, 1010 Vienna, Austria
| | - Rosa Lemmens-Gruber
- the Department of Pharmacology and Toxicology, University Vienna, 1010 Vienna, Austria
| | - Douglas C Eaton
- the Department of Physiology, Emory University, Atlanta, Georgia 30322,
| | | |
Collapse
|
6
|
Alli AA, Bao HF, Liu BC, Yu L, Aldrugh S, Montgomery DS, Ma HP, Eaton DC. Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane. Am J Physiol Renal Physiol 2015; 309:F456-63. [PMID: 26136560 DOI: 10.1152/ajprenal.00631.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 06/24/2015] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol bisphosphate (PIP2) regulates epithelial sodium channel (ENaC) open probability. In turn, myristoylated alanine-rich C kinase substrate (MARCKS) protein or MARCKS-like protein 1 (MLP-1) at the plasma membrane regulates the delivery of PIP2 to ENaC. MARCKS and MLP-1 are regulated by changes in cytosolic calcium; increasing calcium promotes dissociation of MARCKS from the membrane, but the calcium-regulatory mechanisms are unclear. However, it is known that increased intracellular calcium can activate calmodulin and we show that inhibition of calmodulin with calmidazolium increases ENaC activity presumably by regulating MARCKS and MLP-1. Activated calmodulin can regulate MARCKS and MLP-1 in two ways. Calmodulin can bind to the effector domain of MARCKS or MLP-1, inactivating both proteins by causing their dissociation from the membrane. Mutations in MARCKS that prevent calmodulin association prevent dissociation of MARCKS from the membrane. Calmodulin also activates CaM kinase II (CaMKII). An inhibitor of CaMKII (KN93) increases ENaC activity, MARCKS association with ENaC, and promotes MARCKS movement to a membrane fraction. CaMKII phosphorylates filamin. Filamin is an essential component of the cytoskeleton and promotes association of ENaC, MARCKS, and MLP-1. Disruption of the cytoskeleton with cytochalasin E reduces ENaC activity. CaMKII phosphorylation of filamin disrupts the cytoskeleton and the association of MARCKS, MLP-1, and ENaC, thereby reducing ENaC open probability. Taken together, these findings suggest calmodulin and CaMKII modulate ENaC activity by destabilizing the association between the actin cytoskeleton, ENaC, and MARCKS, or MLP-1 at the apical membrane.
Collapse
Affiliation(s)
- Abdel A Alli
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - Hui-Fang Bao
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - Bing-Chen Liu
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - Ling Yu
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - Summer Aldrugh
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - Darrice S Montgomery
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - He-Ping Ma
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| | - Douglas C Eaton
- Center for Cell and Molecular Signaling, Department of Physiology, Emory University School of Medicine; Atlanta, Georgia
| |
Collapse
|
7
|
Reifenberger MS, Yu L, Bao HF, Duke BJ, Liu BC, Ma HP, Alli AA, Eaton DC, Alli AA. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells. Am J Physiol Renal Physiol 2014; 307:F86-95. [PMID: 24829507 DOI: 10.1152/ajprenal.00251.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na(+) channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex.
Collapse
Affiliation(s)
- Matthew S Reifenberger
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Ling Yu
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Hui-Fang Bao
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Billie Jeanne Duke
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Bing-Chen Liu
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - He-Ping Ma
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Ahmed A Alli
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| | - Abdel A Alli
- Department of Physiology and the Center for Cell and Molecular Signaling, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
8
|
Alli AA, Brewer EM, Montgomery DS, Ghant MS, Eaton DC, Brown LA, Helms MN. Chronic ethanol exposure alters the lung proteome and leads to mitochondrial dysfunction in alveolar type 2 cells. Am J Physiol Lung Cell Mol Physiol 2014; 306:L1026-35. [PMID: 24682449 DOI: 10.1152/ajplung.00287.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lungs can undergo irreversible damage from chronic alcohol consumption. Herein, we developed an animal model predisposed for edematous lung injury following chronic ingestion of alcohol to better understand the etiology of alcohol-related disorders. Using animal modeling, alongside high-throughput proteomic and microarray assays, we identified changes in lung protein and transcript in mice and rats, respectively, following chronic alcohol ingestion or a caloric control diet. Liquid chromatography-mass spectrometry identified several mitochondrial-related proteins in which the expression was upregulated following long-term alcohol ingestion in mice. Consistent with these observations, rat gene chip microarray analysis of alveolar cells obtained from animals maintained on a Lieber-DeCarli liquid alcohol diet confirmed significant changes in mitochondrial-related transcripts in the alcohol lung. Transmission electron microscopy revealed significant changes in the mitochondrial architecture in alcohol mice, particularly following lipopolysaccharide exposure. Chronic alcohol ingestion was also shown to worsen mitochondrial respiration, mitochondrial membrane polarization, and NAD(+)-to-NADH ratios in alveolar type 2 cells. In summary, our studies show causal connection between chronic alcohol ingestion and mitochondrial dysfunction, albeit the specific role of each of the mitochondrial-related proteins and transcripts identified in our study requires additional study.
Collapse
Affiliation(s)
- Abdel A Alli
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Elizabeth M Brewer
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; and
| | | | - Marcus S Ghant
- Department of Biological Sciences, Clark Atlanta University, Atlanta, Georgia
| | - Douglas C Eaton
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; and
| | - Lou Ann Brown
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; and
| | - My N Helms
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia; Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia; and
| |
Collapse
|
9
|
Bao HF, Thai TL, Yue Q, Ma HP, Eaton AF, Cai H, Klein JD, Sands JM, Eaton DC. ENaC activity is increased in isolated, split-open cortical collecting ducts from protein kinase Cα knockout mice. Am J Physiol Renal Physiol 2014; 306:F309-20. [PMID: 24338818 PMCID: PMC3920049 DOI: 10.1152/ajprenal.00519.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/04/2013] [Indexed: 11/22/2022] Open
Abstract
The epithelial Na channel (ENaC) is negatively regulated by protein kinase C (PKC) as shown using PKC activators in a cell culture model. To determine whether PKCα influences ENaC activity in vivo, we examined the regulation of ENaC in renal tubules from PKCα⁻/⁻ mice. Cortical collecting ducts were dissected and split open, and the exposed principal cells were subjected to cell-attached patch clamp. In the absence of PKCα, the open probability (P₀) of ENaC was increased three-fold vs. wild-type SV129 mice (0.52 ± 0.04 vs. 0.17 ± 0.02). The number of channels per patch was also increased. Using confocal microscopy, we observed an increase in membrane localization of α-, β-, and γ-subunits of ENaC in principal cells in the cortical collecting ducts of PKCα⁻/⁻ mice compared with wild-type mice. To confirm this increase, one kidney from each animal was perfused with biotin, and membrane protein was pulled down with streptavidin. The nonbiotinylated kidney was used to assess total protein. While total ENaC protein did not change in PKCα⁻/⁻ mice, membrane localization of all the ENaC subunits was increased. The increase in membrane ENaC could be explained by the observation that ERK1/2 phosphorylation was decreased in the knockout mice. These results imply a reduction in ENaC membrane accumulation and P₀ by PKCα in vivo. The PKC-mediated increase in ENaC activity was associated with an increase in blood pressure in knockout mice fed a high-salt diet.
Collapse
Affiliation(s)
- Hui-Fang Bao
- Emory Univ. School of Medicine, Dept. of Physiology, Whitehead Biomedical Research Bldg., 615 Michael St., Atlanta, GA 30322.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Guo LJ, Alli AA, Eaton DC, Bao HF. ENaC is regulated by natriuretic peptide receptor-dependent cGMP signaling. Am J Physiol Renal Physiol 2013; 304:F930-7. [PMID: 23324181 DOI: 10.1152/ajprenal.00638.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Epithelial sodium channels (ENaCs) located at the apical membrane of polarized epithelial cells are regulated by the second messenger guanosine 3',5'-cyclic monophosphate (cGMP). The mechanism for this regulation has not been completely characterized. Guanylyl cyclases synthesize cGMP in response to various intracellular and extracellular signals. We investigated the regulation of ENaC activity by natriuretic peptide-dependent activation of guanylyl cyclases in Xenopus 2F3 cells. Confocal microscopy studies show natriuretic peptide receptors (NPRs), including those coupled to guanylyl cyclases, are expressed at the apical membrane of 2F3 cells. Single-channel patch-clamp studies using 2F3 cells revealed that atrial natriuretic peptide (ANP) or 8-(4-chlorophenylthio)-cGMP, but not C-type natriuretic peptide or cANP, decreased the open probability of ENaC. This suggests that NPR-A, but not NPR-B or NPR-C, is involved in the natriuretic peptide-mediated regulation of ENaC activity. Also, it is likely that a signaling pathway involving cGMP and nitric oxide (NO) are involved in this mechanism, since inhibitors of soluble guanylyl cyclase, protein kinase G, inducible NO synthase, or an NO scavenger blocked or reduced the effect of ANP on ENaC activity.
Collapse
Affiliation(s)
- Lai-Jing Guo
- Department of Physiology, Emory University School of Medicine and the Center for Cell and Molecular Signaling, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
11
|
Alli AA, Bao HF, Alli AA, Aldrugh Y, Song JZ, Ma HP, Yu L, Al-Khalili O, Eaton DC. Phosphatidylinositol phosphate-dependent regulation of Xenopus ENaC by MARCKS protein. Am J Physiol Renal Physiol 2012; 303:F800-11. [PMID: 22791334 PMCID: PMC3468524 DOI: 10.1152/ajprenal.00703.2011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 07/06/2012] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol phosphates (PIPs) are known to regulate epithelial sodium channels (ENaC). Lipid binding assays and coimmunoprecipitation showed that the amino-terminal domain of the β- and γ-subunits of Xenopus ENaC can directly bind to phosphatidylinositol 4,5-bisphosphate (PIP(2)), phosphatidylinositol 3,4,5-trisphosphate (PIP(3)), and phosphatidic acid (PA). Similar assays demonstrated various PIPs can bind strongly to a native myristoylated alanine-rich C-kinase substrate (MARCKS), but weakly or not at all to a mutant form of MARCKS. Confocal microscopy demonstrated colocalization between MARCKS and PIP(2). Confocal microscopy also showed that MARCKS redistributes from the apical membrane to the cytoplasm after PMA-induced MARCKS phosphorylation or ionomycin-induced intracellular calcium increases. Fluorescence resonance energy transfer studies revealed ENaC and MARCKS in close proximity in 2F3 cells when PKC activity and intracellular calcium concentrations are low. Transepithelial current measurements from Xenopus 2F3 cells treated with PMA and single-channel patch-clamp studies of Xenopus 2F3 cells treated with a PKC inhibitor altered Xenopus ENaC activity, which suggest an essential role for MARCKS in the regulation of Xenopus ENaC activity.
Collapse
Affiliation(s)
- Abdel A Alli
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Alli AA, Song JZ, Al-Khalili O, Bao HF, Ma HP, Alli AA, Eaton DC. Cathepsin B is secreted apically from Xenopus 2F3 cells and cleaves the epithelial sodium channel (ENaC) to increase its activity. J Biol Chem 2012; 287:30073-83. [PMID: 22782900 DOI: 10.1074/jbc.m111.338574] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epithelial sodium channel (ENaC) plays an important role in regulating sodium balance, extracellular volume, and blood pressure. Evidence suggests the α and γ subunits of ENaC are cleaved during assembly before they are inserted into the apical membranes of epithelial cells, and maximal activity of ENaC depends on cleavage of the extracellular loops of α and γ subunits. Here, we report that Xenopus 2F3 cells apically express the cysteine protease cathepsin B, as indicated by two-dimensional gel electrophoresis and mass spectrometry analysis. Recombinant GST ENaC α, β, and γ subunit fusion proteins were expressed in Escherichia coli and then purified and recovered from bacterial inclusion bodies. In vitro cleavage studies revealed the full-length ENaC α subunit fusion protein was cleaved by active cathepsin B but not the full-length β or γ subunit fusion proteins. Both single channel patch clamp studies and short circuit current experiments show ENaC activity decreases with the application of a cathepsin B inhibitor directly onto the apical side of 2F3 cells. We suggest a role for the proteolytic cleavage of ENaC by cathepsin B, and we suggest two possible mechanisms by which cathepsin B could regulate ENaC. Cathepsin B may cleave ENaC extracellularly after being secreted or intracellularly, while ENaC is present in the Golgi or in recycling endosomes.
Collapse
Affiliation(s)
- Abdel A Alli
- Department of Physiology, Emory University School of Medicine and the Center for Cell and Molecular Signaling, Atlanta, GA 30345, USA.
| | | | | | | | | | | | | |
Collapse
|