1
|
Thimoteo RRC, Neto PN, Costa DSS, da Mota Ramalho Costa F, Brito DC, Costa PRR, de Almeida Simão T, Dias AG, Justo G. Microarray data analysis of antileukemic action of Cinnamoylated benzaldehyde LQB-461 in Jurkat cell line. Mol Biol Rep 2024; 51:187. [PMID: 38270684 DOI: 10.1007/s11033-023-09030-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/28/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Leukemias stand out for being the main type of childhood cancer in the world. Current treatments have strong side effects for patients, and there is still a high rate of development of resistance to multidrug therapy. Previously, our research group developed a structure-activity study with novel synthetic molecules analogous to LQB-278, described as an essential molecule with in vitro antileukemic action. Among these analogs, LQB-461 stood out, presenting more significant antileukemic action compared to its derivative LQB-278, with cytostatic and cytotoxicity effect by apoptosis, inducing caspase-3, and increased sub-G1 phase on cell cycle analysis. METHODS AND RESULTS Deepening the study of the mechanism of action of LQB-461 in Jurkat cells in vitro, a microarray assay was carried out, which confirmed the importance of the apoptosis pathway in the LQB-461 activity. Through real-time PCR, we validated an increased expression of CDKN1A and BAX genes, essential mediators of the apoptosis intrinsic pathway. Through the extrinsic apoptosis pathway, we found an increased expression of the Fas receptor by flow cytometry, showing the presence of a more sensitive population and another more resistant to death. Considering the importance of autophagy in cellular resistance, it was demonstrated by western blotting that LQB-461 decreased LC-3 protein expression, an autophagic marker. CONCLUSIONS These results suggest that this synthetic molecule LQB-461 induces cell death by apoptosis in Jurkat cells through intrinsic and extrinsic pathways and inhibits autophagy, overcoming some mechanisms of cell resistance related to this process, which differentiates LQB-461 of other drugs used for the leukemia treatment.
Collapse
Affiliation(s)
| | | | - Debora S S Costa
- Instituto de Pesquisas Biomédicas - HNMD Marinha do Brazil, Rio de Janeiro, RJ, Brazil
| | | | | | - Paulo R R Costa
- Laboratório de Química Bioorgânica, UFRJ, Rio de Janeiro, RJ, Brazil
| | | | - Ayres G Dias
- Departamento de Química Orgânica, UERJ, Rio de Janeiro, RJ, Brazil
| | - Graça Justo
- Departamento de Bioquímica, UERJ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Abstract
Significance: Vitamin C (ascorbate), in regard to its effectiveness against malignancies, has had a controversial history in cancer treatment. It has been shown that in vitro and in vivo anticancer efficacy of ascorbate relies on its pro-oxidant effect mainly from an increased generation of reactive oxygen species (ROS). A growing understanding of its anticancer activities and pharmacokinetic properties has prompted scientists to re-evaluate the significance of ascorbate in cancer treatment. Recent Advances: A recent resurge in ascorbate research emerged after discovering that, at high doses, ascorbate preferentially kills Kirsten-Ras (K-ras)- and B-raf oncogene (BRAF)-mutant cancer cells. In addition, some of the main hallmarks of cancer cells, such as redox homeostasis and oxygen-sensing regulation (through inhibition of hypoxia-inducible factor-1 alpha [HIF-1α] activity), are affected by vitamin C. Critical Issues: Currently, there is no clear consensus from the literature in regard to the beneficial effects of antioxidants. Results from both human and animal studies provide no clear evidence about the benefit of antioxidant treatment in preventing or suppressing cancer development. Since pro-oxidants may affect both normal and tumor cells, the extremely low toxicity of ascorbate represents a main advantage. This guarantees the safe inclusion of ascorbate in clinical protocols to treat cancer patients. Future Directions: Current research could focus on elucidating the wide array of reactions between ascorbate and reactive species, namely ROS, reactive nitrogen species as well as reactive sulfide species, and their intracellular molecular targets. Unraveling these mechanisms could allow researchers to assess what could be the optimal combination of ascorbate with standard treatments.
Collapse
Affiliation(s)
- Christophe Glorieux
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, P. R. China
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile.,Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
3
|
Brandt KE, Falls KC, Schoenfeld JD, Rodman SN, Gu Z, Zhan F, Cullen JJ, Wagner BA, Buettner GR, Allen BG, Berg DJ, Spitz DR, Fath MA. Augmentation of intracellular iron using iron sucrose enhances the toxicity of pharmacological ascorbate in colon cancer cells. Redox Biol 2017; 14:82-87. [PMID: 28886484 PMCID: PMC5591450 DOI: 10.1016/j.redox.2017.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/17/2017] [Accepted: 08/21/2017] [Indexed: 01/20/2023] Open
Abstract
Pharmacological doses (> 1 mM) of ascorbate (a.k.a., vitamin C) have been shown to selectively kill cancer cells through a mechanism that is dependent on the generation of H2O2 at doses that are safely achievable in humans using intravenous administration. The process by which ascorbate oxidizes to form H2O2 is thought to be mediated catalytically by redox active metal ions such as iron (Fe). Because intravenous iron sucrose is often administered to colon cancer patients to help mitigate anemia, the current study assessed the ability of pharmacological ascorbate to kill colon cancer cells in the presence and absence of iron sucrose. In vitro survival assays showed that 10 mM ascorbate exposure (2 h) clonogenically inactivated 40–80% of exponentially growing colon cancer cell lines (HCT116 and HT29). When the H2O2 scavenging enzyme, catalase, was added to the media, or conditionally over-expressed using a doxycycline inducible vector, the toxicity of pharmacological ascorbate was significantly blunted. When colon cancer cells were treated in the presence or absence of 250 µM iron sucrose, then rinsed, and treated with 10 mM ascorbate, the cells demonstrated increased levels of labile iron that resulted in significantly increased clonogenic cell killing, compared to pharmacological ascorbate alone. Interestingly, when colon cancer cells were treated with iron sucrose for 1 h and then 10 mM ascorbate was added to the media in the continued presence of iron sucrose, there was no enhancement of toxicity despite similar increases in intracellular labile iron. The combination of iron chelators, deferoxamine and diethylenetriaminepentaacetic acid, significantly inhibited the toxicity of either ascorbate alone or ascorbate following iron sucrose. These observations support the hypothesis that increasing intracellular labile iron pools, using iron sucrose, can be used to increase the toxicity of pharmacological ascorbate in human colon cancer cells by a mechanism involving increased generation of H2O2.
Collapse
Affiliation(s)
- Kristin E Brandt
- Free Radical and Radiation Biology Program, Departments of Radiation Oncology, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Kelly C Falls
- Free Radical and Radiation Biology Program, Departments of Radiation Oncology, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Joshua D Schoenfeld
- Free Radical and Radiation Biology Program, Departments of Radiation Oncology, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Samuel N Rodman
- Free Radical and Radiation Biology Program, Departments of Radiation Oncology, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Zhimin Gu
- Department of Internal Medicine, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Fenghuang Zhan
- Department of Internal Medicine, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Joseph J Cullen
- Free Radical and Radiation Biology Program, Departments of Radiation Oncology, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States; Department of Surgery, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Brett A Wagner
- Free Radical and Radiation Biology Program, Departments of Radiation Oncology, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Departments of Radiation Oncology, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Departments of Radiation Oncology, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Daniel J Berg
- Department of Internal Medicine, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Departments of Radiation Oncology, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States.
| | - Melissa A Fath
- Free Radical and Radiation Biology Program, Departments of Radiation Oncology, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
4
|
Xu P, Lin Y, Porter K, Liton PB. Ascorbic acid modulation of iron homeostasis and lysosomal function in trabecular meshwork cells. J Ocul Pharmacol Ther 2014; 30:246-53. [PMID: 24552277 DOI: 10.1089/jop.2013.0183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To investigate the antioxidant properties and biological functions of ascorbic acid (AA) on trabecular meshwork (TM) cells. METHODS Primary cultures of porcine TM cells were supplemented for 10 days with increasing concentrations of AA. Antioxidant properties against cytotoxic effect of H2O2 were evaluated by monitoring cell viability. Redox-active iron was quantified using calcein-AM. Intracellular reactive oxygen species (iROS) production was quantified using H2DCFDA. Ferritin and cathepsin protein levels were analyzed by Western blot. Autophagy was evaluated by monitoring lipidation of LC3-I to LC3-II. Lysosomal proteolysis and cathepsins activities were quantified using specific fluorogenic substrates. RESULTS AA exerts a dual effect against oxidative stress in TM cells, acting as an anti-oxidant or a pro-oxidant, depending on the concentration used. The pro-oxidant effect of AA was mediated by free intracellular iron and correlated with increased protein levels of ferritin and elevated iROS. In contrast, antioxidant properties correlated with lower ferritin and basal iROS content. Ascorbic acid supplementation also caused induction of autophagy, as well as increased lysosomal proteolysis, with the latter resulting from higher proteolytic activation of lysosomal cathepsins in treated cultures. CONCLUSIONS Our results suggest that the reported decrease of AA levels in plasma and aqueous humor can compromise lysosomal degradation in the outflow pathway cells with aging and contribute to the pathogenesis of glaucoma. Restoration of physiological levels of vitamin C inside the cells might improve their ability to degrade proteins within the lysosomal compartment and recover tissue function.
Collapse
Affiliation(s)
- Ping Xu
- Department of Ophthalmology, Duke University , Durham, North Carolina
| | | | | | | |
Collapse
|
5
|
Kim J, Lee SD, Chang B, Jin DH, Jung SI, Park MY, Han Y, Yang Y, Il Kim K, Lim JS, Kang YS, Lee MS. Enhanced antitumor activity of vitamin C via p53 in cancer cells. Free Radic Biol Med 2012; 53:1607-15. [PMID: 22892142 DOI: 10.1016/j.freeradbiomed.2012.07.079] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 07/10/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022]
Abstract
Ascorbate is an important natural antioxidant that can selectively kill cancer cells at pharmacological concentrations. Despite its benefit, it is quite difficult to predict the antitumor effects of ascorbate, because the relative cytotoxicity of ascorbate differs between cancer cell lines. Therefore, it is essential to examine the basis for this fundamental disagreement. Because p53 is activated by DNA-damaging stress and then regulates various cellular conditions, we hypothesized that p53 can sensitize cancer cells to ascorbate. Using isogenic cancer cells, we observed that the presence of p53 can affect ascorbate cytotoxicity, and also reactivation of p53 can make cancer cells sensitive to ascorbate. p53-dependent enhancement of ascorbate cytotoxicity is caused by increased reactive oxygen species generation via a differentially regulated p53 transcriptional network. We also found that transcriptionally activated p53 was derived from MDM2 ubiquitination by ascorbate and subsequently its signaling network renders cancer cells more susceptible to oxidative stress. Similar to the p53 effect on in vitro ascorbate cytotoxicity, inhibition of tumor growth is also stronger in p53-expressing tumors than in p53-deficient ones in vivo. This is the first observation that ascorbate cytotoxicity is positively related to p53 expression, activating its transcriptional network to worsen intracellular oxidative stress and consequently enhancing its cytotoxicity. Based on our study, reactivation of p53 may help to achieve more consistent cytotoxic effects of ascorbate in cancer therapies.
Collapse
Affiliation(s)
- Jinsun Kim
- Research Center for Women's Diseases, Department of Biological Sciences, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Anti-melanogenic property of geoditin A in murine B16 melanoma cells. Mar Drugs 2012; 10:465-476. [PMID: 22412813 PMCID: PMC3297009 DOI: 10.3390/md10020465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/29/2011] [Accepted: 02/03/2012] [Indexed: 12/18/2022] Open
Abstract
Geoditin A, an isomalabaricane triterpene isolated from marine sponge Geodia japonica, has been demonstrated to induce apoptosis in leukemia HL60 cells and human colon HT29 cancer cells through an oxidative stress, a process also interfering with normal melanogenesis in pigment cells. Treatment of murine melanoma B16 cells with geoditin A decreased expression of melanogenic proteins and cell melanogenesis which was aggravated with adenylate cyclase inhibitor SQ22536, indicating melanogenic inhibition was mediated through a cAMP-dependent signaling pathway. Immunofluorescence microscopy and glycosylation studies revealed abnormal glycosylation patterns of melanogenic proteins (tyrosinase and tyrosinase-related protein 1), and a co-localization of tyrosinase with calnexin (CNX) and lysosome-associated membrane protein 1 (LAMP-1), implicating a post-translational modification in the ER and a degradation of tyrosinase in the lysosome. Taken together, potent anti-melanogenic property and the relatively low cytotoxicity of geoditin A have demonstrated its therapeutic potential as a skin lightening agent.
Collapse
|
7
|
Yang C, Li X, Wang Y, Zhao L, Chen W. Long non-coding RNA UCA1 regulated cell cycle distribution via CREB through PI3-K dependent pathway in bladder carcinoma cells. Gene 2012; 496:8-16. [PMID: 22285928 DOI: 10.1016/j.gene.2012.01.012] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/02/2012] [Accepted: 01/11/2012] [Indexed: 12/17/2022]
Abstract
Long non-coding RNA urothelial carcinoma associated 1 (UCA1) promotes human bladder cancer cell proliferation, but the underlying mechanism remains unknown. After knocking down of UCA1 in BLZ-211 cells, several cell cycle-related genes (CDKN2B, EP300 and TGFβ-2) were screened by microarray assay and validated by real-time PCR. Interestingly, in western blot analysis, p300 (encoded by EP300) and its coactivator cAMP response element-binding protein (CREB) level were significantly down-regulated. Both suppression of UCA1 expression by shRNA in BLZ-211 cells and ectopic expression of UCA1 in UMUC-2 cells showed that UCA1 alteration paralleled to the expression and phosphorylation of CREB, and UCA1 obviously influenced AKT expression and activity. Furthermore, in BLZ-211 cells, cell cycle progression was greatly reduced after PI3-K pathway was blocked by LY294002, indicating that UCA1 affected cell cycle progression through CREB. Taken together, we concluded that UCA1 regulated cell cycle through CREB via PI3K-AKT dependent pathway in bladder cancer.
Collapse
Affiliation(s)
- Chen Yang
- Center for Molecular Medicine, The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, 76 West Yanta Road, 710061 Xi'an, China
| | | | | | | | | |
Collapse
|
8
|
Ivashchenko O, Van Veldhoven PP, Brees C, Ho YS, Terlecky SR, Fransen M. Intraperoxisomal redox balance in mammalian cells: oxidative stress and interorganellar cross-talk. Mol Biol Cell 2011; 22:1440-51. [PMID: 21372177 PMCID: PMC3084667 DOI: 10.1091/mbc.e10-11-0919] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Reactive oxygen species (ROS) are at once unsought by-products of metabolism and critical regulators of multiple intracellular signaling cascades. In nonphotosynthetic eukaryotic cells, mitochondria are well-investigated major sites of ROS generation and related signal initiation. Peroxisomes are also capable of ROS generation, but their contribution to cellular oxidation-reduction (redox) balance and signaling events are far less well understood. In this study, we use a redox-sensitive variant of enhanced green fluorescent protein (roGFP2-PTS1) to monitor the state of the peroxisomal matrix in mammalian cells. We show that intraperoxisomal redox status is strongly influenced by environmental growth conditions. Furthermore, disturbances in peroxisomal redox balance, although not necessarily correlated with the age of the organelle, may trigger its degradation. We also demonstrate that the mitochondrial redox balance is perturbed in catalase-deficient cells and upon generation of excess ROS inside peroxisomes. Peroxisomes are found to resist oxidative stress generated elsewhere in the cell but are affected when the burden originates within the organelle. These results suggest a potential broader role for the peroxisome in cellular aging and the initiation of age-related degenerative disease.
Collapse
Affiliation(s)
- Oksana Ivashchenko
- Laboratory of Lipid Biochemistry and Protein Interactions, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|