1
|
Hypothermic Preservation of Adipose-Derived Mesenchymal Stromal Cells as a Viable Solution for the Storage and Distribution of Cell Therapy Products. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120805. [PMID: 36551011 PMCID: PMC9774331 DOI: 10.3390/bioengineering9120805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Cell and gene therapies (CGT) have reached new therapeutic targets but have noticeably high prices. Solutions to reduce production costs might be found in CGT storage and transportation since they typically involve cryopreservation, which is a heavily burdened process. Encapsulation at hypothermic temperatures (e.g., 2-8 °C) could be a feasible alternative. Adipose tissue-derived mesenchymal stromal cells (MSC(AT)) expanded using fetal bovine serum (FBS)- (MSC-FBS) or human platelet lysate (HPL)-supplemented mediums (MSC-HPL) were encapsulated in alginate beads for 30 min, 5 days, and 12 days. After bead release, cell recovery and viability were determined to assess encapsulation performance. MSC identity was verified by flow cytometry, and a set of assays was performed to evaluate functionality. MSC(AT) were able to survive encapsulated for a standard transportation period of 5 days, with recovery values of 56 ± 5% for MSC-FBS and 77 ± 6% for MSC-HPL (which is a negligible drop compared to earlier timepoints). Importantly, MSC function did not suffer from encapsulation, with recovered cells showing robust differentiation potential, expression of immunomodulatory molecules, and hematopoietic support capacity. MSC(AT) encapsulation was proven possible for a remarkable 12 day period. There is currently no solution to completely replace cryopreservation in CGT logistics and supply chain, although encapsulation has shown potential to act as a serious competitor.
Collapse
|
2
|
Branco A, Bucar S, Moura-Sampaio J, Lilaia C, Cabral JMS, Fernandes-Platzgummer A, Lobato da Silva C. Tailored Cytokine Optimization for ex vivo Culture Platforms Targeting the Expansion of Human Hematopoietic Stem/Progenitor Cells. Front Bioeng Biotechnol 2020; 8:573282. [PMID: 33330414 PMCID: PMC7729524 DOI: 10.3389/fbioe.2020.573282] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/09/2020] [Indexed: 01/18/2023] Open
Abstract
Umbilical cord blood (UCB) has been established as an alternative source for hematopoietic stem/progenitor cells (HSPC) for cell and gene therapies. Limited cell yields of UCB units have been tackled with the development of cytokine-based ex vivo expansion platforms. To improve the effectiveness of these platforms, namely targeting clinical approval, in this study, we optimized the cytokine cocktails in two clinically relevant expansion platforms for HSPC, a liquid suspension culture system (CS_HSPC) and a co-culture system with bone marrow derived mesenchymal stromal cells (BM MSC) (CS_HSPC/MSC). Using a methodology based on experimental design, three different cytokines [stem cell factor (SCF), fms-like tyrosine kinase 3 ligand (Flt-3L), and thrombopoietin (TPO)] were studied in both systems during a 7-day culture under serum-free conditions. Proliferation and colony-forming unit assays, as well as immunophenotypic analysis were performed. Five experimental outputs [fold increase (FI) of total nucleated cells (FI TNC), FI of CD34+ cells, FI of erythroid burst-forming unit (BFU-E), FI of colony-forming unit granulocyte-monocyte (CFU-GM), and FI of multilineage colony-forming unit (CFU-Mix)] were followed as target outputs of the optimization model. The novel optimized cocktails determined herein comprised concentrations of 64, 61, and 80 ng/mL (CS_HSPC) and 90, 82, and 77 ng/mL (CS_HSPC/MSC) for SCF, Flt-3L, and TPO, respectively. After cytokine optimization, CS_HSPC and CS_HSPC/MSC were directly compared as platforms. CS_HSPC/MSC outperformed the feeder-free system in 6 of 8 tested experimental measures, displaying superior capability toward increasing the number of hematopoietic cells while maintaining the expression of HSPC markers (i.e., CD34+ and CD34+CD90+) and multilineage differentiation potential. A tailored approach toward optimization has made it possible to individually maximize cytokine contribution in both studied platforms. Consequently, cocktail optimization has successfully led to an increase in the expansion platform performance, while allowing a rational side-by-side comparison among different platforms and enhancing our knowledge on the impact of cytokine supplementation on the HSPC expansion process.
Collapse
Affiliation(s)
- André Branco
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Bucar
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jorge Moura-Sampaio
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla Lilaia
- Hospital São Francisco Xavier, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Sane MS, Tang H, Misra N, Pu X, Malara S, Jones CD, Mustafi SB. Characterization of an umbilical cord blood sourced product suitable for allogeneic applications. Regen Med 2019; 14:769-789. [PMID: 31313975 DOI: 10.2217/rme-2019-0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: Umbilical cord blood (UCB) sourced allografts are promising interventions for tissue regeneration. As applications of these allografts and regulations governing them continue to evolve, we were prompted to identify parameters determining their quality, safety and regenerative potential. Materials & methods: Flow-cytometry, mass-spectrometry, protein multiplexing, nanoparticle tracking analysis and standard biological techniques were employed. Results: Quality attributes of a uniquely processed UCB-allograft (UCBr) were enumerated based on identity (cell viability, immunophenotyping, proteomic profiling, and quantification of relevant cytokines); safety (bioburden and microbiological screening), purity (endotoxin levels) and potency (effect of UCBr on chondrocytes and mesenchymal stem cells derived exosomes). These attributes were stable up to 24 months in cryopreserved UCBr. Conclusion: We identified a comprehensive panel of tests to establish the clinical efficacy and quality control attributes of a UCB-sourced allograft.
Collapse
Affiliation(s)
- Mukta S Sane
- Department of Research & Development, Burst Biologics, Boise, ID 83705, USA
| | - Huiyuan Tang
- Department of Research & Development, Burst Biologics, Boise, ID 83705, USA
| | - Neha Misra
- Department of Research & Development, Burst Biologics, Boise, ID 83705, USA
| | - Xinzhu Pu
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA
| | - Sara Malara
- Department of Research & Development, Burst Biologics, Boise, ID 83705, USA
| | | | | |
Collapse
|
4
|
He C, Li D, Gao J, Li J, Liu Z, Xu W. Inhibition of CXCR4 inhibits the proliferation and osteogenic potential of fibroblasts from ankylosing spondylitis via the Wnt/β‑catenin pathway. Mol Med Rep 2019; 19:3237-3246. [PMID: 30816502 DOI: 10.3892/mmr.2019.9980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 10/15/2018] [Indexed: 11/06/2022] Open
Abstract
Ankylosing spondylitis (AS) is an autoimmune condition characterized by chronic inflammation and abnormal ossification as the primary features of the disease. The aim of the present study was to investigate the role of C‑X‑C chemokine receptor type 4 (CXCR4) in ossification from patients with AS. CXCR4 expression was assessed by western blot analysis and immunohistochemistry analysis of tissues obtained from patients with AS and controls. Fibroblasts were isolated, cultured and incubated with AMD 3100 and stromal cell‑derived factor‑1 to inhibit and promote CXCR4 levels, respectively. CXCR4 was upregulated in hip synovial tissues from patients with AS compared with that observed in controls. AS fibroblasts exhibited increased proliferation and growth rates. Inhibition of CXCR4 increased the phosphorylation of β‑catenin and downregulated the expression of β‑catenin, v‑myc avian myelocytomatosis viral oncogene homolog, cyclin D1 and osteocalcin. Alizarin red staining demonstrated a decrease in biomineralization activity following the inhibition of CXCR4. These data support the hypothesis that inhibiting CXCR4 in patients with AS may suppress the ossification of fibroblasts.
Collapse
Affiliation(s)
- Chongru He
- Department of Orthopedics, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai 200433, P.R. China
| | - Dahe Li
- Department of Orthopedics, The 960th Hospital of People's Liberation Army, Tai'an, Shandong 271000, P.R. China
| | - Jinwei Gao
- Department of Orthopedics, Jiangyan Traditional Chinese Medicine Hospital, Taizhou, Jiangsu 225500, P.R. China
| | - Jia Li
- Department of Orthopedics, Jiangyan Traditional Chinese Medicine Hospital, Taizhou, Jiangsu 225500, P.R. China
| | - Zhongtang Liu
- Department of Orthopedics, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai 200433, P.R. China
| | - Weidong Xu
- Department of Orthopedics, Changhai Hospital Affiliated to The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
5
|
Zhang W, Zhang W, Zhang X, Lu Q, Cai H, Tan WS. Hyperoside promotes ex vivo expansion of hematopoietic stem/progenitor cells derived from cord blood by reducing intracellular ROS level. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Mokhtari S, Baptista PM, Vyas DA, Freeman CJ, Moran E, Brovold M, Llamazares GA, Lamar Z, Porada CD, Soker S, Almeida-Porada G. Evaluating Interaction of Cord Blood Hematopoietic Stem/Progenitor Cells with Functionally Integrated Three-Dimensional Microenvironments. Stem Cells Transl Med 2018; 7:271-282. [PMID: 29473346 PMCID: PMC5827742 DOI: 10.1002/sctm.17-0157] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/26/2017] [Indexed: 12/28/2022] Open
Abstract
Despite advances in ex vivo expansion of cord blood‐derived hematopoietic stem/progenitor cells (CB‐HSPC), challenges still remain regarding the ability to obtain, from a single unit, sufficient numbers of cells to treat an adolescent or adult patient. We and others have shown that CB‐HSPC can be expanded ex vivo in two‐dimensional (2D) cultures, but the absolute percentage of the more primitive stem cells decreases with time. During development, the fetal liver is the main site of HSPC expansion. Therefore, here we investigated, in vitro, the outcome of interactions of primitive HSPC with surrogate fetal liver environments. We compared bioengineered liver constructs made from a natural three‐dimensional‐liver‐extracellular‐matrix (3D‐ECM) seeded with hepatoblasts, fetal liver‐derived (LvSt), or bone marrow‐derived stromal cells, to their respective 2D culture counterparts. We showed that the inclusion of cellular components within the 3D‐ECM scaffolds was necessary for maintenance of HSPC viability in culture, and that irrespective of the microenvironment used, the 3D‐ECM structures led to the maintenance of a more primitive subpopulation of HSPC, as determined by flow cytometry and colony forming assays. In addition, we showed that the timing and extent of expansion depends upon the biological component used, with LvSt providing the optimal balance between preservation of primitive CB HSPC and cellular differentiation. Stem Cells Translational Medicine2018;7:271–282
Collapse
Affiliation(s)
- Saloomeh Mokhtari
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Pedro M Baptista
- Instituto de Investigacion Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.,CIBERehd, Zaragoza, Spain.,Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Madrid, Spain.,Departamento de Bioingeniería, Universidad Carlos III de Madrid, Spain Aragon Health Sciences Institute (IACS), Zaragoza, Spain
| | - Dipen A Vyas
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | | | - Emma Moran
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Matthew Brovold
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | | | - Zanneta Lamar
- Hematology Oncology, Wake Forest Health Sciences, Winston-Salem, North Carolina, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
7
|
Liu Y, Zhang C, Li Z, Wang C, Jia J, Gao T, Hildebrandt G, Zhou D, Bondada S, Ji P, St Clair D, Liu J, Zhan C, Geiger H, Wang S, Liang Y. Latexin Inactivation Enhances Survival and Long-Term Engraftment of Hematopoietic Stem Cells and Expands the Entire Hematopoietic System in Mice. Stem Cell Reports 2017; 8:991-1004. [PMID: 28330618 PMCID: PMC5390104 DOI: 10.1016/j.stemcr.2017.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
Natural genetic diversity offers an important yet largely untapped resource to decipher the molecular mechanisms regulating hematopoietic stem cell (HSC) function. Latexin (Lxn) is a negative stem cell regulatory gene identified on the basis of genetic diversity. By using an Lxn knockout mouse model, we found that Lxn inactivation in vivo led to the physiological expansion of the entire hematopoietic hierarchy. Loss of Lxn enhanced the competitive repopulation capacity and survival of HSCs in a cell-intrinsic manner. Gene profiling of Lxn-null HSCs showed altered expression of genes enriched in cell-matrix and cell-cell interactions. Thrombospondin 1 (Thbs1) was a potential downstream target with a dramatic downregulation in Lxn-null HSCs. Enforced expression of Thbs1 restored the Lxn inactivation-mediated HSC phenotypes. This study reveals that Lxn plays an important role in the maintenance of homeostatic hematopoiesis, and it may lead to development of safe and effective approaches to manipulate HSCs for clinical benefit.
Collapse
Affiliation(s)
- Yi Liu
- Department of Physiology, University of Kentucky, Lexington, KY 40536, USA
| | - Cuiping Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Health Sciences Research Building Room 340, 1095 V.A. Drive, Lexington, KY 40536, USA
| | - Zhenyu Li
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Department of Cancer Biostatistics, University of Kentucky, Lexington, KY 40536, USA
| | - Jianhang Jia
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Tianyan Gao
- Department of Molecular & Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | - Gerhard Hildebrandt
- Department of Internal Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Daohong Zhou
- Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Subbarao Bondada
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536, USA
| | - Peng Ji
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA
| | - Daret St Clair
- Department of Toxicology and Cancer Biology, University of Kentucky, Health Sciences Research Building Room 340, 1095 V.A. Drive, Lexington, KY 40536, USA
| | - Jinze Liu
- Department of Computer Science, University of Kentucky, Lexington, KY 40536, USA
| | - Changguo Zhan
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Hartmut Geiger
- Cincinnati Children's Hospital Medical Center, Experimental Hematology and Cancer Biology, Cincinnati, OH 45229, USA; Institute for Molecular Medicine, University of Ulm, 89081 Ulm, Germany
| | - Shuxia Wang
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Ying Liang
- Department of Toxicology and Cancer Biology, University of Kentucky, Health Sciences Research Building Room 340, 1095 V.A. Drive, Lexington, KY 40536, USA.
| |
Collapse
|
8
|
Diogo MM, da Silva CL, Cabral JMS. Separation Technologies for Stem Cell Bioprocessing. CELL ENGINEERING 2014. [DOI: 10.1007/978-94-007-7196-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Flores-Guzmán P, Fernández-Sánchez V, Mayani H. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med 2013; 2:830-8. [PMID: 24101670 DOI: 10.5966/sctm.2013-0071] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play key roles in the production of mature blood cells and in the biology and clinical outcomes of hematopoietic transplants. The numbers of these cells, however, are extremely low, particularly in umbilical cord blood (UCB); thus, ex vivo expansion of human UCB-derived HSCs and HPCs has become a priority in the biomedical field. Expansion of progenitor cells can be achieved by culturing such cells in the presence of different combinations of recombinant stimulatory cytokines; in contrast, expansion of actual HSCs has proved to be more difficult because, in addition to needing recombinant cytokines, HSCs seem to deeply depend on the presence of stromal cells and/or elements that promote the activation of particular self-renewal signaling pathways. Hence, there is still controversy regarding the optimal culture conditions that should be used to achieve this. To date, UCB transplants using ex vivo-expanded cells have already been performed for the treatment of different hematological disorders, and although results are still far from being optimal, the advances are encouraging. Recent studies suggest that HSCs may also give rise to nonhematopoietic cells, such as neural, cardiac, mesenchymal, and muscle cells. Such plasticity and the possibility of producing nonhematopoietic cells at the clinical scale could bring new alternatives for the treatment of neural, metabolic, orthopedic, cardiac, and neoplastic disorders. Once standardized, ex vivo expansion of human HSCs/HPCs will surely have a positive impact in regenerative medicine.
Collapse
Affiliation(s)
- Patricia Flores-Guzmán
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico
| | | | | |
Collapse
|
10
|
Yao CL, Hsu SC, Hwang SM, Lee WC, Chiou TJ. A stromal-free, serum-free system to expand ex vivo hematopoietic stem cells from mobilized peripheral blood of patients with hematologic malignancies and healthy donors. Cytotherapy 2013; 15:1126-35. [PMID: 23768928 DOI: 10.1016/j.jcyt.2013.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/26/2013] [Accepted: 04/04/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND AIMS The number of hematopoietic stem cells (HSCs) is critical for transplantation. The ex vivo expansion of mobilized peripheral blood (MPB) HSCs is of clinical value for reconstitution to meet clinical need. METHODS This study proposed a simple, defined, stromal-free and serum-free culture system (SF-HSC medium) for clinical use, which is composed of Iscove's modified Dulbecco's medium, cytokine cocktails and serum substitutes. This study also characterized the cellular properties of expanded MPB CD133(+) HSCs from patients with hematologic malignancies and healthy donors by surface antigen, colony-forming cell, long-term culture-initiating cell, gene expression and in vivo engraftment assays. RESULTS The expanded fold values of CD45(+) white blood cells and CD34(+), CD133(+), CD34(+)CD38(-), CD133(+)CD38(-), CD34(+)CD133(+), colony-forming and long-term culture-initiating cells at the end of 7-day culture from CD133(+) MPB of hematologic malignancies were 9.4-fold, 5.9-fold, 4.0-fold, 35.8-fold, 21.9-fold, 3.8-fold, 11.8-fold and 6.7-fold, and values from healthy donor CD133(+) MPB were 20.7-fold, 14.5-fold, 8.5-fold, 83.8-fold, 37.3-fold, 6.2-fold, 19.1-fold and 14.6-fold. The high enrichment of CD38(-) cells, which were either CD34(+) or CD133(+), sustained the proliferation of early uncommitted HSCs. The expanded cells showed high levels of messenger RNA expression of HOBX4, ABCG2 and HTERT and had the in vivo ability to re-populate NOD/SCID mice. CONCLUSIONS Our results demonstrated that an initial, limited number of MPB CD133(+) HSCs could be expanded functionally in SF-HSC medium. We believe that this serum-free expansion technique can be employed in both basic research and clinical transplantation.
Collapse
Affiliation(s)
- Chao-Ling Yao
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| | | | | | | | | |
Collapse
|
11
|
dos Santos FF, Andrade PZ, da Silva CL, Cabral JMS. Bioreactor design for clinical-grade expansion of stem cells. Biotechnol J 2013; 8:644-54. [PMID: 23625834 DOI: 10.1002/biot.201200373] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 01/24/2023]
Abstract
The many clinical trials currently in progress will likely lead to the widespread use of stem cell-based therapies for an extensive variety of diseases, either in autologous or allogeneic settings. With the current pace of progress, in a few years' time, the field of stem cell-based therapy should be able to respond to the market demand for safe, robust and clinically efficient stem cell-based therapeutics. Due to the limited number of stem cells that can be obtained from a single donor, one of the major challenges on the roadmap for regulatory approval of such medicinal products is the expansion of stem cells using Good Manufacturing Practices (GMP)-compliant culture systems. In fact, manufacturing costs, which include production and quality control procedures, may be the main hurdle for developing cost-effective stem cell therapies. Bioreactors provide a viable alternative to the traditional static culture systems in that bioreactors provide the required scalability, incorporate monitoring and control tools, and possess the operational flexibility to be adapted to the differing requirements imposed by various clinical applications. Bioreactor systems face a number of issues when incorporated into stem cell expansion protocols, both during development at the research level and when bioreactors are used in on-going clinical trials. This review provides an overview of the issues that must be confronted during the development of GMP-compliant bioreactors systems used to support the various clinical applications employing stem cells.
Collapse
Affiliation(s)
- Francisco F dos Santos
- Department of Bioengineering and IBB - Institute for Biotechnology and Bioengineering - Instituto Superior Técnico IST, Technical University of Lisbon, Lisboa, Portugal
| | | | | | | |
Collapse
|
12
|
Andrade PZ, de Soure AM, Dos Santos F, Paiva A, Cabral JMS, da Silva CL. Ex vivo expansion of cord blood haematopoietic stem/progenitor cells under physiological oxygen tensions: clear-cut effects on cell proliferation, differentiation and metabolism. J Tissue Eng Regen Med 2013; 9:1172-81. [PMID: 23596131 DOI: 10.1002/term.1731] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/14/2012] [Accepted: 01/29/2013] [Indexed: 11/07/2022]
Abstract
Physiologically low O(2) tensions are believed to regulate haematopoietic stem cell (HSC) functions in the bone marrow (BM; 0-5%). In turn, placenta and umbilical cord are characterized by slightly higher physiological O(2) tensions (3-10%). We hypothesized that O(2) concentrations within this range may be exploited to augment the ex vivo expansion/maintenance of HSCs from umbilical cord (placental) blood (UCB). The expansion of UCB CD34(+) -enriched cells was studied in co-culture with BM mesenchymal stem/stromal cells (MSCs) under 2%, 5%, 10% and 21% O(2). 2% O(2) resulted in a significantly lower CD34(+) cell expansion (25-fold vs 60-, 64- and 92-fold at day 10 for 5%, 21%, 10% O(2), respectively). In turn, 10% O(2) promoted the highest CD34(+) CD90(+) cell expansion, reaching 22 ± 5.4- vs 5.6 ± 2.4- and 5.7 ± 2.0-fold for 2%, 5% and 21% O(2), respectively, after 14 days. Similar differentiation patterns were observed under different O(2) tensions, being primarily shifted towards the neutrophil lineage. Cell division kinetics revealed a higher proliferative status of cells cultured under 10% and 21% vs 2% O(2). Expectedly, higher specific glucose consumption and lactate production rates were determined at 2% O(2) when compared to higher O(2) concentrations (5-21%). Overall, these results suggest that physiological oxygen tensions, in particular 10% O(2), can maximize the ex vivo expansion of UCB stem/progenitor cells in co-culture with BM MSCs. Importantly, these studies highlight the importance of exploiting knowledge of the intricate microenvironment of the haematopoietic niche towards the definition of efficient and controlled ex vivo culture systems capable of generating large HSCs numbers for clinical applications.
Collapse
Affiliation(s)
- Pedro Z Andrade
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisbon, Portugal
| | - António M de Soure
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisbon, Portugal
| | - Francisco Dos Santos
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisbon, Portugal
| | - Artur Paiva
- Histocompatibility Centre of Coimbra, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisbon, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Technical University of Lisbon, Portugal
| |
Collapse
|
13
|
Andrade PZ, dos Santos F, Cabral JMS, da Silva CL. Stem cell bioengineering strategies to widen the therapeutic applications of haematopoietic stem/progenitor cells from umbilical cord blood. J Tissue Eng Regen Med 2013; 9:988-1003. [PMID: 23564692 DOI: 10.1002/term.1741] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 12/11/2022]
Abstract
Umbilical cord blood (UCB) transplantation has observed a significant increase in recent years, due to the unique features of UCB haematopoietic stem/progenitor cells (HSCs) for the treatment of blood-related disorders. However, the low cell numbers available per UCB unit significantly impairs the widespread use of this source for transplantation of adult patients, resulting in graft failure, delayed engraftment and delayed immune reconstitution. In order to overcome this issue, distinct approaches are now being considered in clinical trials, such as double-UCB transplantation, intrabone injection or ex vivo expansion. In this article the authors review the current state of the art, future trends and challenges on the ex vivo expansion of UCB HSCs, focusing on culture parameters affecting the yield and quality of the expanded HSC grafts: novel HSC selection schemes prior to cell culture, cytokine/growth factor cocktails, the impact of biochemical factors (e.g. O2 ) or the addition of supportive cells, e.g. mesenchymal stem/stromal cell (MSC)-based feeder layers) were addressed. Importantly, a critical challenge in cellular therapy is still the scalability, reproducibility and control of the expansion process, in order to meet the clinical requirements for therapeutic applications. Efficient design of bioreactor systems and operation modes are now the focus of many bioengineers, integrating the increasing 'know-how' on HSC biology and physiology, while complying with the GMP standards for the production of cellular products, i.e. through the use of commercially available, highly controlled, disposable technologies.
Collapse
Affiliation(s)
- Pedro Z Andrade
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal.,Cell2b, Advanced Therapeutics, Biocant Park, Cantanhede, Portugal
| | - Francisco dos Santos
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal.,Cell2b, Advanced Therapeutics, Biocant Park, Cantanhede, Portugal
| | - Joaquim M S Cabral
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal
| | - Cláudia L da Silva
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Instituto Superior Técnico, Lisboa, Portugal
| |
Collapse
|
14
|
Csaszar E, Cohen S, Zandstra PW. Blood stem cell products: Toward sustainable benchmarks for clinical translation. Bioessays 2013; 35:201-10. [DOI: 10.1002/bies.201200118] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Abstract
Abstract
Acquired aplastic anemia (AA) is an immune-mediated bone marrow (BM) failure attacked by autoreactive effector T cells and BM is the main target organ. CD4+CD25+ regulatory T cells (Tregs) were believed to control development and progression of autoimmunity by suppressing autoreactive effector T cells, but little was known regarding the function of Tregs in AA. Our study demonstrated that both peripheral blood (PB) and BM had decreased frequencies of Tregs, accompanied with a reversed lower ratio of Treg frequencies between BM and PB in AA. PB Tregs in AA had impaired migratory ability because of lower CXCR4 (but not for CXCR7) expression. Interestingly, we first showed that impairment of Treg-mediated immunosuppression was intrinsic to Tregs, rather than resistance of effector T cells to suppression in AA by coculture assays and criss-cross experiments in vitro. Furthermore, Tregs in AA were less able to inhibit interferon-γ production by effector T cells. Defective immunosuppression by Tregs could contribute to impaired hematopoiesis conducted by effector T cells in vitro. Our study provided powerful evidence that impairment of Tregs played a critical role in the pathophysiology of AA. Thus, patients with AA might greatly benefit from a Treg-oriented immunosuppressive strategy.
Collapse
|
16
|
Diogo MM, da Silva CL, Cabral JMS. Separation technologies for stem cell bioprocessing. Biotechnol Bioeng 2012; 109:2699-709. [PMID: 22887094 DOI: 10.1002/bit.24706] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 02/06/2023]
Abstract
Stem cells have been the focus of an intense research due to their potential in Regenerative Medicine, drug discovery, toxicology studies, as well as for fundamental studies on developmental biology and human disease mechanisms. To fully accomplish this potential, the successful application of separation processes for the isolation and purification of stem cells and stem cell-derived cells is a crucial issue. Although separation methods have been used over the past decades for the isolation and enrichment of hematopoietic stem/progenitor cells for transplantation in hemato-oncological settings, recent achievements in the stem cell field have created new challenges including the need for novel scalable separation processes with a higher resolution and more cost-effective. Important examples are the need for high-resolution methods for the separation of heterogeneous populations of multipotent adult stem cells to study their differential biological features and clinical utility, as well as for the depletion of tumorigenic cells after pluripotent stem cell differentiation. Focusing on these challenges, this review presents a critical assessment of separation processes that have been used in the stem cell field, as well as their current and potential applications. The techniques are grouped according to the fundamental principles that govern cell separation, which are defined by the main physical, biophysical, and affinity properties of cells. A special emphasis is given to novel and promising approaches such as affinity-based methods that take advantage of the use of new ligands (e.g., aptamers, lectins), as well as to novel biophysical-based methods requiring no cell labeling and integrated with microscale technologies.
Collapse
Affiliation(s)
- Maria Margarida Diogo
- Department of Bioengineering and Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
| | | | | |
Collapse
|
17
|
Flores-Guzman P, Fernandez-Sanchez V, Valencia-Plata I, Arriaga-Pizano L, Alarcon-Santos G, Mayani H. Comparative in vitro analysis of different hematopoietic cell populations from human cord blood: in search of the best option for clinically oriented ex vivo cell expansion. Transfusion 2012; 53:668-78. [PMID: 22845003 DOI: 10.1111/j.1537-2995.2012.03799.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Ex vivo expansion of hematopoietic stem and progenitor cells has become a priority in the experimental hematology arena. In this study we have obtained different hematopoietic cell populations from umbilical cord blood and simultaneously assessed their proliferation and expansion kinetics. Our main goal was to determine which one of these cell populations would be more suitable for clinical-grade ex vivo expansion. STUDY DESIGN AND METHODS By using immunomagnetic-negative selection and cell sorting, five cell populations were obtained: unseparated mononuclear cells (MNCs; I); two lineage-negative cell populations, one enriched for CD34+ CD38+ cells (II) and the other enriched for CD34+ CD38- cells (III); and two CD34+ cell fractions purified by fluorescence-activated cell sorting, one containing CD34+ CD38+ cells (IV) and the other containing CD34+ CD38- cells (V). The kinetics of such populations were analyzed in both relative and absolute terms. RESULTS No expansion was observed in Population I; in contrast, significant increments in the numbers of both progenitor and stem cells were observed in cultures of Populations II to V. Population V (reaching 12,800-fold increase in total cells; 1280-fold increase in CD34+ cells; 490-fold increase in colony-forming cells; and 12-fold increase in long-term culture-initiating cells) showed the highest proliferation and expansion potentials. CONCLUSION Our study suggests that the cell fraction containing greater than 98% CD34+ CD38- cells would be the ideal one for large-scale ex vivo expansion; however, based on our data, it seems that, except for MNCs, all other cell populations could also be used as input cell fractions.
Collapse
Affiliation(s)
- Patricia Flores-Guzman
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, Mexico City, Mexico
| | | | | | | | | | | |
Collapse
|
18
|
Sousa AF, Andrade PZ, Pirzgalska RM, Galhoz TM, Azevedo AM, da Silva CL, Aires-Barros MR, Cabral JMS. A novel method for human hematopoietic stem/progenitor cell isolation from umbilical cord blood based on immunoaffinity aqueous two-phase partitioning. Biotechnol Lett 2011; 33:2373-7. [PMID: 21858668 DOI: 10.1007/s10529-011-0727-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 08/05/2011] [Indexed: 11/27/2022]
Abstract
A novel cell separation process based on immunoaffinity aqueous two phase systems is presented to isolate and purify CD34(+) stem/progenitor cells directly from the whole umbilical cord blood (UCB). A system, composed of polyethylene glycol and dextran, was evaluated for the selective recovery of CD34(+) cells from UCB. A monoclonal antibody against the CD34 surface antigen was used for the direct partitioning of CD34(+) cells in UCB to the PEG-rich phase. The initial population of CD34(+) cells (0.2% of the initial sample) was enriched to values up to 42% in a single partitioning step, while the majority of contaminant cells were partitioned to the dextran-rich phase (1.37 × 10(-2) < K(P) < 2.76 × 10(-2)). This novel selection method allowed a recovery yield of 95% of CD34(+) cells with a purification factor of 245 and is expected to pave a new way to purify hematopoietic stem/progenitor cells for use in a variety of clinical settings.
Collapse
Affiliation(s)
- António F Sousa
- Department of Bioengineering, Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | | | | | | | |
Collapse
|