1
|
Yin X, Yang W, Xin M, Han Q, Guan S, He J. Unveiling the molecular mechanisms of recurrent miscarriage through endoplasmic reticulum stress related gene expression. Sci Rep 2025; 15:1452. [PMID: 39789034 PMCID: PMC11717954 DOI: 10.1038/s41598-024-77642-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/24/2024] [Indexed: 01/12/2025] Open
Abstract
Recurrent miscarriage (RM) is a reproductive disorder affecting couples worldwide. The underlying molecular mechanisms remain elusive, even though emerging evidence has implicated endoplasmic reticulum stress (ERS). We investigated RM- and ERS-related genes to develop a diagnostic model that can enhance predictive ability. We utilized the R package GEO query to extract and process Gene Expression Omnibus data, applying batch correction, normalization, and differential gene expression analysis with limma. ERS-related differentially expressed genes (ERSRGs) were identified through Gene Ontology and Kyoto Encyclopedia of genes and genomes analyses, and their diagnostic potential was assessed. Diagnostic models were developed using logistic regression, support vector machines, and least absolute shrinkage and selection operators, complemented by immune infiltration analysis and regulatory network construction. Integrated analysis revealed 1395 differentially expressed genes (DEGs), including 626 upregulated and 769 downregulated genes. Seventeen ERSRGs were identified. KEAP1 and YIPF5 displayed high diagnostic accuracy (area under the curve [AUC] > 0.9). Gene Ontology and Kyoto Encyclopedia of genes and genomes analyses highlighted the role of ESRDEGs in cellular responses to ERS, protein processing, and apoptosis. Diagnostic models demonstrated robust predictive performance (AUC > 0.9). A molecular interaction was found between RM and the ERS response, and the identified ESRDEGs could serve as potential biomarkers for diagnosis.
Collapse
Affiliation(s)
- Xiaodan Yin
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Wei Yang
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Mingwei Xin
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Qian Han
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Siqi Guan
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China
| | - Junqin He
- Department of TCM, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, 100026, China.
| |
Collapse
|
2
|
Cui Z, Amevor FK, Tang B, Qin S, Lan X, Liu L, Liu A. Gga-miR-34b-3p targets calbindin 1 to regulate cellular calcium ion homeostasis during eggshell calcification in chicken uterus. Int J Biol Macromol 2025; 286:138520. [PMID: 39647741 DOI: 10.1016/j.ijbiomac.2024.138520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Improving eggshell quality in poultry is a key breeding goal, and identifying genetic markers that regulate eggshell calcification is essential for accelerating genetic advancements. This study focused on identifying the keys genes and molecular mechanisms that regulate eggshell calcification in the chicken uterus. The results showed that rapid eggshell mineralization began approximately 4 h after the egg enters the uterus, corresponding with observed morphological and histological changes in the uterine tissue. This is associated with increased energy demands and the production of ion transport proteins. Transcriptome analysis identified calbindin-1 (CALB1), ATPase plasma membrane Ca2+ transporting 2 (ATP2B2), and gga-miR-34b-3p as differentially expressed during eggshell formation. CALB1 and ATP2B2 were predicted targets of gga-miR-34b-3p, with roles in maintaining cellular calcium ion balance. A dual-luciferase reporter assay confirmed that gga-miR-34b-3p directly targeted inhibited CALB1 expression, although no significant changes in the luciferase activity were observed with the co-transfection of ATP2B2 wild-type and gga-miR-34b-3p mimic. Validation experiments showed significant increases in CALB1 and ATP2B2 mRNA and protein levels of CALB1 and ATP2B2 in the chicken uterus during eggshell calcification, with CALB1 predominantly expressed in the cytoplasm of uterine tubular gland cells. Furthermore, primary uterine tubular gland cells, identified using immunofluorescence for Cytokertin 18, demonstrated that silencing CALB1 and ATP2B2 increased intracellular Ca2+ concentration in these cells. Taken together, these findings suggest that the gga-miR-34b-3p/CALB1 regulatory axis maintains calcium ion homeostasis in the uterine tubular gland cells, to facilitate continuous and efficient eggshell calcification and thereby enhancing eggshell quality in chickens.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Bincheng Tang
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China
| | - Simeng Qin
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China.
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China.
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Beibei, 400715 Chongqing, PR China.
| |
Collapse
|
3
|
Attig J, Pape J, Doglio L, Kazachenka A, Ottina E, Young GR, Enfield KS, Aramburu IV, Ng KW, Faulkner N, Bolland W, Papayannopoulos V, Swanton C, Kassiotis G. Human endogenous retrovirus onco-exaptation counters cancer cell senescence through calbindin. J Clin Invest 2023; 133:e164397. [PMID: 37192000 PMCID: PMC10348765 DOI: 10.1172/jci164397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 05/11/2023] [Indexed: 05/17/2023] Open
Abstract
Increased levels and diversity of human endogenous retrovirus (HERV) transcription characterize most cancer types and are linked with disease outcomes. However, the underlying processes are incompletely understood. Here, we show that elevated transcription of HERVH proviruses predicted survival of lung squamous cell carcinoma (LUSC) and identified an isoform of CALB1, encoding calbindin, ectopically driven by an upstream HERVH provirus under the control of KLF5, as the mediator of this effect. HERVH-CALB1 expression was initiated in preinvasive lesions and associated with their progression. Calbindin loss in LUSC cell lines impaired in vitro and in vivo growth and triggered senescence, consistent with a protumor effect. However, calbindin also directly controlled the senescence-associated secretory phenotype (SASP), marked by secretion of CXCL8 and other neutrophil chemoattractants. In established carcinomas, CALB1-negative cancer cells became the dominant source of CXCL8, correlating with neutrophil infiltration and worse prognosis. Thus, HERVH-CALB1 expression in LUSC may display antagonistic pleiotropy, whereby the benefits of escaping senescence early during cancer initiation and clonal competition were offset by the prevention of SASP and protumor inflammation at later stages.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - George Kassiotis
- Retroviral Immunology
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
4
|
Potential Neuroprotective Role of Calretinin-N18 and Calbindin-D28k in the Retina of Adult Zebrafish Exposed to Different Wavelength Lights. Int J Mol Sci 2023; 24:ijms24021087. [PMID: 36674603 PMCID: PMC9862630 DOI: 10.3390/ijms24021087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 01/08/2023] Open
Abstract
The incidence rates of light-induced retinopathies have increased significantly in the last decades because of continuous exposure to light from different electronic devices. Recent studies showed that exposure to blue light had been related to the pathogenesis of light-induced retinopathies. However, the pathophysiological mechanisms underlying changes induced by light exposure are not fully known yet. In the present study, the effects of exposure to light at different wavelengths with emission peaks in the blue light range (400-500 nm) on the localization of Calretinin-N18 (CaR-N18) and Calbindin-D28K (CaB-D28K) in adult zebrafish retina are studied using double immunofluorescence with confocal laser microscopy. CaB-D28K and CaR-N18 are two homologous cytosolic calcium-binding proteins (CaBPs) implicated in essential process regulation in central and peripheral nervous systems. CaB-D28K and CaR-N18 distributions are investigated to elucidate their potential role in maintaining retinal homeostasis under distinct light conditions and darkness. The results showed that light influences CaB-D28K and CaR-N18 distribution in the retina of adult zebrafish, suggesting that these CaBPs could be involved in the pathophysiology of retinal damage induced by the short-wavelength visible light spectrum.
Collapse
|
5
|
Zhou X, Chen Z, Xiao L, Zhong Y, Liu Y, Wu J, Tao H. Intracellular calcium homeostasis and its dysregulation underlying epileptic seizures. Seizure 2022; 103:126-136. [DOI: 10.1016/j.seizure.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
|
6
|
Shen J, Wang L, Wang X, Xie J, Yao T, Yu Y, Wang Q, Ding Z, Zhang J, Zhang M, Xu L. Cypermethrin induces apoptosis of Sertoli cells through the endoplasmic reticulum pathway. Toxicol Ind Health 2022; 38:399-407. [PMID: 35610186 DOI: 10.1177/07482337221104905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cypermethrin, an extensively used pyrethroid pesticide, is regarded as one of many endocrine-disrupting chemicals (EDCs) with anti-androgenic activity to damage male reproductive systems. We previously found cypermethrin-induced apoptosis in mouse Sertoli cells TM4. We hypothesized cypermethrin-induced TM4 apoptosis by the endoplasmic reticulum (ER) pathway. This study aimed to explore the roles of the ER pathway in cypermethrin-induced apoptosis in TM4 cells. The cells were treated with cypermethrin for 24 h at various concentrations (0 µM, 10 µM, 20 µM, 40 µM, and 80 µM). Flow cytometry was used to test for apoptosis. Western blot was used to test protein expressions in the ER stress pathway. The results showed that the apoptosis rate of TM4 cells increased with increased concentrations of cypermethrin, and a significant difference was detected in the 80-μM group. The protein expressions of glucose-regulated protein 78 (GRP78), protein kinase R (PKR)-like ER kinase (PERK), p-PERK, α subunit of eukaryotic initiation factor (eIF2α), p-eIF2α, activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), caspase-12, caspase-9, and caspase-3 increased with increased concentrations of cypermethrin . The results suggested cypermethrin-induced apoptosis in TM4 cells regulated by the ER pathway involving PERK-eIF2α-ATF4-CHOP. The study provides a new insight into cypermethrin-induced apoptosis in Sertoli cells.
Collapse
Affiliation(s)
- Junyu Shen
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Lushan Wang
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Xuxu Wang
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Jiafei Xie
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Tingting Yao
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Yue Yu
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Qi Wang
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Zhen Ding
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Jinpeng Zhang
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Meirong Zhang
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| | - Lichun Xu
- Key Lab of Environment and Health, Key Laboratory of Human Genetics and Environmental Medicine, School of Public Health, 38044Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Shukla M, Vincent B. The multi-faceted impact of methamphetamine on Alzheimer's disease: From a triggering role to a possible therapeutic use. Ageing Res Rev 2020; 60:101062. [PMID: 32304732 DOI: 10.1016/j.arr.2020.101062] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/05/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022]
Abstract
Although it has been initially synthesized for therapeutic purposes and currently FDA-approved and prescribed for obesity, attention-deficit/hyperactivity disorder, narcolepsy and depression, methamphetamine became a recreational drug that is nowadays massively manufactured illegally. Because it is a powerful and extremely addictive psychotropic agent, its abuse has turned out to become a major health problem worldwide. Importantly, the numerous effects triggered by this drug induce neurotoxicity in the brain ultimately leading to serious neurological impairments, tissue damage and neuropsychological disturbances that are reminiscent to most of the symptoms observed in Alzheimer's disease and other pathological manifestations in aging brain. In this context, there is a growing number of compelling evidence linking methamphetamine abuse with a higher probability of developing premature Alzheimer's disease and consequent neurodegeneration. This review proposes to establish a broad assessment of the effects that this drug can generate at the cellular and molecular levels in connection with the development of the age-related Alzheimer's disease. Altogether, the objective is to warn against the long-term effects that methamphetamine abuse may convey on young consumers and the increased risk of developing this devastating brain disorder at later stages of their lives, but also to discuss a more recently emerging concept suggesting a possible use of methamphetamine for treating this pathology under proper and strictly controlled conditions.
Collapse
|
8
|
Schwaller B. Cytosolic Ca 2+ Buffers Are Inherently Ca 2+ Signal Modulators. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035543. [PMID: 31308146 DOI: 10.1101/cshperspect.a035543] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For precisely regulating intracellular Ca2+ signals in a time- and space-dependent manner, cells make use of various components of the "Ca2+ signaling toolkit," including Ca2+ entry and Ca2+ extrusion systems. A class of cytosolic Ca2+-binding proteins termed Ca2+ buffers serves as modulators of such, mostly short-lived Ca2+ signals. Prototypical Ca2+ buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Although initially considered to function as pure Ca2+ buffers, that is, as intracellular Ca2+ signal modulators controlling the shape (amplitude, decay, spread) of Ca2+ signals, evidence has accumulated that calbindin-D28k and calretinin have additional Ca2+ sensor functions. These other functions are brought about by direct interactions with target proteins, thereby modulating their targets' function/activity. Dysregulation of Ca2+ buffer expression is associated with several neurologic/neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. In some cases, the presence of these proteins is presumed to confer a neuroprotective effect, as evidenced in animal models of Parkinson's or Alzheimer's disease.
Collapse
Affiliation(s)
- Beat Schwaller
- Department of Anatomy, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
9
|
Park SY, Yoo YM, Jung EM, Jeung EB. Distribution of and steroid hormone effects on calbindin-D 9k in the immature rat brain. Brain Res Bull 2019; 152:225-235. [PMID: 31357009 DOI: 10.1016/j.brainresbull.2019.07.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/08/2019] [Accepted: 07/23/2019] [Indexed: 01/06/2023]
Abstract
Calbindin-D9k (CaBP-9k), one of the major calcium-binding and calcium-buffering proteins, is important in the physiological functioning of organs. The neuroanatomical localization of CaBP-9k in the rodent brain has not been reported; thus, this study investigated the neuroanatomical distribution of CaBP-9k and the regulation of CaBP-9k expression on steroid hormones in the immature rat brain. To confirm the influence of steroid hormones on CaBP-9k expression, immature female rats were injected for 5 days with estrogen (E2), progesterone (P4), dexamethasone (DEX), and their antagonists (ICI 182, 780 and RU 486). The localization and expression of the CaBP-9k protein in brain regions were identified by immunofluorescence and western blot assays, respectively. We observed that CaBP-9k expression was especially strong in hypothalamus, cerebellum, and brain stem. In addition, CaBP-9k was colocalized with mature-, GABAergic, dopaminergic, and oxytocinergic neurons. We also observed that the CaBP-9k protein level was significantly increased by P4 and reversed by antagonist RU 486 treatment in immature rat brain. In summary, CaBP-9k positive cells have a wide distribution in the immature rat brain, and CaBP-9k expression is regulated by P4. We suggest that CaBP-9k expression regulated by steroid hormone may serve as an important regulator of cytosolic calcium concentration in the brain.
Collapse
Affiliation(s)
- Seon Young Park
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea
| | - Yeong-Min Yoo
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea
| | - Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea.
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, 362-763, Republic of Korea.
| |
Collapse
|
10
|
Fischer N, Johnson Chacko L, Majerus A, Potrusil T, Riechelmann H, Schmutzhard J, Schrott-Fischer A, Glueckert R. Age-Dependent Calcium-Binding Protein Expression in the Spiral Ganglion and Hearing Performance of C57BL/6J and 129/SvJ Mice. ORL J Otorhinolaryngol Relat Spec 2019; 81:138-154. [PMID: 31170714 DOI: 10.1159/000499472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/08/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Calcium-binding proteins in neurons buffer intracellular free Ca2+ ions, which interact with proteins controlling enzymatic and ion channel activity. The heterogeneous distribution of calretinin, calbindin, and parvalbumin influences calcium homeostasis, and calcium-related neuronal processes play an important role in neuronal aging and degeneration. This study evaluated age-related changes in calretinin, calbindin, and parvalbumin immune reactivity in spiral ganglion cells. METHODS A total of 16 C57BL/6J and 16 129/SvJ mice at different ages (2, 4, 7, and 12 months) were included in the study. Hearing thresholds were assessed using auditory brainstem response before inner ears were excised for further evaluation. Semiquantitative immunohistochemistry for the aforementioned calcium-binding proteins was performed at the cellular level. RESULTS The hearing thresholds of C57BL/6J and 129/SvJ mice increased significantly by 7 months of age. The average immune reactivity of calbin-din as well as the relative number of positive cells increased significantly with aging, but no significant alterations in calretinin or parvalbumin were observed. CONCLUSIONS Upregulation of calbindin could serve as a protection to compensate for functional deficits that occur with aging. Expression of both calretinin and parvalbumin seem to be stabilizing factors in murine inner ears up to the age of 12 months in C57BL/6J and 129/SvJ mice.
Collapse
Affiliation(s)
- Natalie Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Lejo Johnson Chacko
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Alexandra Majerus
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Thomas Potrusil
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria
| | | | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, Innsbruck, Austria.,Department of Otorhinolaryngology, Tirol Kliniken, University Clinics of Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
Ahn C, Lee JH, Kim JW, Park MJ, Lee SS, Jeung EB. Alleviation effects of natural volatile organic compounds from Pinus densiflora and Chamaecyparis obtusa on systemic and pulmonary inflammation. Biomed Rep 2018; 9:405-414. [PMID: 30402225 PMCID: PMC6200960 DOI: 10.3892/br.2018.1147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/06/2018] [Indexed: 01/14/2023] Open
Abstract
Chamaecyparis obtusa (C. obtusa) and Pinus densiflora (P. densiflora) have been traditionally used as antibiotic, antinociceptive and anti-inflammatory agents in Asian folk medicine. Recent studies have demonstrated antioxidant, antiproliferative and anti-inflammatory effects of C. obtusa and P. densiflora extracts. In the present study, volatile organic compounds (VOCs) of C. obtusa and P. densiflora were examined to determine whether they have anti-inflammatory capabilities. To evaluate the anti-inflammatory effects of VOCs of C. obtusa and P. densiflora, lipopolysaccharide (LPS) was administered to the lung by nasal injection and to the whole body by intraperitoneal injection. Alterations in serum immunoglobulin E (IgE) levels and prostaglandin E2 (PgE2) were examined using ELISA. LPS-increased serum IgE and PgE2 levels were recovered by administration of dexamethasone and VOCs of C. obtusa and P. densiflora. Levels of mRNA expression of inflammatory cytokines were determined in an LPS-induced inflammation mouse model. Reverse transcription-quantitative polymerase chain reaction was used to determine the mRNA expression levels of cyclooxygenase 2, interleukin (IL)-1β, tumor necrosis factor (TNF)-α and IL-13 in peripheral blood mononuclear cells. The expression of all examined cytokine mRNAs increased by LPS was suppressed by dexamethasone and VOCs of C. obtusa and P. densiflora. Similar tendencies were observed in lung tissues and cells obtained via bronchoalveolar lavage. The results of the present study suggested that VOCs of C. obtusa and P. densiflora, through their immunosuppressive activities, may have therapeutic potential in the treatment or prevention of inflammation.
Collapse
Affiliation(s)
- Changhwan Ahn
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae-Hwan Lee
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae-Woo Kim
- Division of Wood Chemistry and Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Mi-Jin Park
- Division of Wood Chemistry and Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Sung-Suk Lee
- Division of Wood Chemistry and Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Eui-Bae Jeung
- Laboratory of Veterinary Biochemistry and Molecular Biology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
12
|
Isx9 Regulates Calbindin D28K Expression in Pancreatic β Cells and Promotes β Cell Survival and Function. Int J Mol Sci 2018; 19:ijms19092542. [PMID: 30150605 PMCID: PMC6165483 DOI: 10.3390/ijms19092542] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/13/2018] [Accepted: 08/19/2018] [Indexed: 11/21/2022] Open
Abstract
Pancreatic β-cell dysfunction and death contribute to the onset of diabetes, and novel strategies of β-cell function and survival under diabetogenic conditions need to be explored. We previously demonstrated that Isx9, a small molecule based on the isoxazole scaffold, drives neuroendocrine phenotypes by increasing the expression of genes required for β-cell function and improves glycemia in a model of β cell regeneration. We further investigated the role of Isx9 in β-cell survival. We find that Isx9 drives the expression of Calbindin-D28K (D28K), a key regulator of calcium homeostasis, and plays a cytoprotective role through its calcium buffering capacity in β cells. Isx9 increased the activity of the calcineurin (CN)/cytoplasmic nuclear factor of the activated T-cells (NFAT) transcription factor, a key regulator of D28K, and improved the recruitment of NFATc1, cAMP response element-binding protein (CREB), and p300 to the D28K promoter. We found that nutrient stimulation increased D28K plasma membrane enrichment and modulated calcium channel activity in order to regulate glucose-induced insulin secretion. Isx9-mediated expression of D28K protected β cells against chronic stress induced by serum withdrawal or chronic inflammation by reducing caspase 3 activity. Consequently, Isx9 improved human islet function after transplantation in NOD-SCID mice in a streptozotocin-induced diabetes model. In summary, Isx9 significantly regulates expression of genes relevant to β cell survival and function, and may be an attractive therapy to treat diabetes and improve islet function post-transplantation.
Collapse
|
13
|
Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior. Nat Neurosci 2017; 20:1694-1707. [PMID: 29184203 PMCID: PMC5726525 DOI: 10.1038/s41593-017-0013-0] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Haploinsufficiency of the AT-rich interactive domain 1B (ARID1B) gene causes autism spectrum disorder (ASD) and intellectual disability, however, the neurobiological basis for this is unknown. Here, we generated Arid1b knockout mice and examined heterozygotes to model human patients. Arid1b heterozygous mice showed a decreased number of cortical GABAergic interneurons and reduced proliferation of interneuron progenitors in the ganglionic eminence. Arid1b haploinsufficiency also led to an imbalance between excitatory and inhibitory synapses in the cerebral cortex. Furthermore, we found that Arid1b haploinsufficiency suppressed histone H3 lysine 9 acetylation (H3K9Ac) overall, and in particular reduced H3K9Ac of the Pvalb promoter, resulting in decreased transcription. Arid1b heterozygous mice exhibited abnormal cognitive and social behavior, which was rescued by treatment with a positive allosteric GABAA receptor modulator. Our results demonstrate a critical role for the Arid1b gene in interneuron development and behavior, and provide insight into the pathogenesis of ASD and intellectual disability.
Collapse
|
14
|
Varga Z, Csabai D, Miseta A, Wiborg O, Czéh B. Chronic stress affects the number of GABAergic neurons in the orbitofrontal cortex of rats. Behav Brain Res 2016; 316:104-114. [PMID: 27555539 DOI: 10.1016/j.bbr.2016.08.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/08/2016] [Accepted: 08/12/2016] [Indexed: 12/27/2022]
Abstract
Cortical GABAergic dysfunctions have been documented by clinical studies in major depression. We used here an animal model for depression and investigated whether long-term stress exposure can affect the number of GABAergic neurons in the orbitofrontal cortex (OFC). Adult male rats were subjected to 7-weeks of daily stress exposure and behaviorally phenotyped as anhedonic or stress-resilient animals. GABAergic interneurons were identified by immunohistochemistry and systematically quantified. We analyzed calbindin-(CB), calretinin-(CR), cholecystokinin-(CCK), parvalbumin-(PV), neuropeptide Y-(NPY) and somatostatin-positive (SST+) neurons in the following specific subareas of the OFC: medial orbital (MO), ventral orbital (VO), lateral orbital (LO) and dorsolateral orbital (DLO) cortex. For comparison, we also analyzed the primary motor cortex (M1) as a non-limbic cortical area. Stress had a pronounced effect on CB+ neurons and reduced their densities by 40-50% in the MO, VO and DLO. Stress had no effect on CCK+, CR+, PV+, NPY+ and SST+ neurons in any cortical areas. None of the investigated GABAergic neurons were affected by stress in the primary motor cortex. Interestingly, in the stress-resilient animals, we observed a significantly increased density of CCK+ neurons in the VO. NPY+ neuron densities were also significantly different between the anhedonic and stress-resilient rats, but only in the LO. Our present data demonstrate that chronic stress can specifically reduce the density of calbindin-positive GABAergic neurons in the orbitofrontal cortex and suggest that NPY and CCK expression in the OFC may relate to the stress resilience of the animals.
Collapse
Affiliation(s)
- Zsófia Varga
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, 7624 Pécs, Hungary
| | - Dávid Csabai
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, 7624 Pécs, Hungary
| | - Attila Miseta
- Department of Laboratory Medicine, University of Pécs, Medical School, 7624 Pécs, Hungary
| | - Ove Wiborg
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Boldizsár Czéh
- MTA - PTE, Neurobiology of Stress Research Group, Szentágothai Research Center, 7624 Pécs, Hungary; Department of Laboratory Medicine, University of Pécs, Medical School, 7624 Pécs, Hungary; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark.
| |
Collapse
|
15
|
Novel triterpenoid AECHL-1 induces apoptosis in breast cancer cells by perturbing the mitochondria–endoplasmic reticulum interactions and targeting diverse apoptotic pathways. Biochim Biophys Acta Gen Subj 2016; 1860:1056-70. [DOI: 10.1016/j.bbagen.2016.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 01/29/2016] [Accepted: 02/02/2016] [Indexed: 12/18/2022]
|
16
|
Gu YN, Lee ES, Jeon CJ. Types and density of calbindin D28k-immunoreactive ganglion cells in mouse retina. Exp Eye Res 2016; 145:327-336. [PMID: 26874036 DOI: 10.1016/j.exer.2016.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 10/22/2022]
Abstract
Single-cell injection after immunocytochemistry is a reliable technique for classifying neurons by their morphological structure and their expression of a particular protein. The aim of the present study was to classify the morphological types of calbindin D28k-immunoreactive retinal ganglion cells in the mouse using single-cell injection after immunocytochemistry, to estimate the density of calbindin D28k-immunoreactive retinal ganglion cells in the mouse retina. Calbindin D28k is an important calcium-binding protein that is widely expressed in the central nervous system. Calbindin D28k-immunoreactive retinal ganglion cells were identified by immunocytochemistry and then iontophoretically injected with the lipophilic dye, DiI. Subsequently, the injected cells were imaged by confocal microscopy to classify calbindin D28k-immunoreactive retinal ganglion cells based on their dendritic ramification depth within the inner plexiform layer, field size, and morphology. The cells were heterogeneous in morphology: monostratified or bistratified, with small to large dendritic field size and sparse to dense dendritic arbors. At least 10 different morphological types (CB1-CB10) of calbindin D28k-immunoreactive retinal ganglion cells were found in the mouse retina. The density of each cell type was quite variable (1.98-23.76%). The density of calbindin D28k-immunoreactive cells in the ganglion cell layer of the mouse retina was 562 cells/mm(2), 8.18% of calbindin D28k-immunoreactive cells were axon-less displaced amacrine cells, 91.82% were retinal ganglion cells, and approximately 18.17% of mouse retinal ganglion cells expressed calbindin D28k. The selective expression of calbindin D28k in cells with different morphologies may provide important data for further physiological studies of the mouse retina.
Collapse
Affiliation(s)
- Ya-Nan Gu
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Deagu, 41566, South Korea
| | - Eun-Shil Lee
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Deagu, 41566, South Korea
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, and Brain Science and Engineering Institute, Kyungpook National University, Deagu, 41566, South Korea.
| |
Collapse
|
17
|
Alam SMK, Konno T, Soares MJ. Identification of target genes for a prolactin family paralog in mouse decidua. Reproduction 2016; 149:625-32. [PMID: 25926690 DOI: 10.1530/rep-15-0107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prolactin family 8, subfamily a, member 2 (PRL8A2; also called decidual prolactin-related protein; dPRP) is a member of the expanded prolactin family. PRL8A2 is expressed in the uterine decidua and contributes to pregnancy-dependent adaptations to hypoxia. The purpose of this study was to identify gene targets for PRL8A2 action within the uteroplacental compartment. Affymetrix DNA microarray analysis was performed for RNA samples from WT and Prl8a2 null tissues. Validation of the DNA microarray was performed using quantitative RT-PCR. Nine genes were confirmed with decreased expression in Prl8a2 null tissues (e.g., Klk7, Rimklb, Arhgef6, Calm4, Sprr2h, Prl4a1, Ccl27, Lipg, and Htra3). These include potential decidual, endothelial and trophoblast cell targets positively regulated by PRL8A2. A significant upregulation of Derl3, Herpud1, Creld2, Hsp90b1, Ddit3 and Hspa5 was identified in Prl8a2 null tissues, reflecting an increased endoplasmic reticulum (ER) stress response. ER stress genes were prominently expressed in the uterine decidua. We propose that PRL8A2 is a mediator of progesterone-dependent modulation of intrauterine responses to physiological stressors.
Collapse
Affiliation(s)
- S M Khorshed Alam
- Department of Pathology and Laboratory MedicineInstitute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Toshihiro Konno
- Department of Pathology and Laboratory MedicineInstitute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Michael J Soares
- Department of Pathology and Laboratory MedicineInstitute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
18
|
Hajibeigi A, Dioum EM, Guo J, Öz OK. Identification of novel regulatory NFAT and TFII-I binding elements in the calbindin-D28k promoter in response to serum deprivation. Biochem Biophys Res Commun 2015; 465:414-420. [PMID: 26260319 DOI: 10.1016/j.bbrc.2015.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/05/2015] [Indexed: 11/18/2022]
Abstract
Calbindin-D28k, a key regulator of calcium homeostasis plays a cytoprotective role in various tissues. We used serum free (SFM) and charcoal stripped serum (csFBS) culture media as models of cellular stress to modulate calbindin D28k expression and identify regulatory cis-elements and trans-acting factors in kidney and beta cells. The murine calbindin-D28k promoter activity was significantly upregulated under SFM or csFBS condition. Promoter analysis revealed evolutionary conserved regulatory cis-elements and deletion of 23 nt from +117/+139 as critical for basal transcription. Bioinformatics analysis of the promoter revealed conserved NFAT and TFII regulators elements. Forced expression of NFAT stimulated promoter activity. Inhibition of NFAT transcriptional activity by FK506 attenuated calbindin-D28k expression. TFII-I was shown to be necessary for basal promoter activity and to act cooperatively with NFAT. Using chromatin immunoprecipitation (ChIP) assays, NFAT was shown to bind to both proximal and distal promoter regions. ChIP assays also revealed recruitment of TFII to the -36/+139 region. Knockdown of TFII-I decreased promoter activity. In summary, calbindin-D28k expression during serum deprivation is partly regulated by NFAT and TF-II. This regulation may be important in vivo during ischemia and growth factor withdrawal to regulate cellular function and maintenance.
Collapse
Affiliation(s)
- Asghar Hajibeigi
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390-9153, USA
| | - Elhadji M Dioum
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas 75390-9153, USA
| | - Jianfei Guo
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390-9153, USA
| | - Orhan K Öz
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 75390-9153, USA
| |
Collapse
|
19
|
The roles of endoplasmic reticulum stress response in female mammalian reproduction. Cell Tissue Res 2015; 363:589-97. [PMID: 26022337 DOI: 10.1007/s00441-015-2212-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/01/2015] [Indexed: 01/06/2023]
Abstract
Endoplasmic reticulum stress (ERS) activates a protective pathway, called the unfold protein response, for maintaining cellular homeostasis, but cellular apoptosis is triggered by excessive or persistent ERS. Several recent studies imply that the ERS response might have broader physiological roles in the various reproductive processes of female mammals, including embryo implantation, decidualization, preimplantation embryonic development, follicle atresia, and the development of the placenta. This review summarizes the existing data concerning the molecular and biological roles of the ERS response. The study of the functions of the ERS response in mammalian reproduction might provide novel insights into and an understanding of reproductive cell survival and apoptosis under physiological and pathological conditions. The ERS response is a novel signaling pathway for reproductive cell survival and apoptosis. Infertility might be a result of disturbing the ERS response during the process of female reproduction.
Collapse
|
20
|
Kook SY, Jeong H, Kang MJ, Park R, Shin HJ, Han SH, Son SM, Song H, Baik SH, Moon M, Yi EC, Hwang D, Mook-Jung I. Crucial role of calbindin-D28k in the pathogenesis of Alzheimer's disease mouse model. Cell Death Differ 2014; 21:1575-87. [PMID: 24853300 PMCID: PMC4158683 DOI: 10.1038/cdd.2014.67] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/03/2014] [Accepted: 04/04/2014] [Indexed: 01/22/2023] Open
Abstract
Calbindin-D28k (CB), one of the major calcium-binding and buffering proteins, has a critical role in preventing a neuronal death as well as maintaining calcium homeostasis. Although marked reductions of CB expression have been observed in the brains of mice and humans with Alzheimer disease (AD), it is unknown whether these changes contribute to AD-related dysfunction. To determine the pathogenic importance of CB depletions in AD models, we crossed 5 familial AD mutations (5XFAD; Tg) mice with CB knock-out (CBKO) mice and generated a novel line CBKO·5XFAD (CBKOTg) mice. We first identified the change of signaling pathways and differentially expressed proteins globally by removing CB in Tg mice using mass spectrometry and antibody microarray. Immunohistochemistry showed that CBKOTg mice had significant neuronal loss in the subiculum area without changing the magnitude (number) of amyloid β-peptide (Aβ) plaques deposition and elicited significant apoptotic features and mitochondrial dysfunction compared with Tg mice. Moreover, CBKOTg mice reduced levels of phosphorylated mitogen-activated protein kinase (extracellular signal-regulated kinase) 1/2 and cAMP response element-binding protein at Ser-133 and synaptic molecules such as N-methyl-D-aspartate receptor 1 (NMDA receptor 1), NMDA receptor 2A, PSD-95 and synaptophysin in the subiculum compared with Tg mice. Importantly, this is the first experimental evidence that removal of CB from amyloid precursor protein/presenilin transgenic mice aggravates AD pathogenesis, suggesting that CB has a critical role in AD pathogenesis.
Collapse
Affiliation(s)
- S-Y Kook
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - H Jeong
- School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, Korea
| | - M J Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - R Park
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - H J Shin
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - S-H Han
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - S M Son
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - H Song
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - S H Baik
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| | - M Moon
- Molecular Neurobiology Laboratory, Department of Psychiatry and Mclean Hospital, Harvard Medical School, Belmont, MA, USA
| | - E C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, Seoul, Korea
| | - D Hwang
- 1] School of Interdisciplinary Bioscience and Bioengineering, Department of Chemical Engineering, POSTECH, Pohang, Korea [2] Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu, Korea
| | - I Mook-Jung
- Department of Biochemistry and Biomedical Sciences, Seoul National University, College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
Calenic B, Yaegaki K, Ishkitiev N, Kumazawa Y, Imai T, Tanaka T. p53-Pathway activity and apoptosis in hydrogen sulfide-exposed stem cells separated from human gingival epithelium. J Periodontal Res 2012; 48:322-30. [DOI: 10.1111/jre.12011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2012] [Indexed: 12/13/2022]
Affiliation(s)
- B. Calenic
- Department of Oral Health; Nippon Dental University; Tokyo Japan
- Department of Biochemistry; Faculty of Dental Medicine; University of Medicine and Pharmacy “Carol Davila”; Bucharest Romania
| | - K. Yaegaki
- Department of Oral Health; Nippon Dental University; Tokyo Japan
| | - N. Ishkitiev
- Department of Oral Health; Nippon Dental University; Tokyo Japan
| | - Y. Kumazawa
- Department of Oral Surgery; The Nippon Dental University Hospital; Tokyo Japan
| | - T. Imai
- Department of Oral Health; Nippon Dental University; Tokyo Japan
| | - T. Tanaka
- Department of Oral Health; Nippon Dental University; Tokyo Japan
| |
Collapse
|