1
|
O'Rourke B, Van Eyk JE, Foster DB. Mitochondrial protein phosphorylation as a regulatory modality: implications for mitochondrial dysfunction in heart failure. CONGESTIVE HEART FAILURE (GREENWICH, CONN.) 2011; 17:269-82. [PMID: 22103918 PMCID: PMC4067253 DOI: 10.1111/j.1751-7133.2011.00266.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Phosphorylation of mitochondrial proteins has been recognized for decades, and the regulation of pyruvate- and branched-chain α-ketoacid dehydrogenases by an atypical kinase/phosphatase cascade is well established. More recently, the development of new mass spectrometry-based technologies has led to the discovery of many novel phosphorylation sites on a variety of mitochondrial targets. The evidence suggests that the major classes of kinase and several phosphatases may be present at the mitochondrial outer membrane, intermembrane space, inner membrane, and matrix, but many questions remain to be answered as to the location, timing, and reversibility of these phosphorylation events and whether they are functionally relevant. The authors review phosphorylation as a mitochondrial regulatory strategy and highlight its possible role in the pathophysiology of cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Brian O'Rourke
- Department of Medicine, Division of Cardiology, The Johns Hopkins University, Baltimore, MD 21205-2195, USA.
| | | | | |
Collapse
|
2
|
Foster DB, Van Eyk JE, Marbán E, O'Rourke B. Redox signaling and protein phosphorylation in mitochondria: progress and prospects. J Bioenerg Biomembr 2009; 41:159-68. [PMID: 19440831 PMCID: PMC2921908 DOI: 10.1007/s10863-009-9217-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As we learn more about the factors that govern cardiac mitochondrial bioenergetics, fission and fusion, as well as the triggers of apoptotic and necrotic cell death, there is growing appreciation that these dynamic processes are finely-tuned by equally dynamic post-translational modification of proteins in and around the mitochondrion. In this minireview, we discuss the evidence that S-nitrosylation, glutathionylation and phosphorylation of mitochondrial proteins have important bioenergetic consequences. A full accounting of these targets, and the functional impact of their modifications, will be necessary to determine the extent to which these processes underlie ischemia/reperfusion injury, cardioprotection by pre/post-conditioning, and the pathogenesis of heart failure.
Collapse
Affiliation(s)
- D Brian Foster
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Ross Research Building, Room 847, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
3
|
Salvi M, Brunati AM, Toninello A. Tyrosine phosphorylation in mitochondria: a new frontier in mitochondrial signaling. Free Radic Biol Med 2005; 38:1267-77. [PMID: 15855046 DOI: 10.1016/j.freeradbiomed.2005.02.006] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2005] [Revised: 02/01/2005] [Accepted: 02/03/2005] [Indexed: 11/25/2022]
Abstract
Mitochondria are multifunctional organelles that participate in a range of cellular processes such as energy production, proliferation, death, and senescence. The involvement of mitochondria in such distinct aspects of cell life requires the existence of an integrated system of signals that enter and exit the organelle according to the diverse needs of the cell. The recent discovery of several protein kinases and phosphatases that localize partially or predominantly inside mitochondria opens new perspectives into the regulation of these signals. This review focuses on tyrosine phosphorylation in mitochondria. A description of the protein tyrosine kinases and phosphatases which regulate this process along with the mitochondrial tyrosine-phosphorylated proteins identified to date is followed by a discussion of the possible involvement of tyrosine phosphorylation in mitochondrial signaling and future perspectives for developments in this emerging field.
Collapse
Affiliation(s)
- Mauro Salvi
- Dipartimento di Chimica Biologica, Università di Padova, Istituto di Neuroscienze del CNR, Unità per lo Studio delle Biomembrane, Viale G. Colombo 3, 35121 Padua, Italy
| | | | | |
Collapse
|
4
|
Schulenberg B, Aggeler R, Beechem JM, Capaldi RA, Patton WF. Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J Biol Chem 2003; 278:27251-5. [PMID: 12759343 DOI: 10.1074/jbc.c300189200] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The phosphorylation of mitochondrial proteins is pivotal to the regulation of respiratory activity in the cell and to signaling pathways leading to apoptosis, as well as for other vital mitochondrial processes. A number of protein kinases have been identified in mitochondria but the physiological substrates for many of these remain unknown or poorly understood. By necessity, most studies of mitochondrial phosphoproteins to date have been conducted using in vitro incorporation of 32P. However, proteins that are highly phosphorylated from in situ reactions are not necessarily detected by this approach. In this study, a new small molecule fluorophore has been employed to characterize steady-state levels of mitochondrial phosphoproteins. The dye is capable of sensitive detection of phosphorylated amino acid residues in proteins separated by gel electrophoresis. When the fluorescent dye is combined with a total protein stain in a sequential gel staining procedure, the phosphorylated proteins can be visualized in the same gel as the total proteins. To optimize resolution of the proteins in mitochondria, a previously described sucrose gradient fractionation method was employed prior to gel electrophoresis. Phosphorylated proteins, as defined by the fluorescence of the phosphosensor, were excised from the gels and identified by peptide mass fingerprinting. One novel and prominent phosphoprotein identified in this manner was determined to be the 42-kDa subunit of mitochondrial complex I.
Collapse
Affiliation(s)
- Birte Schulenberg
- Proteomics Section, Molecular Probes, Inc., Eugene, Oregon 97402-9144, USA
| | | | | | | | | |
Collapse
|
5
|
Salvi M, Brunati AM, Bordin L, La Rocca N, Clari G, Toninello A. Characterization and location of Src-dependent tyrosine phosphorylation in rat brain mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1589:181-95. [PMID: 12007793 DOI: 10.1016/s0167-4889(02)00174-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Analysis of protein phosphorylation in highly purified rat brain mitochondria revealed the presence of several alkali-stable phosphoproteins whose phosphorylation markedly increases upon treatment with peroxovanadate and Mn(2+), a property indicating tyrosine phosphorylation. These include three prominent bands, with apparent sizes of 50, 60, and 75 kDa, which are detectable by anti-phosphotyrosine. Tyrosine phosphorylation disappears when mitochondria are treated with PP2, an inhibitor of the Src kinase family, suggesting the presence of members of this family in rat brain mitochondria. Immunoblotting and immunoprecipitation assays of mitochondrial lysates confirmed the presence of Fyn, Src and Lyn kinases, as well as Csk, a protein kinase which negatively controls the activity of the Src kinase family. Results show that tyrosine-phosphorylated proteins are membrane-bound and that they are located on the inner surface of the outer membrane and/or the external surface of the inner membrane. Instead, Src tyrosine kinases are mainly located in the intermembrane space - in particular, as revealed by immunogold experiments for Lyn kinase, in the cristal lumen. Rat brain mitochondria were also found to possess a marked level of tyrosine phosphatase activity, strongly inhibited by peroxovanadate.
Collapse
Affiliation(s)
- Mauro Salvi
- Dipartimento di Chimica Biologica, Università di Padova, Centro delle Biomembrane del CNR, Viale G. Colombo 3, 35121 Padua, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Monti E, Supino R, Colleoni M, Costa B, Ravizza R, Gariboldi MB. Nitroxide TEMPOL impairs mitochondrial function and induces apoptosis in HL60 cells. J Cell Biochem 2002; 82:271-6. [PMID: 11527152 DOI: 10.1002/jcb.1160] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The piperidine nitroxide TEMPOL induces apoptosis in a number of tumor cell lines through free radical-dependent mechanisms. As mitochondria play a major role in apoptosis as both source and target for free radicals, the present study focuses on mitochondrial effects of TEMPOL in a human promyelocytic leukemic cell line (HL-60). On 24-h exposure to TEMPOL, the following alterations were observed: 1) decrease in both the intracellular and mitochondrial glutathione pools; 2) impairment of oxidative phosphorylation; and 3) decrease in mitochondrial membrane potential. In addition, TEMPOL was found to specifically target complex I of the respiratory chain, with minor effects on complexes II and IV, suggesting that mitochondrial effects might play a role in TEMPOL-induced oxidative stress and apoptosis, and that TEMPOL might sensitize tumor cells to the pro-apoptotic effects of cytotoxic agents.
Collapse
Affiliation(s)
- E Monti
- Department of Structural and Functional Biology, University of Insubria, Varese, Italy.
| | | | | | | | | | | |
Collapse
|
7
|
Steenaart NA, Shore GC. Mitochondrial cytochrome c oxidase subunit IV is phosphorylated by an endogenous kinase. FEBS Lett 1997; 415:294-8. [PMID: 9357986 DOI: 10.1016/s0014-5793(97)01145-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study was undertaken to identify novel mitochondrial membrane proteins that are potential targets for phosphorylation. Mitochondrial membranes were incubated in the presence of [gamma-32P]ATP and the Triton X-114 extractable protein was subjected to ion-exchange and polyacrylamide gel chromatography to purify a major phosphorylated protein of approximately 17000 Da. The determined peptide sequence of the purified phosphoprotein corresponded to a segment of cytochrome c oxidase subunit IV, an inner membrane protein of 17160 Da. The identity of the phosphoprotein was confirmed by two-dimensional electrophoresis and Western blotting. The results identify mitochondrial cytochrome c oxidase subunit IV as a protein which is phosphorylated by an endogenous kinase.
Collapse
Affiliation(s)
- N A Steenaart
- Department of Biochemistry, McGill University, Montreal, Que., Canada
| | | |
Collapse
|
8
|
Håkansson G, Allen JF. Histidine and tyrosine phosphorylation in pea mitochondria: evidence for protein phosphorylation in respiratory redox signalling. FEBS Lett 1995; 372:238-42. [PMID: 7556676 DOI: 10.1016/0014-5793(95)00990-q] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A 37 kDa protein in pea mitochondria was found to contain phosphorylated residues. Phosphorylation was acid-labile but stable in alkali solution, a unique property of phosphorylation on histidine, indicating that a signal transduction pathway with homology to bacterial two-component systems might exist in plant mitochondria. We also describe the first example of tyrosine phosphorylation in plant organelles and the first indication of protein phosphorylation as part of a redox signalling mechanism in mitochondria. Labelling of three proteins (28, 27 and 12 kDa) was found to be dependent on the redox state of the reaction medium. Their phospho-groups were resistant to alkali as well as acid treatment and labelling was inhibited by the tyrosine kinase inhibitor genistein.
Collapse
|
9
|
Organelle-specific phosphorylation. Identification of unique membrane phosphoproteins of the endoplasmic reticulum and endosomal apparatus. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53512-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Ellis PD, Bissoon N, Gurd JW. Synaptic protein tyrosine kinase: partial characterization and identification of endogenous substrates. J Neurochem 1988; 51:611-20. [PMID: 3392548 DOI: 10.1111/j.1471-4159.1988.tb01082.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The subcellular distribution of protein tyrosine kinase in rat forebrain was determined using [Val5]-angiotensin II as exogenous substrate. Enzyme activity was present in each of the fractions analyzed and was enriched in synaptic membranes (SMs) and the synaptosomal soluble fraction (2.2- and 2.5-fold over the homogenate, respectively). SMs also phosphorylated polyglutamyltyrosine (pGT; molar ratio of 4:1), the Vmax for angiotensin and pGT phosphorylation being 26.3 +/- 1.6 and 142 +/- 4 pmol/min/mg, respectively. Extraction of SMs with several different detergents resulted in enhanced enzyme activity and the solubilization of 33-37% of the angiotensin and 43-70% of the pGT-phosphorylating activity. Isolated postsynaptic densities (PSDs) contained tyrosine kinase and phosphorylated angiotensin and pGT. The Vmax values for angiotensin and pGT phosphorylation by PSDs were 17 +/- 5 and 23 +/- 1 pmol/min/mg, respectively. Six putative endogenous substrates for SM tyrosine kinase, with molecular weights of 205K, 180K, 76K, 60K, 50K, and 45K, were identified. Each of these proteins, except p76, was phosphorylated in the detergent-insoluble residue obtained following the extraction of SMs with Triton X-100 as well as in PSDs, indicating that the postsynaptic apparatus is an active site of tyrosine phosphorylation. The phosphorylation of p76 was localized to the Triton X-100 extract and also occurred in the synaptosomal soluble fraction. The results indicate that tyrosine kinase and its substrates are located in both pre- and postsynaptic compartments and suggest a role for this enzyme in synaptic function.
Collapse
Affiliation(s)
- P D Ellis
- Department of Biochemistry, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
11
|
Piedimonte G, Silvotti L, Borghetti AF, Montagnier L. Enhancement of mitochondrial tyrosine kinase activity following viral transformation. Cancer Lett 1988; 39:1-8. [PMID: 2830962 DOI: 10.1016/0304-3835(88)90034-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A tyrosine protein kinase activity has been detected in the mitochondrial fraction purified from normal and virus-transformed cultured cells. The addition of serum to cells whose growth was restricted by serum limitation induced a marked decrease of tyrosine kinase activity associated with the mitochondrial fraction. At all the culture conditions tested this enzyme activity always resulted several fold higher in the virus-transformed cells than in the normal parental cells.
Collapse
Affiliation(s)
- G Piedimonte
- Istituto di Patologia Generale, Università di Parma, Italy
| | | | | | | |
Collapse
|
12
|
Piedimonte G, Chamaret S, Dauguet C, Borghetti AF, Montagnier L. Identification and characterization of tyrosine kinase activity associated with mitochondrial outer membrane in sarcoma 180 cells. J Cell Biochem 1988; 36:91-102. [PMID: 3343288 DOI: 10.1002/jcb.240360110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tyrosine protein kinase activity has been detected in the mitochondrial fraction purified from sarcoma 180 tumor cells. Following hypotonic disruption of mitochondria, tyrosine kinase activity appeared to cosediment with monamine oxidase, marker enzyme of mitochondrial outer membrane; meanwhile, serine and threonine kinases were found to be associated with the inner membrane and matrix of mitochondria. Mitochondrial tyrosine kinase(s) showed thermosensitivity and Mn2+ dependence, useful properties for its characterization and separation from tyrosine kinases associated with other particulate fraction and from serine and threonine kinases associated with mitochondria. Following in vitro incubation of mitochondria with labelled ATP as substrate and analysis by PAGE, a complex pattern of phosphotyrosine containing proteins with a major band of 50-55 kilodaltons resulted.
Collapse
Affiliation(s)
- G Piedimonte
- Istituto di Patologia Generale, Università di Parma, Italy
| | | | | | | | | |
Collapse
|